Writing DDD Themes

User’s Guide and Reference Manual
First Edition, for DDD Version 3.3.12
Last updated 2001-02-01

Andreas Zeller

Writing DDD Themes
User’'s Guide and Reference Manual

Copyright (©) 2001 Universitit Passau
Lehrstuhl fiir Software-Systeme
Innstrafle 33

D-94032 Passau

GERMANY

Distributed by

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307

USA

DDD and this manual are available via
the DDD WWW page.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”; See Appendix D
[Documentation License], page 41, for details.

Send questions, comments, suggestions, etc. to ddd@gnu.org.
Send bug reports to bug-ddd@gnu.org.

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

Short Contents

WelCOmE ¢ ¢ e e e eeeeeeeeececccccscoscscossosossossscnsssssssasnsnss |
I Creating DiSplaySe e e s s e s o oo ossessesossossosssssssssssssssssss I
2 Writing ThemeS e o ¢ e s e e s e oo eooesoosocsossesscssosscssossnsocs I
Appendix A DDD VSLFUNCHONS ¢ e ¢ e e e s esesoscscscscscscscscssssss Y
Appendix B VSL Library e e e eoeesoecsesoescosossosssssosssssocssess 15
Appendix C VSL Reference « e o e e oo oo eoesesoscscscscsssssssssssss 29

Appendix D GNU Free Documentation License e « e e e e e e o0 eeoeeececceess 4l

INdEX e e e o ooeooooossssscccccosososossssssssssssssccscscsosossssssssss 47

i

Writing DDD Themes

Table of Contents

Welcome .. .ooiiiniiiiiiiiiiiiiieieieneneeasocnsesnsnsnans 1
1 Creating DisplayS.....ccovtiiiiinnceenrcesscenscenscnnnas 3
1.1 Handling BOXeSoiuiieii e 3

1.2 Building BoxesfromData.................cccoiiiiiiiiiiian... 3

2 Writing Themes.......cooitiiiiiiiitiiiiieneecesenannss 5
2.1 Example: Changing the Display Title Color...................... 5

2.2 The General Schemecoiiiiiiiiiiii .. 5

2.3 Overriding vs. Replacing ..., 6

24 AComplex Example ... 7

2.5 Future Work 7
Appendix A DDD VSL Functionsccciviviiiiinennnns 9
A.1 Displaying Fonts. ... 9

A.2 Displaying Colorsouiiiiiiii i 10

A.3 Displaying Shadows ... 11

A.4 Displaying Data Displays..........cooviiiiiiiiniiinannn.n.. 11

A.5 Displaying Simple Values..............c.ooiiiiiiiiii ... 11

A.6 Displaying Pointers.oouiiuiiiiiiiiiiiii .. 12

A.7 Displaying References.............c.cooiiiiiiiiiiiiiiii.. 12

A.8 Displaying Arraysooutiuiiuii e 12

A9 Displaying StructSoutiriii i 13

A.10 Displaying ListS.oovnuiiii e 13

A.11 Displaying SeqUeNCEesovueirenteteenananennennn. 14

A.12 Displaying Multi-Line Textsc.cooiiiiii... 14

A.13 Displaying Extra Properties. ..o, 14
Appendix B VSLLibrary.......cccoiiiiiiiiiiiiiniiennnnnes 15
B.l ConventionsS..........couuuiuininiiei e 15

B.2 Space Functions...............coiuiiiiiiiiiiiiiiiii i 15

B.2.1 Empty Space.........ooiiiiiiiiiiiiiiiiiiiea 15

B.22 BlackLines.........c.cooiiiiiiiiiiiiiiii i 15

B.23 White Space........coooiiiiiii 16

B.2.4 Controlling Stretch. ..., 16

B.2.5 BoxDimensions..............ooiiiiiiiiiiiiiiiin., 16

B.3 Composition Functions. 17

B.3.1 Horizontal Composition..................cccoevue.... 17

B.3.2 Vertical Composition...........c..cooevuiiiiieaennnn. 17

B.3.3 Textual CompoSitioncoovvriirenrennannnn.. 17

B.3.4 Overlays.......oooiiiiii 18

B.4 Arithmetic Functions. ... 18

iii

iv Writing DDD Themes

B.5 Comparison Functions...............ccouiiiiiiiriieiiaienn.n. 19
B.5.1 Maximum and Minimum Functions.................. 19

B.6 Negation Functions 19
B.7 Frame Functions........... ..ot 20
B.8 Alignment Functions.o 20
B.8.1 Centering Functions..................ccoovvviiinin... 20

B.8.2 Flushing Functions....................cooiiiinn.. 20

B.9 Emphasis Functions........... ... 21
B.10 Indentation FunctionS..............c.cooiiiiiiiiiiiinnn... 21
B.11 String Functions. 21
B.12 List FUnCtions...........ouuuiiii i 22
B.12.1 Creating Lists.........cooviiiiiiiiiii i, 22

B.12.2 List Properties..........couiiuiiiiiiiiiiiinannn.. 22

B.12.3 Accessing List Elements 22

B.12.4 Manipulating Lists........ ..., 23

B.12.5 Listsand Strin@s..........coviiiiiiiniinnennnnn.. 23

B.13 Table Functions ..o, 23
B.14 Font Functionsc..oiiuiiiii .. 24
B.14.1 FontBasiCS.........ooiiiiiiii i, 24

B.14.2 Font Name Selection..................cviiiiinn.. 24

B.14.3 FontDefaults............. ... oo .. 25

B.14.4 FontSelection..............coiuiiiiiiiiiineann.. 25

B.15 ColorFunctionsS.............coiiiiiiii i 25
B.16 Arc FunctionS.............cooiuuuuiiiiiiiiiiiiiieaann. 26
B.16.1 ArcBasics.........coiiiii 26

B.16.2 Custom Arc Functionsoou... 26

B.17 Slope Functionsoiiiiiiiiiiiiin .. 26
B.17.1 Slope BasicS........c.coviuiiiiiiiiiiiiiiii 26

B.17.2 Arrow Functions...............coooiiiiiiiiiiini.. 27

B.17.3 Custom Slope Functions............................ 27
Appendix C VSL Reference.........ccviiiiiierenrencencens 29
ol BOXES . ottt ittt 29
(O 15 T P 3(
C.3 EXPIessionscuiuintiit it 30
C.3.1 String Literals..........coooiiiiiiiiiiii ... 30

C.3.2 NumberLiterals.................c i, 30

C3.3 ListLiterals.........coooiiiii i 30

C34 ConditionalS............cooiiiiiiiiiiiiiin... 30

C.3.5 Boolean Operatorsoouvuiiineneinenenen.. 31

C3.6 Local Variables...........coiiiiiiiiiiiiiiiin.. 31

C.377 LetPatterns.........c.oviiiiiiiiiiiii e, 32

C4 Function CallS....... ..ot i 32
C.5 Constant Definitionsoiiiitiiii i 32
C.6 Function DefinitionsSttt 32
C.6.1 Function Parameters................................. 33

C.6.1.1 VSL Unused Parameters................... 33

C.6.2 FunctionPatternsccooiiiiiiiiiiinnn... 33

C.6.3 Declaring Functions..............cooviiiiiiianan... 34

C.6.4 Redefining Functions..................ccooviuenn.... 34

C.6.5 Replacing Functions.coviiiinan.... 34

C.6.6 Overriding Functions................................ 35

C7 Includes........coooiiiiiiii i 35

C.8 OPErators.vvvet ettt ei i eienneeae. 35

C.O9 Syntax Summary 36
Appendix D GNU Free Documentation License................ 41
ADDENDUM: How to use this License for your documents.......... 46

vi

Writing DDD Themes

Welcome 1

Welcome

Welcome to Writing DDD Themes! In this manual, we will sketch how data visualization in
DDD works. (DDD, the Data Display Debugger, is a debugger front-end with data visualization. For
details, see section “Summary of DDD” in Debugging with DDD.)

Writing DDD Themes

Chapter 1: Creating Displays 3

1 Creating Displays
We begin with a short discussion of how DDD actually creates displays from data.

1.1 Handling Boxes

All data displayed in the DDD data window is maintained by the inferior debugger. GDB, for in-
stance, provides a display list, holding symbolic expressions to be evaluated and printed on standard
output at each program stop. The GDB command ‘display tree’ adds ‘tree’ to the display list
and makes GDB print the value of ‘tree’ as, say, ‘tree = (Tree *) 0x20e98’, at each program
stop. This GDB output is processed by DDD and displayed in the data window.

Each element of the display list, as transmitted by the inferior debugger, is read by DDD and
translated into a box. Boxes are rectangular entities with a specific content that can be displayed in
the data window. We distinguish atomic boxes and composite boxes. An atomic box holds white
or black space, a line, or a string. Composite boxes are horizontal or vertical alignments of other
boxes. Each box has a size and an extent that determines how it fits into a larger surrounding space.

Through construction of larger and larger boxes, DDD constructs a graph node from the GDB
data structure in a similar way a typesetting system like TX builds words from letters and pages
from paragraphs.

Such constructions are easily expressed by means of functions mapping boxes onto boxes. These
display functions can be specified by the user and interpreted by DDD, using an applicative language
called vSL for visual structure language. VSL functions can be specified by the DDD user, leaving
much room for extensions and customization. A VSL display function putting a frame around its
argument looks like this:

// Put a frame around TEXT
frame (text) = hrule ()
| vrule() & text & vrule()
| hrule();

Here, hrule () and vrule () are primitive functions returning horizontal and vertical lines,
respectively. The ‘&’ and ‘|’ operators construct horizontal and vertical alignments from their
arguments.

VSL provides basic facilities like pattern matching and variable numbers of function arguments.
The halign () function, for instance, builds a horizontal alignment from an arbitrary number of
arguments, matched by three dots (*...’):

// Horizontal alignment
halign(x) = x;
halign(x, ...) = x & halign(...);

Frequently needed functions like halign () are grouped into a standard VSL library.

1.2 Building Boxes from Data

To visualize data structures, each atomic type and each type constructor from the programming
language is assigned a VSL display function. Atomic values like numbers, characters, enumerations,
or character strings are displayed using string boxes holding their value; the VSL function to display
them leaves them unchanged:

4 Writing DDD Themes

// Atomic Values
simple_value (value) = value;

Composite values require more attention. An array, for instance, may be displayed using a
horizontal alignment:

// Array
array(...) = frame (halign(...));

When ¢DB sends DDD the value of an array, the VSL function ‘array ()’ is invoked with array
elements as values. A GDB array expression ‘{1, 2, 3}’ is thus evaluated in VSL as

array (simple_value("1"), simple_value("2"), simple_value("3"))
which equals

"1t "2" & "3
a composite box holding a horizontal alignment of three string boxes. The actual VSL function used
in DDD also puts delimiters between the elements and comes in a vertical variant as well.

Nested structures like multi-dimensional arrays are displayed by applying the array () func-
tion in a bottom-up fashion. First, array () is applied to the innermost structures; the resulting
boxes are then passed as arguments to another array () invocation. The GDB output

{{"A", lIB", "Cll}, {"D", "E", lIF"}}
representing a 2 * 3 array of character strings, is evaluated in VSL as
array(array("A", "B", "C"), array("A", "B", "C"))
resulting in a horizontal alignment of two more alignments representing the inner arrays.

Record structures are built in a similar manner, using a display function struct_member
rendering the record members. Names and values are separated by an equality sign:
// Member of a record structure
struct_member (name, value) =
name & " =" & value;

The display function st ruct renders the record itself, using the valign () function.!

// Record structure
struct(...) = frame(valign(...));

This is a simple example; the actual vSL function used in DDD takes additional effort to align
the equality signs; also, it ensures that language-specific delimiters are used, that collapsed structs
are rendered properly, and so on.

L valign () is similar to halign (), but builds a vertical alignment.

Chapter 2: Writing Themes 5

2 Writing Themes

The basic idea of a theme is to customize one or more aspects of the visual appearance of data.
This is done by modifying specific VSL definitions.

2.1 Example: Changing the Display Title Color

As a simple example, consider the following task: You want to display display titles in
blue instead of black. The vsL function which handles the colors of display titles is called
‘title_color’ (see Section A.2 [Displaying Colors], page 10). It is defined as

title_color (box) = color (box, "black");

All you’d have to do to change the color is to provide a new definition:
title_color (box) = color(box, "blue");

How do you do this? You create a data theme which modifies the definition.

Using your favourite text editor, you create a file named, say, ‘blue-title.vsl’ in the
directory ‘~/.ddd/themes/’.

The file ‘blue-title.vsl’ has the following content:

#fpragma replace title_color
title_color (box) = color(box, "blue");

In DDD, select ‘Data = Themes’. You will find ‘blue-title.vsl’ in a line on its own.
Set the checkbox next to ‘blue—title.vsl’ in order to activate it. Whoa! All display titles will
now appear in blue.

2.2 The General Scheme

The general scheme for writing a theme is:
e Find the appropriate VSL function.

Find out which vSL function function is responsible for a specific task. See Appendix A [DDD
VSL Functions], page 9, for details on the VSL functions used by DDD.

e Replace it by your own definition.
Write a theme (a text file) with the following content:
#pragma replace function
function (args) = definition;
This will replace the existing definition of function by your new definition definition. It is
composed of two parts:

— The ‘“#pragma replace’ declaration removes the original definition of function. See
Section C.6.4 [VSL Redefining Functions], page 34, for details.

— The following line provides a new definition for function.

Please note: If the function function is marked as ‘Global VSL Function’, it must be
(re-)defined using ‘—>’ instead of ‘="; See Section C.6 [VSL Function Definitions], page 32,
for details. You may also want to consider ‘#pragma override’ instead; See Section 2.3
[Overriding vs. Replacing], page 6, for details.

6 Writing DDD Themes

o [nstall the theme in a place where DDD can find it.
For your personal use, this is normally the directory ‘~/ .ddd/themes/’.

Besides your personal directory, DDD also searches for themes in its theme directory, typically
‘/usr/local/share/ddd-3.3.12/themes/’ .

The DDD ‘vslPath’ resource controls the actual path where DDD looks for themes. See
section “VSL Resources” in Debugging with DDD, for details.

e [n DDD, invoke ‘Data = Themes’ to apply the theme.

You’re done!

2.3 Overriding vs. Replacing

In certain cases, you may not want to replace the original definition by your own, but rather
extend the original definition.

As an example, consider the ‘value_box’ function (see Section A.4 [Displaying Data Dis-
plays], page 11). It is applied to every single value displayed. By default, it does nothing. So we
could write a theme that leaves a little white space around values:

#pragma replace value_box
value_box (box) —-> whiteframe (box);

or another theme that changes the color to black on yellow:

#fpragma replace value_box
value_box (box) —-> color (box, "black", "yellow");

However, we cannot apply both themes at once (say, to create a green-on-yellow scheme). This
is because each of the two themes replaces the previous definition—the theme that comes last wins.

The solution to this problem is to set up the theme in such a way that it extends the original
definition rather than to replace it. To do so, VSL provides an alternative to ‘#pragma replace’,
namely ‘#pragma override’ (see Section C.6.6 [VSL Overriding Functions], page 35).

Like ‘#pragma replace’, the ‘#pragma override’ declaration allows for a new defini-
tion of a function. In contrast to ‘#pragma replace’, though, uses of the function prior to
‘#pragma override’ are not affected—they still refer to the old definition.

Here’s a better theme that changes the color to black on yellow. First, it makes the old defini-
tion of ‘value_box’ accessible as ‘0c1d_value_box’. Then, it provides a new definition for
‘value_box’ which refers to the old definition, saved in ‘old_value_box’ .

#fpragma override old_value_box
old_value_box(...) = value_box(...);

#pragma override value_box
value_box (value) —-> color (old_value_box (value),
"black", "yellow");

Why do we need a ‘#pragma override’ for ‘old_value_box’, too? Simple: to avoid
name clashes between multiple themes. VSL has no scopes or name spaces for definitions, so we
must resort to this crude, but effective scheme.

Chapter 2: Writing Themes 7

2.4 A Complex Example

As a more complex example, we define a theme that highlights all null pointers. First, we need
a predicate ‘is_null’ that tells us whether a pointer value is null:
// True i1if S1 ends in S2
ends_in(sl, s2) =
let slc = chars(sl),
s2c = chars(s2) in suffix(s2c, slc);

// True if null value
is _null (value) =
(ends_in (value, "0x0") or ends_in (value, "nil"));

The ‘null_pointer’ function tells us how we actually want to render null values:

// Rendering of null values
null_pointer (value) —-> color (value, "red");

Now we go and redefine the ‘pointer_value’ function such that ‘null_pointer’ is ap-
plied only to null values:

#pragma override old_pointer_value
old_pointer_value(...) —-> pointer_value(...);

#fpragma override pointer_value

// Ordinary pointers

pointer_value (value) ->
old_pointer_value (V)
where v = (if (is_null (value)) then
null_pointer (value)
else
value
fi);

All we need now is the same definition for dereferenced pointers (that is, overriding the
‘dereferenced_pointer_value’ function), and here we go!

2.5 Future Work

With the information in this manual, you should be able to set up your own themes. If you miss
anything, please let us know: simply write to ddd@gnu. org.

If there is sufficient interest, DDD’s data themes will be further extended. Among the most
wanted features is the ability to access and parse debuggee data from within VSL functions; this
would allow user-defined processing of debuggee data. Let us know if you’re interested—and keep
in touch!

mailto:ddd@gnu.org

Writing DDD Themes

Appendix A: DDD VSL Functions 9

Appendix A DDD VSL Functions

This appendix describes how DDD invokes VSL functions to create data displays.

The functions in this section are predefined in the library ‘ddd.vs1’. They can be used and
replaced by DDD themes.

Please note: Functions marked as ‘Global VSL Function’ must be (re-)defined using ‘—>’
instead of ‘=". See Section C.6 [VSL Function Definitions], page 32, for details.

A.1 Displaying Fonts

These are the function DDD uses for rendering boxes in different fonts:

small_rm (box) VSL Function
small_bf (box) VSL Function
small_it (box) VSL Function
small_bi (box) VSL Function

Returns box in small roman / bold face / italic / bold italic font.

small_size () VSL Function
Default size for small fonts."

tiny_rm (box) VSL Function
tiny_bf (box) VSL Function
tiny_it (box) VSL Function
tiny_bi (box) VSL Function

Returns box in tiny roman / bold face / italic / bold italic font.

tiny _size () VSL Function
Default size for tiny fonts.?

title_rm (box) VSL Function
title_bf (box) VSL Function
title_it (box) VSL Function
title_bi (box) VSL Function
Returns box (a display title) in roman / bold face / italic / bold italic font.
value_rm (box) VSL Function
value_bf (box) VSL Function
value_it (box) VSL Function
value_bi (box) VSL Function

Returns box (a display value) in roman / bold face / italic / bold italic font.

L ppp replaces this as set in the ppp font preferences. Use ‘ddd ——font s’ to see the actual definitions.
2 ppp replaces this as set in the ppp font preferences. Use ‘ddd ——fonts’ to see the actual definitions.

10 Writing DDD Themes

A.2 Displaying Colors

display_color (box) VSL Function
Returns box in the color used for displays. Default definition is
display_color (box) = color (box, "black", "white");
title_color (box) VSL Function
Returns box in the color used for display titles. Default definition is
title_color (box) = color (box, "black");
disabled_color (box) VSL Function
Returns box in the color used for disabled displays. Default definition is
disabled_color (box) = color (box, "white", "greyb50");
simple_color (box) VSL Function
Returns box in the color used for simple values. Default definition is
simple_color (box) = color (box, "black");
text_color (box) VSL Function
Returns box in the color used for multi-line texts. Default definition is
text_color (box) = color (box, "black");
pointer_color (box) VSL Function
Returns box in the color used for pointers. Default definition is
pointer_color (box) = color (box, "blued");
struct_color (box) VSL Function
Returns box in the color used for structs. Default definition is
struct_color (box) = color (box, "black");
list_color (box) VSL Function
Returns box in the color used for lists. Default definition is
list_color (box) = color (box, "black");
array_color (box) VSL Function
Returns box in the color used for arrays. Default definition is
array_color (box) = color (box, "blue4d");
reference_color (box) VSL Function
Returns box in the color used for references. Default definition is
reference_color (box) = color (box, "blued");
changed _color (box) VSL Function

Returns box in the color used for changed values. Default definition is
changed_color (box) = color (box, "black", "#ffffcc");

Appendix A: DDD VSL Functions 11

shadow _color (box) VSL Function
Returns box in the color used for display shadows. Default definition is

shadow_color (box) = color (box, "grey");

A.3 Displaying Shadows

shadow (box) VSL Function
Return box with a shadow around it.

A.4 Displaying Data Displays

DDD uses these functions to create data displays.

title (display_number, name) Global VSL Function

title (name) Global VSL Function
Returns a box for the display title. If display_number (a string) is given, this is prepended to
the title.

annotation (name) Global VSL Function

Returns a box for an edge annotation. This typically uses a tiny font.

disabled () Global VSL Function
Returns a box to be used as value for disabled displays.

none () Global VSL Function
Returns a box for “no value” (i.e. undefined values). Default: an empty string.

value_box (value) Global VSL Function
Returns value in a display box. Default: leave unchanged.

display_box (title, value) Global VSL Function
display_box (value) Global VSL Function
Returns the entire display box. title comes from title (), value from value_box ().

A.S Displaying Simple Values
DDD uses these functions to display simple values.

simple_value (value) Global VSL Function
Returns a box for a simple non-numeric value (characters, strings, constants, . ..). This is
typically aligned to the left.

numeric_value (value) Global VSL Function
Returns a box for a simple numeric value. This is typically aligned to the right.

collapsed_simple_value () Global VSL Function
Returns a box for a collapsed simple value.

12 Writing DDD Themes

A.6 Displaying Pointers

DDD uses these functions to display pointers.

pointer_value (value) Global VSL Function
Returns a box for a pointer value.

dereferenced_pointer_value (value) Global VSL Function
Returns a box for a dereferenced pointer value.

collapsed_pointer_value () Global VSL Function
Returns a box for a collapsed pointer.

A.7 Displaying References

DDD uses these functions to display references.

reference_value (value) Global VSL Function
Returns a box for a reference value.

collapsed_reference_value () Global VSL Function
Returns a box for a collapsed reference.

A.8 Displaying Arrays

DDD uses these functions to display arrays.

horizontal_array (values. . .) Global VSL Function
Returns a box for a horizontal array containing values.

vertical_array (values. . .) Global VSL Function
Returns a box for a vertical array containing values.

empty_array () Global VSL Function
Returns a box for an empty array.

collapsed_array () Global VSL Function
Returns a box for a collapsed array.

twodim_array (rows. ..) Global VSL Function
Returns a box for a two-dimensional array. Argument is a list of rows, suitable for use with
tab () ordtab ().

twodim_array_elem (value) Global VSL Function
Returns a box for an element in a two-dimensional array.

Appendix A: DDD VSL Functions 13

A.9 Displaying Structs

A struct is a set of (name, value) pairs, and is also called “record” or “object”. DDD uses these
functions to display structs.

struct_value (members. . .) Global VSL Function
Returns a box for a struct containing members.

collapsed_struct_value () Global VSL Function
Returns a box for a collapsed struct.

empty_struct_value () Global VSL Function
Returns a box for an empty struct.

struct_member_name (name) Global VSL Function
Returns a box for a member name.

struct_member (name, sep, value, name_width) Global VSL Function
Returns a box for a struct member. name is the member name, typeset with struct_
member_name (), sep is the separator (as determined by the current programming lan-
guage), value is the typeset member value, and name_width is the maximum width of all
member names.

horizontal_unnamed_struct () Global VSL Function
vertical_unnamed_struct () Global VSL Function
Returns a box for a horizontal / vertical unnamed struct, where member names are suppressed.

struct_member (value) Global VSL Function
Returns a box for a struct member in a struct where member names are suppressed.

A.10 Displaying Lists

A list is a set of (name, value) pairs not defined by the specific programming language. DDD
uses this format to display variable lists.

list_value (members. . .) Global VSL Function
Returns a box for a list containing members.

collapsed_list_value () Global VSL Function
Returns a box for a collapsed list.

empty_list_value () Global VSL Function
Returns a box for an empty list.

list_ member_name (name) Global VSL Function
Returns a box for a member name.

14 Writing DDD Themes

list_ member (name, sep, value, name_width) Global VSL Function
Returns a box for a list member. name is the member name, typeset with 1ist_member_
name (), sep is the separator (as determined by the current programming language), value
is the typeset member value, and name_width is the maximum width of all member names.

horizontal_unnamed_list () Global VSL Function
vertical_unnamed _list () Global VSL Function
Returns a box for a horizontal / vertical unnamed list, where member names are suppressed.

list_ member (value) Global VSL Function
Returns a box for a list member in a list where member names are suppressed.

A.11 Displaying Sequences

Sequences are lists of arbitrary, unstructured values.

sequence_value (values. . .) Global VSL Function
Returns a box for a list of values.

collapsed_sequence_value () Global VSL Function
Returns a box for a collapsed sequence.

A.12 Displaying Multi-Line Texts

DDD uses these functions to display multi-line texts, such as status displays.

text_value (Iines. . .) Global VSL Function
Returns a box for a list of lines (typically in a vertical alignment).

collapsed_text_value () Global VSL Function
Returns a box for a collapsed text.

A.13 Displaying Extra Properties

DDD uses these functions to display additional properties.

repeated_value (value, n) Global VSL Function
Returns a box for a value that is repeated n times. Note: n is a number, not a string.

changed _value (value) Global VSL Function
Returns a box for a value that has changed since the last display. Typically, this invokes
changed_color (value) .

Appendix B: VSL Library 15

Appendix B VSL Library

This appendix describes the VSL functions available in the standard VSL library.
Unless otherwise stated, all following functions are defined in ‘std.vsl’.

For DDD themes, ‘std.vs1’ need not be included explicitly.

B.1 Conventions

Throughout this document, we write a = (al, a2) to refer to individual box sizes. al stands for
the horizontal size of a, and a2 stands for the vertical size of a.

B.2 Space Functions

B.2.1 Empty Space

fill () VSL Function
Returns an empty box of width 0 and height 0 which stretches in both horizontal and vertical
directions.

hfill () VSL Function

Returns a box of height 0 which stretches horizontally.

vill () VSL Function
Returns a box of width 0 which stretches vertically.

B.2.2 Black Lines

rule () VSL Function
Returns a black box of width 0 and height O which stretches in both horizontal and vertical
directions.

hrule ([thickness]) VSL Function

Returns a black box of width 0 and height thickness which stretches horizontally. thickness
defaults to rulethickness () (typically 1 pixel).

vrule ([thickness]) VSL Function
Returns a black box of width thickness and height O which stretches vertically. thickness
defaults to rulethickness () (typically 1 pixel).

rulethickness () VSL Function
Returns the default thickness for black rules (default: 1).

16 Writing DDD Themes

B.2.3 White Space

hwhite ([thickness]) VSL Function
Returns a black box of width 0 and height thickness which stretches horizontally. thickness
defaults to whitethickness () (typically 2 pixels).

vwhite ([thickness]) VSL Function
Returns a black box of width thickness and height O which stretches vertically. thickness
defaults to whitethickness () (typically 2 pixels).

whitethickness () VSL Function
Returns the default thickness for white rules (default: 2).

B.2.4 Controlling Stretch

hfix (a) VSL Function
Returns a box containing a, but not stretchable horizontally.

vfix (a) VSL Function
Returns a box containing a, but not stretchable vertically.

fix (a) VSL Function
Returns a box containing a, but not stretchable in either direction.

B.2.5 Box Dimensions

hspace (a) VSL Function
If a = (al, a2), create a square empty box with a size of (al, al).

vspace (a) VSL Function
If a = (al, a2), create a square empty box with a size of (a2, a2).

square (a) VSL Function
If a = (al, a2), create a square empty box with a size of max(al, a2).

box (n, m) VSL Function
Returns a box of size (n, m).

Appendix B: VSL Library 17

B.3 Composition Functions

B.3.1 Horizontal Composition

(&) (a, b) VSL Function

(&) (boxes. . .) VSL Function

halign (boxes. . .) VSL Function
Returns a horizontal alignment of a and b; a is placed left of b. Typically written in inline
form ‘a & b’.

The alternative forms (available in function-call form only) return a horizontal left-to-right
alignment of their arguments.

hralign (boxes. . .) VSL Function
Returns a right-to-left alignment of its arguments.

B.3.2 Vertical Composition

(1) (a, b) VSL Function

(1) (boxes...) VSL Function

valign (boxes. . .) VSL Function
Returns a vertical alignment of a and b; a is placed above b. Typically written in inline form
‘alb’.

The alternative forms (available in function-call form only) return a vertical top-to-bottom
alignment of their arguments.

vralign (boxes. . .) VSL Function
Returns a bottom-to-top alignment of its arguments.

vlist (sep, boxes. . .) VSL Function
Returns a top-to-bottom alignment of boxes, where any two boxes are separated by sep.

B.3.3 Textual Composition

(~) (a, b) VSL Function
(~) (boxes. ..) VSL Function
talign (boxes. . .) VSL Function

Returns a textual concatenation of a and b. b is placed in the lower right unused corner of a.
Typically written in inline form ‘a ~ b’.

The alternative forms (available in function-call form only) return a textual concatenation of
their arguments.

tralign (boxes. . .) VSL Function
Returns a textual right-to-left concatenation of its arguments.

18 Writing DDD Themes

tlist (sep, boxes. . .) VSL Function
Returns a textual left-to-right alignment of boxes, where any two boxes are separated by sep.

commalist (boxes. . .) VSL Function
Shorthand for ‘t1ist (", ", boxes...)’ .

semicolonlist (boxes. . .) VSL Function
Shorthand for ‘t1ist ("; ", boxes...)’.

B.3.4 Overlays

(") (a, b) VSL Function

() (boxes. ..) VSL Function
Returns an overlay of a and b. a and b are placed in the same rectangular area, which is the
maximum size of a and b; first, a is drawn, then b. Typically written in inline form ‘a ~ b’.

The second form (available in function-call form only) returns an overlay of its arguments.

B.4 Arithmetic Functions

(+) (a, b) VSL Function

(+) (boxes. ..) VSL Function
Returns the sum of a and b. If a = (al, a2) and b = (b1, b2), then a + b = (al + a2, bl +
b2). Typically written in inline form ‘a + b’.

The second form (available in function-call form only) returns the sum of its arguments.

The special form ‘+a’ is equivalent to ‘a’.

(-) (a, b) VSL Function
Returns the difference of a and b. If a = (al, a2) and b = (b1, b2), then a - b = (al - a2, bl -
b2). Typically written in inline form ‘a — b’.

The special form ‘~a’ is equivalent to ‘0-a’.

(*) (a, b) VSL Function

(*) (boxes. . .) VSL Function
Returns the product of a and b. If a = (al, a2) and b = (b1, b2), then a * b = (al * a2, bl *
b2). Typically written in inline form ‘a * b’.

The second form (available in function-call form only) returns the product of its arguments.

(/) (a, b) VSL Function
Returns the quotient of a and b. If a = (al, a2) and b = (b1, b2),thena /b = (al / a2, bl /
b2). Typically written in inline form ‘a / b’.

(%) (a, b) VSL Function
Returns the remainder of a and b. If a = (al, a2) and b = (b1, b2), then a % b = (al % a2,
bl % b2). Typically written in inline form ‘a $ b’.

Appendix B: VSL Library 19

B.5 Comparison Functions

(=) (a, b) VSL Function
Returns true (‘1’) if a = b, and false (‘0’), otherwise. a = b holds if a and b have the same
size, the same structure, and the same content. Typically written in inline form ‘a / b’.

(<>) (a, b) VSL Function
Returns false (‘0”) if a = b, and true (‘1’), otherwise. a = b holds if a and b have the same
size, the same structure, and the same content. Typically written in inline form ‘a / b’.

(<) (a, b) VSL Function
If a =(al, a2) and b = (b1, b2), then this function returns true (‘1’) if al < bl or a2 < b2
holds; false (‘0’), otherwise. Typically written in inline form ‘a < b’.

(<=) (a, b) VSL Function
If a =(al, a2) and b = (b1, b2), then this function returns true (‘1’) if al <= bl or a2 <= b2
holds; false (‘0’), otherwise. Typically written in inline form ‘a <= b’.

(>) (a, b) VSL Function
If a = (al, a2) and b = (b1, b2), then this function returns true (‘1) if al > bl or a2 > b2
holds; false (‘07), otherwise. Typically written in inline form ‘a > b’.

(>=) (a, b) VSL Function
If a=(al, a2) and b = (b1, b2), then this function returns true (‘1’) if al >= bl or a2 >= b2
holds; false (‘07), otherwise. Typically written in inline form ‘a >=b’.

B.5.1 Maximum and Minimum Functions

max (bl, b2, ...) VSL Function
Returns the maximum of its arguments; that is, the one box b in its arguments for which b >
bl, b > b2, ... holds.

min (bl, b2, ...) VSL Function
Returns the maximum of its arguments; that is, the one box b in its arguments for which b <
bl,b < b2, ... holds.

B.6 Negation Functions

(not) (a) VSL Function
Returns true (‘1°) if a is false, and false (‘0’), otherwise. Typically written in inline form
‘not a’.

See Section C.3.5 [VSL Boolean Operators], page 31, for and and or.

20 Writing DDD Themes

B.7 Frame Functions

ruleframe (a[, thickness]) VSL Function
Returns a within a black rectangular frame of thickness thickness. thickness defaults to
rulethickness () (typically 1 pixel).

whiteframe (a[, thickness]) VSL Function
Returns a within a white rectangular frame of thickness thickness. thickness defaults to
whitethickness () (typically 2 pixels).

frame (a) VSL Function
Returns a within a rectangular frame. Equivalent to ‘ruleframe (whiteframe (a)’.

doubleframe (a) VSL Function

2

Shortcut for ‘frame (frame (a))’.

thickframe (a) VSL Function

’

Shortcut for ‘ruleframe (frame (a))’.

B.8 Alignment Functions

B.8.1 Centering Functions

hcenter (a) VSL Function
Returns box a centered horizontally within a (vertical) alignment.

Example: In ‘a | hcenter (b) | ¢’, b is centered relatively to a and c.

veenter (a) VSL Function
Returns box a centered vertically within a (horizontal) alignment.

Example: In ‘a & vcenter (b) & ¢’, b is centered relatively to a and c.

center (a) VSL Function
Returns box a centered vertically and horizontally within an alignment.

Example: In ‘100 ~ center (b)’, b is centered within a square of size 100.

B.8.2 Flushing Functions

n_flush (box) VSL Function
s_flush (box) VSL Function
w_flush (box) VSL Function
e_flush (box) VSL Function

Within an alignment, Flushes box to the center of a side.

Example: In ‘100 ~ s_flush(b)’, b is centered on the bottom side of a square of size
100.

Appendix B: VSL Library 21

nw_flush (box) VSL Function
sw_flush (box) VSL Function
ne_flush (box) VSL Function
se_flush (box) VSL Function

Within an alignment, Flushes box to a corner.

Example: In ‘100 ~ se_flush(b)’, b is placed in the lower right corner of a square of
size 100.

B.9 Emphasis Functions

underline (a) VSL Function
Returns a with a line underneath.

overline (a) VSL Function
Returns a with a line above it.

crossline (a) VSL Function
Returns a with a horizontal line across it.

doublestrike (a) VSL Function
Returns a in “poor man’s bold™: it is drawn two times, displaced horizontally by one pixel.

B.10 Indentation Functions

indent (box) VSL Function
Return a box where white space of width indentamount () is placed left of box.

indentamount () VSL Function
Indent amount to be used in indent () ; defaults to ‘" "’ (two spaces).

B.11 String Functions

To retrieve the string from a composite box, use string () :

string (box) VSL Function
Return the string (in left-to-right, top-to-bottom order) within box.

To convert numbers to strings, use num () :
num (a [, \ varbase]) VSL Function

For a square box a = (al, al), returns a string containing a textual representation of al. base
must be between 2 and 16; it defaults to ‘10°. Example: num (25) = "25")

dec (a) VSL Function
oct (a) VSL Function
bin (a) VSL Function
hex (a) VSL Function
Shortcut for ‘num (a, 10)°, ‘num(a, 8)’, ‘num(a, 2)’, ‘num(a, 16)’, respectively.

22 Writing DDD Themes

B.12 List Functions

The functions in this section require inclusion of the library ‘1ist.vsl’.

For themes, ‘1ist.vs1’ need not be included explicitly.

B.12.1 Creating Lists

(:2) (listl, list2, . . .) VSL Function
Return the concatenation of the given lists. Typically written in inline form: [1] :: [2]
c: [3] =11, 2, 37.

append (list, elem) VSL Function
Returns list with elem appended at the end: append ([1, 2, 31, 4) = [1, 2, 3, 4]

B.12.2 List Properties

isatom (x) VSL Function
Returns True (1) if x is an atom; False (0) if x is a list.

islist (x) VSL Function
Returns True (1) if x is a list; False (0) if x is an atom.

member (x, list) VSL Function
Returns True (1) if x is an element of list; False (0) if not: member (1, [1, 2, 3]) =
true

prefix (sublist, list) VSL Function

suffix (sublist, list) VSL Function

sublist (sublist, list) VSL Function

Returns True (1) if sublist is a prefix / suffix / sublist of list; False (0) if not: prefix ([1],
[1, 2]) = true, suffix([3], [1, 2]) = false, sublist ([2, 2], [1, 2,
2, 3]) = true,

length (1ist) VSL Functions
Returns the number of elements in list: length ([1, 2, 3]) = 3

B.12.3 Accessing List Elements

car (list) VSL Function

head (Iist) VSL Function
Returns the first element of list: car ([1, 2, 3]1) =1

cdr (list) VSL Function

tail (Iist) VSL Function

Returns list without its first element: cdr ([1, 2, 3]1) = [2, 3]

Appendix B: VSL Library 23

elem (Iist, n) VSL Function
Returns the n-th element (starting with 0) of list: elem ([4, 5, 6], 0) = 4

pos (elem, list) VSL Function
Returns the position of elem in list (starting with 0): pos (4, [1, 2, 4]) = 2

last (list) VSL Function
Returns the last element of list: 1ast ([4, 5, 6]) = 6

B.12.4 Manipulating Lists

reverse (list) VSL Function
Returns a reversed list: reverse ([3, 4, 5]) = [5, 4, 3]

delete (Iist, elem) VSL Function
Returns Iist, with all elements elem removed: delete ([4, 5, 5, 6], 5) = [4, 6]

select (list, elem) VSL Function
Returns list, with the first element elem removed: select ([4, 5, 5, 6], 5) = [4, 5,
6]

flat (Iist) VSL Function

Returns flattened list: £1at ([[3, 41, [[5], [6]11]) = [3, 4, 5, 6]

sort (list) VSL Function
Returns sortened list (according to box size): sort ([7, 4, 91) = [4, 7, 9]

B.12.5 Lists and Strings

chars (s) VSL Function
Returns a list of all characters in the box s: chars ("abc") = ["a", "b", "c"]

list (Iist) VSL Function
Returns a string, pretty-printing the list: 1ist ([4, 5, 6]) = "[4, 5, 61"

B.13 Table Functions

The functions in this section require inclusion of the library ‘tab.vs1’.
For themes, ‘tab.vsl’ need not be included explicitly.

tab (table) VSL Function
Return table (a list of lists) aligned in a table: tab ([[1, 2, 31, [4, 5, 61, [7, 811)
=

~
o U N
o W

24 Writing DDD Themes

dtab (table) VSL Function
Like t ab, but place delimiters (horizontal and vertical rules) around table elements.

tab_elem (x) VSL Function
Returns padded table element x. Its default definition is:
tab_elem([]) = tab_elem(0); // empty table
tab_elem(x) = whiteframe (x); // padding

B.14 Font Functions

The functions in this section require inclusion of the library ‘fonts.vsl’.

For themes, ‘fonts.vsl’ need not be included explicitly.

B.14.1 Font Basics

font (box, font) VSL Function
Returns box, with all strings set in font (a valid X11 font description)

B.14.2 Font Name Selection

weight_bold () VSL Function
weight_medium () VSL Function
Font weight specifier in fontname () (see below).

slant_unslanted () VSL Function
slant_italic () VSL Function
Font slant Specifier in fontname () (see below).

family_times () VSL Function
family_courier () VSL Function
family_helvetica () VSL Function
family_new_century () VSL Function
family_typewriter () VSL Function

Font family specifier in fontname () (see below).

fontname ([weight, [slant, [family, [size]]]]) VSL Function
Returns a fontname, suitable for use with font ().

e weight defaults to stdfontweight () (see below).
e slant defaults to stdfontslant () (see below).
e family defaults to stdfontfamily () (see below).

e size is a pair (pixels, points) where pixels being zero means to use points instead and
vice versa. defaults to stdfontsize () (see below).

Appendix B: VSL Library 25

B.14.3 Font Defaults

stdfontweight () VSL Function
Default font weight: weight_medium ().

stdfontslant () VSL Function
Default font slant: slant _unslanted().

stdfontfamily () VSL Function
Default font family: family_times ().

DDD replaces this as set in the DDD font preferences. Use ‘ddd ——fonts’ to see the actual
definitions.

stdfontsize () VSL Function
Default font size: (stdfontpixels (), stdfontpoints()).

DDD replaces this as set in the DDD font preferences. Use ‘ddd ——fonts’ to see the actual
definitions.

stdfontpixels () VSL Function
Default font size (in pixels): 0, meaning to use stdfontpoints () instead.

stdfontpoints () VSL Function
Default font size (in 1/10 points): 120.

B.14.4 Font Selection

rm (box [, family [, size]]) VSL Function
bf (box [, family [, size]]) VSL Function
it (box [, family [, size]]) VSL Function
bi (box [, family [, size]]) VSL Function

Returns box in roman / bold face / italic / bold italic. family specifies one of the font families;
it defaults to stdfontfamily () (see above). size specifies a font size; it defaults to
stdfontsize () (see above).

B.15 Color Functions

The functions in this section require inclusion of the library ‘colors.vsl’.

For themes, ‘colors.vsl’ need not be included explicitly.

color (box, foreground [, background]]) VSL Function
Returns box, where the foreground color will be drawn using the foreground color. If back-
ground is specified as well, it will be used for drawing the background. Both foreground and
background are strings specifying a valid X11 color.

26 Writing DDD Themes

B.16 Arc Functions

The functions in this section require inclusion of the library ‘arcs.vsl’.
For themes, ‘arcs.vsl’ must be included explicitly, using a line
#include <arcs.vsl>

at the beginning of the theme.

B.16.1 Arc Basics

arc (start, length [, thickness]) VSL Function
Returns a stretchable box with an arc of length, starting at angle start. start and length must
be multiples of 90 (degrees). The angle of start is specified clockwise relative to the 9 o’clock
position. thickness defaults to arcthickness () (see below).

arcthickness () VSL Function
Default width of arcs. Defaults to rulethickness ().

B.16.2 Custom Arc Functions

oval (box) VSL Function
Returns an oval containing box. Example: oval ("33").

ellipse (box) VSL Function

ellipse () VSL Function
Returns an ellipse containing box. Example: ellipse ("START"). If box is omitted, the
ellipse is stretchable and expands to the available space.

circle (box) VSL Function
Returns a circle containing box. Example: circle (10).

B.17 Slope Functions

The functions in this section require inclusion of the library ‘slopes.vsl’.
For themes, ‘slopes.vsl’ must be included explicitly, using a line
#include <slopes.vsl>

at the beginning of the theme.

B.17.1 Slope Basics

rise ([thickness]) VSL Function
Create a stretchable box with a line from the lower left to the upper right corner. thickness
defaults to slopethickness () (see below).

Appendix B: VSL Library 27

fall ([thickness]) VSL Function
Create a stretchable box with a line from the upper left to the lower right corner. thickness
defaults to slopethickness () (see below).

slopethickness () VSL Function
Default thickness of slopes. Defaults to rulethickness ().

B.17.2 Arrow Functions

n_arrow () VSL Function
w_arrow () VSL Function
s_arrow () VSL Function
e_arrow () VSL Function

Returns a box with an arrow pointing to the upper, left, lower, or right side, respectively.

nw_arrow () VSL Function
ne_arrow () VSL Function
sw_arrow () VSL Function
se_arrow () VSL Function

Returns a box with an arrow pointing to the upper left, upper right, lower left, or lower right
side, respectively.

B.17.3 Custom Slope Functions

punchcard (box) VSL Function
Returns a punchcard containing box.

rhomb (box) VSL Function
Returns a rhomb containing box.

octogon (box) VSL Function
Returns an octogon containing box.

28

Writing DDD Themes

Appendix C: VSL Reference 29

Appendix C VSL Reference

This appendix describes the vSL language.

C.1 Boxes

VSL knows two data types. The most common data type is the box. A box is a rectangular area
with a content, a size, and a stretchability.

Boxes are either atomic or composite. A composite box is built from two or more other boxes.
These boxes can be aligned horizontally, vertically, or otherwise.

Boxes have a specific minimum size, depending on their content. We say ‘minimum’ size here,
because some boxes are stretchable—that is, they can fill up the available space.

If you have a vertical alignment of three boxes A, B, and C, like this:

AAAAAA
AAAAAA
B
B
cccccce
CCcccce

and B is stretchable horizontally, then B will fill up the available horizontal space:

AAAARAA
AAAARAA
BBBBEB
BBBBEB
cccccce
cccccce

If two or more boxes compete for the same space, the space will be distributed in proportion to
their stretchability.

An atomic stretchable box has a stretchability of 1. An alignment of multiple boxes stretchable in
the direction of the alignment boxes will have a stretchability which is the sum of all stretchabilities.

If you have a vertical alignment of three boxes A, B, C, D, and E, like this:

AAAAAA
AAAARAA
BC D
BC D
EEEEEE
EEEEEE

and B, C, and D are stretchable horizontally (with a stretchability of 1), then the horizontal
alignment of B and C will have a stretchability of 2. Thus, the alignment of B and C gets two
thirds of the available space; D gets the remaining third.

AAAAAA
AAAAAA
BBCCDD
BBCCDD
EEEEEE
EEEEEE

30 Writing DDD Themes

C.2 Lists

Besides boxes, VSL knows [lists. A list is not a box—it has no size or stretchability. A list is a
simple means to structure data.

vsL lists are very much like lists in functional languages like Lisp or Scheme. They consist of a
head (typically a list element) and a tail (which is either a list remainder or the empty list).

C.3 Expressions

C.3.1 String Literals

The expression ‘"text"’ returns a box containing text. text is parsed according to C syntax rules.

Multiple string expressions may follow each other to form a larger constant, as in C++. ‘"text] "
"text2"’ is equivalent to ‘"textI text2"’

Strings are not stretchable.

C.3.2 Number Literals

Any constant integer n evaluates to a number—that is, a non-stretchable empty square box with
size (n, n).

C.3.3 List Literals

The expression ‘[a, b, ...] evaluates to a list containing the element a, b, ‘[]’ is the
empty list.

The expression ‘[head : tail]’ evaluates to a list whose first element is head and whose re-
mainder (typically a list) is tail.

In most contexts, round parentheses can be used as alternatives to square brackets. Thus, (a,
b)’ is a list with two elements, and “ ()’ is the empty list.

Within an expression, though, square parentheses must be used to create a list with one element.
In an expression, the form (a) ’ is not a list, but an alternative notation for a.

C.3.4 Conditionals

A box a = (al, a2) is called true if al or a2 is non-zero. It is called false if both al or a2 are
Zero.

The special form
if a then b else ¢ fi
returns b if a is true, and ¢ otherwise. Only one of b or c is evaluated.
The special form
elsif a2 then b2 else c¢ fi
is equivalent to
else if a2 then b2 else ¢ fi fi

Appendix C: VSL Reference 31

C.3.5 Boolean Operators

The special form

a and b
is equivalent to

if a then b else 0 fi
The special form

a or b
is equivalent to

if a then 1 else b fi
The special form

not a
is equivalent to

if a then 0 else 1 fi

Actually, ‘not’ is realized as a function; See Section B.6 [Negation Functions], page 19, for
details.

C.3.6 Local Variables

You can introduce local variables using ‘1et’ and ‘where’:
let vl = el in e
makes vI available as replacement for el in the expression e.
Example:
let pi = 3.1415 in 2 * pi = 6.2830
The special form
let vl =e€l, v2 =¢€2, ... in e
is equivalent to
let vl = el in let v2 = e2 in let ... in e
As an alternative, you can also use the where form:
e where vl = el

is equivalent to

let vl = el in e
Example:
("here lies" | name) where
name = ("one whose name" | "was writ in water")

The special form
e where vl = el, v2 = e2,
is equivalent to

let vl =el, v2 =¢€2, ... in e

32 Writing DDD Themes

C.3.7 Let Patterns

You can access the individual elements of a list or some composite box by giving an appropriate
pattern:

let (left, right) = pair in expr

If pair has the value, say, (3, 4), then 1eft will be available as a replacement for 3, and
right will be available as a replacement for 4 in expr.

A special pattern is available for accessing the head and the tail of a list:
let [head : tail] = list in expr
If expr has the value, say, [3, 4, 5], then head willbe 3,and tail willbe [4, 5] in expr.

C.4 Function Calls

A function call takes the form
name list

which invokes the (previously declared or defined) function with an argument of list. Normally,
list is a list literal (see Section C.3.3 [VSL List Literals], page 30) written with round brackets.

C.5 Constant Definitions

A vsL file consists of a list of definitions.
A constant definition takes the form
name = expression;
Any later definitions can use name as a replacement for expression.
Example:

true = 1;
false = 0;

C.6 Function Definitions

In VSL, all functions either map a list to a box or a list to a list. A function definition takes the
form

name list = expression;

where list is a list literal (see Section C.3.3 [VSL List Literals], page 30).

The list literal is typically written in round parentheses, making the above form look like this:
name (paraml, param2, ...) = expression;

The ‘=’ is replaced by ‘—>’ if name is a global definition—that is, name can be called from
a library client such as DDD. A local definition (with ‘=) can be called only from other VSL
functions.?

! The distinction into global and local definitions is useful when optimizing the library: local definitions
that are unused within the library can be removed, while global definitions cannot.

Appendix C: VSL Reference 33

C.6.1 Function Parameters

The parameter list list may contain names of formal parameters. Upon a function call, these are
bound to the actual arguments.

If the function
sum(a, b) = a + b;
is called as
sum (2. 3)
then a will be bound to 2 and b will be bound to 3, evaluating to 5.

C.6.1.1 VSL Unused Parameters

Unused parameters cause a warning, as in this example:
first_arg(a, dummy) = a; // Warning

If a parameter has the name ‘_’, it will not be bound to the actual argument (and can thus not be
used). Use ‘_’ as parameter name for unused arguments:
first_arg(a, _) = a; // No warning

3

_’ can be used multiple times in a parameter list.

C.6.2 Function Patterns

A VSL function may have multiple definitions, each with a specific pattern. The first definition
whose pattern matches the actual argument is used.

What does ‘matching” mean? Within a pattern,
e An ordinary formal parameter matches any single value

e A formal parameter whose name is ‘...” orends in ‘...” matches a single value or a list or a
list remainder

e A constant matches exactly the same value
e A composite box or list matches a composite box or list if
— the composites have the same type
— the composites have the same number of elements
— the elements match each other.
Here are some examples. The num () function (see Section B.11 [String Functions], page 21)

can take either one or two arguments. The one-argument definition simply invokes the two-argument
definition:

num(a, base) = ...;
num(a) = num(a, 10);
Here’s another example: The digit function returns a string representation for a single number.
It has multiple definitions, all dependent on the actual argument:

digit (0) = "0O";
digit (1) = "1";
digit (2) = "2";
digit(3) = "3";

34 Writing DDD Themes

digit (4) = "4";

digit (5) = "5";

digit (6) = "6";

digit (7) = "7";

digit (8) = "8";

digit (9) = "9";

digit (10) = "a";

digit (11) = "b";

digit (12) = "c";

digit (13) = "d";

digit (14) = "e";

digit (15) = "f";

digit(_) = fail("invalid digit () argument");

Formal parameters ending in ‘. .." are useful for defining aliases of functions. The definition

roman(...) = rm(...);

makes roman an alias of rm—any parameters (regardless how many) passed to roman will be
passed to rm.

3 2

Here’s an example of how formal parameters ending in can be used to realize variadic
functions, taking any number of arguments (see Section B.5.1 [Maximum and Minimum Functions],
page 19):

max (a) = aj
max (a, b, .) = 1if a > b then max(a, ...) else max(b, ...) fi;
min (a) = aj;
min (a, b, ..) = 1f a < b then min(a, ...) else min(b, ...) fi;

C.6.3 Declaring Functions

If you want to use a function before it has been defined, just write down its signature without
specifying a body. Here’s an example:

num(a, base); // declaration
num(a) = num(a, 10);

Remember to give a definition later on, though.

C.6.4 Redefining Functions

You can redefine a VSL function even affer its original definition. You can
replace the original definition, thus making all previous definitions refer to your new definition;

override the original definition, thus making only later definitions refer to your new definition.

C.6.5 Replacing Functions

To remove an original definition, use
#pragma replace name
This removes all previous definitions of name. Be sure to provide your own definitions, though.

‘#pragma replace’ is typically used to change defaults:

Appendix C: VSL Reference 35

#include "fonts.vsl" // defines stdfontsize ()

#pragma replace stdfontsize () // replace def
stdfontsize () = 20;

All existing function calls will now refer to the new definition.

C.6.6 Overriding Functions

To override an original definition, use
#pragma override name

This makes all later definitions use your new definition of name. Earlier definitions, however,
still refer to the old definition.

‘#pragma override’ is typically used if you want to redefine a function while still refering
to the old definition:

#include "fonts.vsl" // defines stdfontsize ()

// Save old definition
old_stdfontsize () = stdfontsize();

#fpragma override stdfontsize()

// Refer to old definition
stdfontsize () = old_stdfontsize() * 2;

Since we used ‘#pragma override’, we can use old_stdfontsize () to refer to the
original definition of stdfontsize ().

C.7 Includes

In a vsL file, you can include at any part the contents of another VSL file, using one of the special
forms

#include "file"
#include <file>

The form ‘<file>" looks for VSL files in a number of standard directories; the form ‘" file"’ first
looks in the directory where the current file resides.

Any included file is included only once.

In DDD, you can set these places using the ‘vs1Path’ resource. See section “Customizing
Display Appearance” in Debugging with DDD, for details.

C.8 Operators

VSL comes with a number of inline operators, which can be used to compose boxes. With
raising precedence, these are:
or

and
= <>

36 Writing DDD Themes

* 4+ e

/%
not
Except for or and and, these operators are mapped to function calls. Each invocation of an
operator ‘@’ in the form ‘a @ b’ gets translated to a call of the VSL function with the special name
‘(@) . This vSL function can be defined just like any other VSL function.

For instance, the expression a + b gets translated to a function call (+) (a, b); a & b invokes
(&) (a, b).
In the file ‘builtin.vsl’, you can actually find definitions of these functions:
(&) (...) = _op_halign(...);
(+) (...) = __op_plus(...);
The functions __op_halign and __op_plus are the names by which the ‘ (&)’ and * (+)
functions are implemented. In this document, though, we will not look further at these internals.

B

Here are the places where the operator functions are described:
For ‘=" and ‘<>’, See Section B.5 [Comparison Functions], page 19.
For ‘<=", ‘<’, *>="_and ‘>’, See Section B.5 [Comparison Functions], page 19.

For “: :’, See Section B.12 [List Functions], page 22.

For *|’, ‘~°, *~’, and ‘&’, See Section B.3 [Composition Functions], page 17.
For ‘+’, ‘=°, %, /’, and ‘%’, See Section B.4 [Arithmetic Functions], page 18.

For ‘not’, See Section B.6 [Negation Functions], page 19.

C.9 Syntax Summary

The following file summarizes the syntax of VSL files.
/*** VSL file ***/

file : item_list

item_list : /* empty */
item_list item

item : function_declaration ’;’
| function_definition ' ;'
| override declaration

| replace_declaration

| include_declaration

| line_declaration

|

|

r .7

error ' ;'

Appendix C: VSL Reference 37

/*** functions ***/
function_declaration : function_header

function_header : function_identifier function_argument
function_identifier

function_identifier : identifier

I(I r——7r I)

14 l<>l l)l

14 l>l I)l

ror = I)I

4 I</ I)I
4

r

|

| (

| (

| (

| (

| I(I =1)I

| I(I I&I I)l

| I(I I|l I)l

| I(I r N1 I)l

| l(l r._r I)l

| l(l I+I I)l

| l(l r 7 I)l

| l(l r %7 I)l

| l(/ /// /)I

| I(/ I%/ I)/

| I(I I::l I)I

| I(I Inotl I)I
identifier : IDENTIFIER
function_definition : local_definition

global_definition

local_definition : local_header function_body
local header : function_header "=’
global_definition : global_header function_body
global_header : function_header "->'
function_body : box_expression_with_defs

/*** expressions ***/
/*** let, where ***/

box_expression_with_defs: box_expression_with_wheres

38

in_box_expression :

box_expression_with_wheres:

box_expression_with_where:

var_definition :

/*** basic expressions ***/

box_expression

.o

list_expression :

box_expression_list :

multiple_box_expression_list:
|
|
|

const_expression :

string_constant :

numeric_constant :

function_call :

Writing DDD Themes

"let’ var_definition in_box_expression

"in’ box_expression_with_defs
",’ var_definition in_box_expression

box_expression
box_expression_with_where

box_expression_with_wheres
"where’ var_definition
box_expression_with_where
", var_definition

box_expression =’ box_expression

" (" box_expression_with_defs ")’
list_expression
const_expression
binary_expression
unary_expression
cond_expression

function_call
argument_or_function

[I l]l
"[’ box_expression_list ']’
l(l l)l
(

4

" multiple_box_expression_list)’

box_expression_with_defs
multiple_box_expression_list

box_expression ’:’ box_expression
box_expression ’,’ box_expression_list

box_expression ...’

r 4

string_constant
numeric_constant

STRING
string_constant STRING

INTEGER

function_identifier function_argument

Appendix C: VSL Reference 39

unary_expression : "not’ box_expression
"+’ box_expression
| "—' box_expression

/*** operators ***/

binary_expression : box_expression =’ box_expression
box_expression <>’ box_expression
box_expression >’ box_expression
box_expression ’>=’ box_expression
box_expression <’ box_expression
box_expression <=’ box_expression
box_expression ’'&’ box_expression
box_expression ' |’ box_expression
box_expression "' box_expression
box_expression ’'~’ box_expression
box_expression '+’ box_expression
box_expression -’ box_expression
box_expression ’'*’ box_expression
box_expression '/’ box_expression
box_expression %’ box_expression
box_expression ’::’ box_expression
box_expression 'or’ box_expression
box_expression ’and’ box_expression

cond_expression : "if’ box_expression
"then’ box_expression_with_defs
else_expression
lfil

else_expression : "elsif’ box_expression
"then’ box_expression_with_defs
else_expression

"else’ box_expression_with_defs

function_argument : list_expression
" (" box_expression_with_defs ")’

argument_or_function : identifier

/*** directives ***/
override_declaration : "#pragma’ 'override’ override_list

override_list : override_identifier
override_list ’,’ override_identifier

40

override_identifier
replace_declaration

replace_list

replace_identifier

include_declaration

line_declaration

Writing DDD Themes

function_identifier
"#pragma’ 'replace’ replace_list

replace_identifier
replace_list ’,’ replace_identifier

function_ identifier

"#include’ ’"’ SIMPLE_STRING /"’
"#include’ ’'<’ SIMPLE_STRING ’>’

"#line’ INTEGER
"#1line’ INTEGER STRING

Appendix D: GNU Free Documentation License 41

Appendix D GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and

42

Writing DDD Themes

edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the general

Appendix D: GNU Free Documentation License 43

network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one stating the title, year, au-
thors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

44

Writing DDD Themes

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a

Appendix D: GNU Free Documentation License 45

10.

single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an “aggregate”, and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

46 Writing DDD Themes

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright (C) year yourname.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being Ilist their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Index

(B) ettt 18
(&) ottt e e 17
(K) e e 18
(7)) e 18
(072 18
(20) et 22
(2] ot 19
[T 17
(™) ot e 17
() e 18
() et 19
(>) et 19
() et 18
(50 TP 19
() ettt e 19
() et e 19
(NOL) ettt e 19
A

AN e 31
annotation......coiiiii i 11
APPENA ettt e 22
IS oo 26
AL CS . VS Lttt 26
ArcthicknessS .o 26
Array_COLlOr vttt 10
B

o N 25
o 2N 25
o 3515 o S 21
D OX et e 16
Puiltin.vsl v 36
C

Lo T= AT 22
CAE ittt e e 22
ToT=Y o L ol T 20
changed_COlor..viiiiiiiiiiiiiienennns 10
changed_value.........ccooiiiiiiiiinnn.. 14
CRAL S i 23
CArC Ll i 26
collapsed _array..c.ee e eeeereeneananannns 12
collapsed_list_value.............ov.n. 13
collapsed_pointer_value.............. 12
collapsed_reference_value........... 12
collapsed_sequence_value............ 14

collapsed_simple_value............... 11

47
collapsed_struct_value............... 13
collapsed_text_value.................. 14
CO L OT ittt e 25
COLOES . VSl ittt i 25
COMMALIST tvtet it 18
CrOSSLiNe i 21
D
Add. VS L. 9
o TS Y 21
delete . 23
dereferenced_pointer_value......... 12
disabled. . v 11
disabled COlor..ciiiiiiiiiiiiiann. 10
Aisplay_bOX cvviiiiiiiiii i 11
display COloTr.iuiiiiiiiiiiiiiiiiiinnnnn. 10
doubleframecoviiiiiiiiiiiiann.. 20
doublestrike....coviiiiiiiiiii .. 21
LA 24
E
AT T OW « ettt et e e 27
e FlUusSh o 20
LSS =Y W 23
€Ll iPS e it 26
© L S e 30
LS o i e 30
EMPE Y AT TaAY ittt iiaiaaeanns 12
empty_list_value.......coviviiinenenn.. 13
empty_struct_value.................o.. 13
F
Al L e 27
family_ CoUrier.....iviviiiiriiinianennn.. 24
family_helvetica.......ccooiiiiiii... 24
family_new_century............cooouenn.. 24
family_times.....ccooiiiiiiiinininnnnn.. 24
family_typewriter.........cooviiiiiin 24
i T 30
i 0 AP 15
15 T 16
S = 23
Yo 24
fontname. ... 24
FOoNtES. VSl it 24
frame o 20
Functions, in VSL........................... 9,15

48

H

o= LT 5o LT 17
hcenter .o 20
Head. o 22
X v e 21
NEd L 15
N X 16
horizontal_array....ccceeeeeeeneenennn.. 12
horizontal_ unnamed_list.............. 14
horizontal_ unnamed_struct........... 13
hralign .o 17
NrUle 15
NS PACE it 16
hWhite. oo i 16
I

T N 30
INAdent o 21
indentamountcoiiiii i, 21
18aAt oM. 22
18 LAt i 22
o 25
L

LaS 23
length . e 22
=Y o 31
Library, VSL. ... 15
License, Documentation........................ 41
= S 23
= o v = B R 22
118t _COLOT ittt 10
list_member ..ot 14
list_member_name...........cooeevennnn.. 13
list_value...ooviiiiiiii i 13
M

117= QA 19
(TS 111 = 22
1035150 19
N

o T e) A 27
N ElUSh e 20
[oY IE= B oy} A 27
ne_flush. oo i 21
oY@)0 1= TS 11
O ettt ettt e s 31

Writing DDD Themes

TIUITL 4t ettt e ettt ettt ettt e e e ee i e 21
numeric_value.....cooiiiiiiiiiinainnn. 11
[0 A= o a0} AT 27
NW_flush. e 21
(0

oY o 21
OCLOGON t ettt e 27
O e et e e e 31
OV AL ettt 26
OVEL LANe it 21
P

pointer _Color...ciiiiiiiiiiiiiiiiiiaen 10
pointer_value......cooiiiiiiiiiiinnanann. 12
1o 1= 23
Pref i, i e 22
punchcard ..o 27
R

reference_cColor....coviiiiiiiiiiiinnn. 10
reference_value........covviiiiiiiiinnn. 12
repeated_value..........ocviiiiiiiiinann. 14
e SR VN ol =1 < S 23
THOMD 27
e = 1= SN 26
i (PSP 25
ULttt 15
ruleframe . ..o 20
rulethicknessS. .o, 15
S

S AL T OW ettt ettt ettt e e 27
S FIUSH 20
TSI o ol) 27
se_flush.. ..o 21
SELECT it 23
semicolonlist. i iiiiiiiiiiiinn 18
Sequence_value.....oovveiirenrinninnnnn.. 14
SNAAOW. 11
shadow_cColor ...t 11
simple _COlor.iiiiii i, 10
simple_valuUe....oviiriiiinrenninnnennnns. 11
slant_1talicC..cciiiiiiii .. 24
slant_unslanted.........cooiiiiiiiin.. 24
S1oPEeS . VSl it 26
slopethickness......coviviiiiiinienenn.. 27

small_bf .. 9

Index

small bd .o 9
small At . oo 9
SMALll T 9
SMAall SI1ZE . 9
SO ittt e 23
L3 1 = ot 16
SEA. VS L i e 15
stdfontfamily...cooviiiiniiiniiiiinnannn 25
stdfontpixels....coviiiiiiiiiiiiiinan 25
stdfontpoints...oviiiiiiiiiii i, 25
stdfontsize . ..ot 25
stdfontslant...ccoiiiiiii i, 25
stdfontweight......oooviiiiiiiiii .. 25
SE AN et e 21
SErUCE_COLOT it 10
struct_member.. ..ot 13
struct_member_name..................... 13
Struct_value. ..ot 13
SUDL LIS v 22
SUL L i 22
ISR S ol e) 27
sw_flush.. . i 21
T

A 23
Tab . VSl o 23
tab_ elem. i 24
ALl 22
Laldgn. e 17
LeXt _COLOT i 10
text_vValue. .o 14
L5 o =0 o NP 30
thickframe.......coiiiiiiiiiiiiiin.. 20
tiny b 9
ANy bd. e 9
Lo 150 e I PR 9
CAny M. e 9
LANy SizZe. i 9
Lo ol O 11
title bl . 9
Title Dl e 9

49
Tt le It o 9
it e M. 9
L 1= A 18
Eralign .o e 17
EWOAIM AT TaAY ettt tirereiaaeeeananannnn. 12
twodim_array_elem..........oovevveennn.. 12
U
UNAEerline ot 21
A%
7= S §'o I 17
value bf ..o 9
Value Do . 9
VaAlUE _DOX ittt i 11
Value 1t ..o 9
ValUe Ittt e 9
VCENE L ittt 20
vertical _array....c.oeeeiiiiiiiiiiiinann.. 12
vertical unnamed_list................. 14
vertical_unnamed_struct.............. 13
VEL L L o 15
A7 i 1 SO 16
VSt o 17
Vralign oo 17
VUL ittt e e 15
VS 29
VSLFunctionS ..o, 9,15
VSLLibrary.....coooviiiiiiiiiiiinnennn. 15
VS PACE e ettt et et 16
VWhaite . i 16
W
A b e) /A 27
W_ElUusSh o 20
weight_bold....cooiiiiiiiiiiiiiiiiia... 24
welght_medium..........cooiiiiiiiiinnn.... 24
Where oo 31
whiteframe.....coviiiiiiii i, 20
whitethickness......oooiiiiiiiiiin.. 16

50

Writing DDD Themes

	Welcome
	Creating Displays
	Handling Boxes
	Building Boxes from Data

	Writing Themes
	Example: Changing the Display Title Color
	The General Scheme
	Overriding vs. Replacing
	A Complex Example
	Future Work

	DDD VSL Functions
	Displaying Fonts
	Displaying Colors
	Displaying Shadows
	Displaying Data Displays
	Displaying Simple Values
	Displaying Pointers
	Displaying References
	Displaying Arrays
	Displaying Structs
	Displaying Lists
	Displaying Sequences
	Displaying Multi-Line Texts
	Displaying Extra Properties
	VSL Library
	Conventions
	Space Functions
	Empty Space
	Black Lines
	White Space
	Controlling Stretch
	Box Dimensions

	Composition Functions
	Horizontal Composition
	Vertical Composition
	Textual Composition
	Overlays

	Arithmetic Functions
	Comparison Functions
	Maximum and Minimum Functions

	Negation Functions
	Frame Functions
	Alignment Functions
	Centering Functions
	Flushing Functions

	Emphasis Functions
	Indentation Functions
	String Functions
	List Functions
	Creating Lists
	List Properties
	Accessing List Elements
	Manipulating Lists
	Lists and Strings

	Table Functions
	Font Functions
	Font Basics
	Font Name Selection
	Font Defaults
	Font Selection

	Color Functions
	Arc Functions
	Arc Basics
	Custom Arc Functions

	Slope Functions
	Slope Basics
	Arrow Functions
	Custom Slope Functions

	VSL Reference
	Boxes
	Lists
	Expressions
	String Literals
	Number Literals
	List Literals
	Conditionals
	Boolean Operators
	Local Variables
	Let Patterns

	Function Calls
	Constant Definitions
	Function Definitions
	Function Parameters
	VSL Unused Parameters

	Function Patterns
	Declaring Functions
	Redefining Functions
	Replacing Functions
	Overriding Functions

	Includes
	Operators
	Syntax Summary
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Index

