
Design and Implementation of Tree SSA

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

Tree SSA is a new optimization framework for
GCC that allows the implementation of ma-
chine and language independent transforma-
tions. This paper describes the major com-
ponents of Tree SSA, how they interact with
the rest of the compiler and, more importantly,
how to use the framework to implement new
optimization passes.

1 Introduction

The main goal of the Tree SSA project is to
evolve GCC’s optimization infrastructure to al-
low more powerful analyses and transforma-
tions that had traditionally proven difficult or
impossible to implement in RTL. Though orig-
inally started as a one person hobby project,
other developers in the community expressed
interest in it and a development branch off the
main GCC repository was started. Soon there-
after, Red Hat began sponsoring the project
and, over time, other organizations and devel-
opers in the community also started contribut-
ing. Presently, about 30 developers are actively
involved in it1, and work is underway to im-
plement vectorization and loop optimizations
based on the Tree SSA framework. We expect
Tree SSA to be included in the next major re-
lease of GCC.

1This is a rough estimate based only on ChangeLog
entries.

Although Tree SSA represents a significant
change in the internal structure of GCC, its
main design principle has been one of evolu-
tion, not revolution. As much as possible, we
tried to make Tree SSA a “drop-in” module. In
particular, we decided to keep thetree and
rtl data structures so that neither front ends
nor back ends needed to be re-implemented
from scratch. This was an important engineer-
ing decision that (a) allowed us to reach to a
working system in a relatively short period of
time, but (b) it exposed a few weak spots in the
existing data structures that we will need to ad-
dress in the future (Section 8).

This paper describes Tree SSA from a pro-
grammer’s point of view. Emphasis is placed
on how the different modules work together
and what is necessary to implement a Tree SSA
pass in GCC. Section 2 provides an overview
of the new files and compiler switches added to
GCC. Section 3 describes the GENERIC and
GIMPLE intermediate representations. Sec-
tion 4 describes the control flow graph (CFG),
block and statement manipulation functions.
Section 5 describes how optimization passes
are scheduled and declared to the pass man-
ager. Section 6 describes the basic data flow
infrastructure: statement operands and the SSA
form as implemented on GIMPLE. Section 7
describes alias analysis. Conclusions and fu-
ture work are in Section 8.

120 • GCC Developers’ Summit

2 Overview

2.1 Command line switches

Most of the new command line options added
by Tree SSA are only useful to GCC develop-
ers. They fall into two broad categories: de-
bugging dumps and individual pass manipula-
tion.

All the debugging dumps are requested with
-fdump-tree- pass- modifier. By default,
the tree representation is emitted in a syntax
resembling C. Passes can be individually se-
lected, but the most common usage is to en-
able all of them using-fdump-tree-all .
When enabled, each pass dumps all the func-
tions in the input program to a separate file.
Dump files are numbered in the same order in
which passes are applied. Therefore, to see the
effects of a single pass, one can just rundiff
between theN andN + 1 dumps.

Modifiers affect the format of the dump files
and/or the information included in them2. Cur-
rently, the following modifiers can be used:

• raw : Do not pretty-print expressions.
Use the traditional tree dumps instead.

• details : Request detailed debugging
output from each pass.

• stats : Request statistics from each
pass.

• blocks : Show basic block boundaries.

• vops : Show virtual operands (see Sec-
tion 6 for details).

• lineno : Show line numbers from the in-
put program.

2Note that not all passes are affected by these mod-
ifiers. A pass that does not support a specific modifier
will silently ignore it.

• uid : Show the unique ID (i.e.,DECL_
UID) for every variable.

We currently support enabling and disabling
most individual SSA passes. Although, it is not
clear whether that will be always supported,
it is sometimes useful to disable passes when
debugging GCC. Note, however, that even if
the bug goes away when disabling an individ-
ual pass, it does not mean that the pass itself is
faulty. The bug may exist somewhere else and
is exposed at this point.

All the new command line switches are de-
scribed in detail in the GCC documentation.

2.2 New files

All the necessary API and data structure def-
initions are in tree-flow.h and tree-passes.h.
The remaining files can be loosely categorized
as basic infrastructure, transformation passes,
analysis passes and various utilities.

2.2.1 Basic infrastructure

tree-optimize.cis the main driver for the
tree optimization passes. In particular, it
contains init_tree_optimization_

passes , which controls the scheduling
of all the tree passes, andtree_rest_
of_compilation which performs all
the gimplification, optimization and ex-
pansion into RTL of a single function.

tree-ssa.c, tree-into-ssa.candtree-outof-ssa.c
implement SSA renaming, verification
and various functions needed to interact
with the SSA form.

tree-ssanames.cand tree-phinodes.cimple-
ment memory management mechanisms
for re-usingSSA_NAMEandPHI_NODE
tree nodes after they are removed.

GCC Developers’ Summit 2004 • 121

tree-cfg.ccontains routines to build and ma-
nipulate the CFG.

tree-dfa.c implements general purpose rou-
tines for dealing with program variables
and data flow queries like immediate use
information.

tree-ssa-operands.c contains routines
for scanning statement operands
(get_stmt_operands).

tree-iterator.c contains routines for insert-
ing, removing and iterating over GIMPLE
statements. Two types of iterators are pro-
vided, those that do not stop at basic block
boundaries (known astree statement iter-
ators) and those that do (known asblock
statement iterators). Most optimization
passes use the latter.

c-gimplify.c, gimplify.candtree-gimple.ccon-
tain the routines used to rewrite the code
into GIMPLE form. They also provide
functions to verify GIMPLE expressions.

2.2.2 Transformation passes

gimple-low.c removes binding scopes and
converts the clauses of conditional expres-
sions into explicit gotos. This is done
early before any other optimization pass
as it greatly simplifies the job of the opti-
mizers.

tree-ssa-pre.c, tree-ssa-dse.c, tree-ssa-
forwprop.c, tree-ssa-dce.c, tree-ssa-ccp.c,
tree-sra.cand tree-ssa-dom.cimplement
some commonly known scalar transfor-
mations: partial redundancy elimination,
dead store elimination, forward propaga-
tion, dead code elimination, conditional
constant propagation, scalar replace-
ment of aggregates and dominator-based
optimizations.

tree-ssa-loop.cis currently a place holder for
all the optimizations being implemented
in the LNO (Loop Nest Optimizer) branch
[1]. Presently, it only implements loop
header copying, which moves the condi-
tional at the bottom of a loop to its header
(benefiting code motion optimizations).

tree-tailcall.c marks tail calls. The RTL op-
timizers will make the final decision of
whether to expand calls as tail calls based
on ABI and other conditions.

tree-ssa-phiopt.ctries to replace PHI nodes
with an assignment when the PHI node is
at the end of a conditional expression.

tree-nrv.cimplements the named return value
optimization. For functions that return
aggregates, this optimization may save a
structure copy by building the return value
directly where the target ABI needs it.

tree-ssa-copyrename.ctries to reduce the
number of distinct SSA variables when
they are related by copy operations. This
increases the chances of user variables
surviving the out of SSA transformation.

tree-mudflap.cimplements pointer and array
bound checking. This pass re-writes ar-
ray and pointer dereferences with bound
checks and calls to its runtime library.
Mudflap is enabled with-fmudflap .

tree-complex.c, tree-eh.c and tree-nested.c
rewrite a function in GIMPLE form to ex-
pand operations with complex numbers,
exception handling and nested functions.

2.2.3 Analysis passes

tree-ssa-alias.cimplements type-based and
flow-sensitive points-to alias analysis.

122 • GCC Developers’ Summit

tree-alias-type.c, tree-alias-ander.c and
tree-alias-common.c implement flow-
insensitive points-to alias analysis
(Andersen analysis).

2.2.4 Various utilities

tree-ssa-copy.ccontains support routines for
performing copy and constant propaga-
tion.

domwalk.cimplements a generic dominator
tree walker.

tree-ssa-live.ccontains support routines for
computing live ranges of SSA names.

tree-pretty-print.c implements print_
generic_stmt and print_
generic_expr for printing GENERIC
andGIMPLE tree nodes.

tree-browser.cimplements an interactive tree
browsing utility, useful when debugging
GCC. It must be explicitly enabled with
--enable-tree-browser when
configuring the compiler.

3 Intermediate Representation

Although Tree SSA uses thetree data struc-
ture, the parse trees coming out of the vari-
ous front ends cannot be used for optimiza-
tion because they contain language dependen-
cies, side effects and can be nested in arbitrary
ways. To address these problems, we have
implemented two intermediate representations:
GENERIC and GIMPLE [4].

GENERIC provides a way for a language front
end to represent entire functions in a language-
independent way. All the language semantics
must be explicitly represented, but there are no
restrictions in how expressions are combined

and/or nested. If necessary, a front end can
use language-dependent trees in its GENERIC
representation, so long as it provides a hook
for converting them to GIMPLE. In particu-
lar, a front end need not emit GENERIC at
all. For instance, in the current implementa-
tion, the C and C++ parsers do not actually
emit GENERIC during parsing.

GIMPLE is a subset of GENERIC used for op-
timization. Both its name and the basic gram-
mar are based on the SIMPLE IR used by the
McCAT compiler at McGill University [3]. Es-
sentially, GIMPLE is a 3 address language with
no high-level control flow structures.

1. Each GIMPLE statement contains no
more than 3 operands (except function
calls) and has no implicit side effects.
Temporaries are used to hold intermediate
values as necessary.

2. Lexical scopes are represented as contain-
ers.

3. Control structures are lowered to condi-
tional gotos.

4. Variables that need to live in memory are
never used in expressions. They are first
loaded into a temporary and the temporary
is used in the expression.

The process of lowering GENERIC into GIM-
PLE, known asgimplification, works recur-
sively, replacing complex statements with se-
quences of statements in GIMPLE form. A
front end which wants to use the tree optimiz-
ers needs to

1. have a whole-function tree representation,

2. provide a definition ofLANG_HOOKS_

GIMPLIFY_EXPR,

GCC Developers’ Summit 2004 • 123

3. call gimplify_function_tree to
lower to GIMPLE, and,

4. hand off to tree_rest_of_
compilation to compile and out-
put the function.

The GCC internal documentation includes a
detailed description of GENERIC and GIM-
PLE that an implementor of new language
front ends will find useful.

4 Control Flow Graph and IR ma-
nipulation

Data structures for representing basic blocks
and edges are shared between GIMPLE and
RTL. This allows the GIMPLE CFG to use all
the functions that operate on the flow graph in-
dependently of the underlying IR (e.g., domi-
nance information, edge placement, reachabil-
ity analysis). For the cases where IR informa-
tion is necessary, we either replicate function-
ality or have introduced hooks.

The flow graph is built once the function is put
into GIMPLE form and is only removed once
the tree optimizers are done3.

Traversing the flow graph can be done using
FOR_EACH_BB, which will traverse all the ba-
sic blocks sequentially in program order. This
is the quickest way of going through all ba-
sic blocks. It is also possible to traverse the
flow graph in dominator order usingwalk_
dominator_tree .

Each basic block has a list of all the statements
that it contains. To traverse this list, one should
use a special iterator calledblock statement
iterator (BSI). For instance, the code frag-
ment in Figure 1 will display all the statements

3It may be advantageous to keep the CFG all the way
to RTL, so this may change in the future.

in the function being compiled (current_
function_decl).

It is also possible to do a variety of common
operations on the flow graph and statements:
edge insertion, removal of statements and in-
sertion of statements inside a block. Detailed
information about the flow graph can be found
in GCC’s internal documentation.

5 Pass manager

Every SSA pass must be registered with the
pass manager and scheduled ininit_tree_
optimization_passes . Passes are de-
clared as instances ofstruct tree_opt_
pass , which declares everything needed to
run the pass, including its name, function to
execute, properties required and modified and
what to do after the pass is done.

In this context, properties refer to things like
dominance information, the flow graph, SSA
form and which subset of GIMPLE is required.
In theory, the pass manager would arrange for
these properties to be computed if they are
not present, but not all properties are presently
handled. Each pass will also declare which
properties it destroys so that it is recomputed
after the pass is done.

To add a new Tree SSA pass, one should

1. create a global variable of typestruct
tree_opt_pass ,

2. create anextern declaration for the new
pass intree-pass.h , and,

3. sequence the new pass in
tree-optimize.c:init_tree_
optimization_passes by calling
NEXT_PASS. If the pass needs to be
applied more than once, useDUP_PASS
to duplicate it first.

124 • GCC Developers’ Summit

{
basic block bb;
block stmt iterator si;

FOR EACH BB (bb)
for (si = bsi start (bb); !bsi end p (si); bsi next (&si))

{
tree stmt = bsi stmt (si);
print generic stmt (stderr, stmt, 0);

}
}

Figure 1: Traversing all the statements in the current function.

6 SSA form

Most of the tree optimizers rely on the data
flow information provided by the Static Single
Assignment (SSA) form [2]. The SSA form
is based on the premise that program variables
are assigned in exactly one location in the pro-
gram. Multiple assignments to the same vari-
able create new versions of that variable.

Naturally, actual programs are seldom in SSA
form initially because variables tend to be as-
signed multiple times. The compiler modifies
the program representation so that every time
a variable is assigned in the code, a new ver-
sion of the variable is created. Different ver-
sions of the same variable are distinguished by
subscripting the variable name with its version
number. Variables used in the right-hand side
of expressions are renamed so that their version
number matches that of the most recent assign-
ment.

This section describes how the compiler rec-
ognizes and classifies statement operands rec-
ognized, the process of renaming the program
into SSA form and how is aliasing information
incorporated into the SSA web.

6.1 Statement operands

Tree SSA implements two types of operands:
real andvirtual. Real operands are those that

represent a single, non-aliased, memory loca-
tion which is atomically read or modified by
the statement (i.e., variables of non-aggregate
types whose address is not taken). Virtual
operands represent either partial or aliased ref-
erences (i.e., structures, unions, pointer deref-
erences and aliased variables).

Since the SSA form uses a versioning scheme
on variable names, in principle it would not be
possible to assign version numbers to virtual
operands. So, the compiler associates a sym-
bol name to the operand and provides SSA ver-
sioning for that symbol. Symbols for virtual
operands are either created or derived from the
original operand:

• For pointer dereferences, a new symbol
called a memory tag(MT) is created.
Memory tags represent the memory lo-
cation pointed-to by the pointer. For in-
stance, given a pointerint *p , the state-
ment*p = 3 will contain a virtual defi-
nition to p’s memory tag (more details in
Section 7).

• For references to variables of non-
aggregate types, the base symbol of the
reference is used. For instance, the state-
ment a.b.c = 3 , is considered a vir-
tual definition fora. Other terms to refer
to virtual definitions include “may-defs,”
when they refer to aliased stores, and

GCC Developers’ Summit 2004 • 125

“non-killing defs” when they refer to par-
tial stores to an object of a non-aggregate
type. Similarly, virtual uses are known as
“may-uses.”

Using this scheme, the compiler can now re-
name both real and virtual operands into SSA
form. Every symbol that complies withSSA_
VAR_Pwill be renamed. This includesVAR_
DECL, PARM_DECLand RESULT_DECL
nodes. To determine whether anSSA_VAR_P
will be renamed as a real or virtual operand,
the predicateis_gimple_reg is used. If it
returnstrue the variable is added as a real
operand, otherwise it is considered virtual.

Every statement has 4 associated arrays repre-
senting its operands:DEF_OPSandUSE_OPS
hold definitions and uses for real operands,
while VDEF_OPSand VUSE_OPShold po-
tential or partial definitions and uses for vir-
tual operands. These arrays are filled in by
get_stmt_operands . The code fragment
in Figure 2 shows how to print all the operands
of a given statement. Operands are stored in-
side an auxiliary data structure known asstate-
ment annotation(stmt_ann_t). That’s a
generic annotation mechanism used through-
out Tree SSA to store optimization-related in-
formation for statements, variables and SSA
names.

6.2 SSA Renaming Process

We represent variable versions usingSSA_
NAMEnodes. The renaming process intree-
into-ssa.cwraps every real and virtual operand
with an SSA_NAMEnode which contains the
version number and the statement that created
the SSA_NAME. Only definitions and virtual
definitions may create newSSA_NAMEnodes.

Sometimes, flow of control makes it impossi-
ble to determine what is the most recent ver-
sion of a variable. In these cases, the compiler

void
print ops (tree stmt)
{

vuse optype vuses;
vdef optype vdefs;
def optype defs;
use optype uses;
stmt ann t ann;
size t i;

get stmt operands (stmt);
ann = stmt ann (stmt);

defs = DEF OPS (ann);
for (i = 0; i � NUM DEFS (defs); i++)

print generic expr (stderr,
DEF OP (defs, i), 0);

uses = USE OPS (ann);
for (i = 0; i � NUM USES (uses); i++)

print generic expr (stderr,
USE OP (uses, i), 0);

vdefs = VDEF OPS (ann);
for (i = 0; i � NUM VDEFS (vdefs); i++)

print generic expr (stderr,
VDEF OP (vdefs, i), 0);

vuses = VUSE OPS (ann);
for (i = 0; i � NUM VUSES (vuses); i++)

print generic expr (stderr,
VUSE OP (vuses, i), 0);

}

Figure 2: Accessing the operands of a state-
ment.

126 • GCC Developers’ Summit

inserts an artificial definition for that variable
called PHI function or PHI node. This new
definition merges all the incoming versions of
the variable to create a new name for it. For
instance,

if (. . .)
a1 = 5;

else if (. . .)
a2 = 2;

else
a3 = 13;

a4 = PHI � a1, a2, a3
�

return a4;

Since it is not possible to statically determine
which of the three branches will be taken at
runtime, we don’t know which ofa1, a2 or a3

to use at the return statement. So, the SSA re-
namer creates a new version,a4, which is as-
signed the result of “merging” all three other
versions. Hence, PHI nodes mean “one of
these operands. I don’t know which.”

Previously we had described virtual definitions
as non-killing definitions, this means that given
a sequence of virtual definitions for the same
variable, they should all be related somehow.
To this end, virtual definitions are considered
read-write operations. So, the following code
fragment

. . .
a = VDEF � a �
a[i] = f ();
. . .
a = VDEF � a �
a[j] = g ();
. . .
a = VDEF � a �
a[k] = h ();
. . .

is transformed into SSA form as

. . .
a2 = VDEF � a1

�

a[i] = f ();
. . .
a3 = VDEF � a2

�

a[j] = g ();
. . .
a4 = VDEF � a3

�

a[k] = h ();
. . .

Notice how everyVDEF has a data depen-
dency on the previous one. This is used mostly
to prevent errors in scalar optimizations like
code motion and dead code elimination. Passes
that want to manipulate statements with virtual
operands should obtain additional information
(e.g., by building an array SSA form, or value
numbering as is currently done in the domi-
nator optimizers). The SSA form for virtual
operands is actually a factored use-def (FUD)
representation [5]. When taking the program
out of SSA form, the compiler will not in-
sert the copies needed to resolve the overlap.
Virtual operands are simply removed from the
code.

Such considerations are not necessary when
dealing with real operands.SSA_NAMEs for
real operands are considered distinct variables
and can be moved around at will. When the
program is taken out of SSA form (tree-outof-
ssa.c), overlapping live ranges are handled by
creating new variables and inserting the neces-
sary copies between different versions of the
same variable. For instance, given the GIM-
PLE program in SSA form in Figure 3a, op-
timizations will create overlapping live ranges
for two different versions of variableb, namely
b3 and b7 (Figure 3b). When the program is
taken out of SSA form, prior to RTL expansion,
the two different versions ofb will be assigned
different variables (Figure 3c).

GCC Developers’ Summit 2004 • 127

foo (a, b, c)
{

a4 = b3;
if (c5

� a4)
goto � L0 � ;

else
goto � L1 � ;

� L0 � :
b7 = b3 + a4;
c8 = c5 + a4;

c2 = PHI � c5, c8 � ;
b1 = PHI � b3, b7 � ;

� L1 � :
return b1 + c2;

}

foo (a, b, c)
{

if (c5
� b3)

goto � L0 � ;
else

goto � L1 � ;

� L0 � :
b7 = b3 + b3;
c8 = c5 + b3;

c2 = PHI � c5, c8 � ;
b1 = PHI � b3, b7 � ;

� L1 � :
return b1 + c2;

}

foo (a, b, c)
{

if (c � b)
goto � L0 � ;

else
goto � L1 � ;

� L0 � :
b.0 = b + b;
c = c + b;
b = b.0;

� L1 � :
return b + c;

}

(a) Original SSA form. (b) SSA form after optimization. (c) Resulting normal form.

Figure 3: Overlapping live ranges for different versions of the same variable.

foo (int *p)
{
TMT.15 = VDEF � TMT.14

� ;
*p1 = 5;

VUSE � TMT.15
� ;

T.02 = *p1;

return T.02 + 1;
}

Figure 4: Representing pointer dereferences
with memory tags.

7 Alias analysis

Aliasing information is incorporated into the
SSA web using artificial symbols calledmem-
ory tags. A memory tag represents a pointer
dereference. Since there are no multi-level
pointers in GIMPLE, it is not necessary for the
compiler to handle more than one level of indi-
rection. So, given a pointerp, every time the
compiler finds a dereference ofp (*p), it is
considered a virtual reference top’s memory
tag (Figure 4).

Given this mechanism, whenever the compiler
determines that a pointerp may point to vari-
ablesa andb (andp is dereferenced), a mem-
ory tag forp is created and variablesa and b
are added top’s memory tag.

The code fragment in Figure 5 illustrates this
scenario. The compiler determines thatp2 may
point to a or b, and so wheneverp2 is deref-
erenced, it adds virtual references toa andb.
Also notice that since botha andb have their
addresses taken, they are always considered
virtual operands.

The compiler computes three kinds of aliasing
information: type-based, flow-sensitive points-
to and flow-insensitive points-to4.

Going back to the code fragment in Figure 5,
notice how the two different versions of pointer
p have different alias sets. This is becausep1 is
found to point to eitherc or d, while p2 points
to eithera or b. In this case, the compiler is us-
ing flow-sensitive aliasing information and will
create two memory tags, one forp1 and another

4This one is currently not computed by default. It is
enabled with-ftree-points-to=andersen

128 • GCC Developers’ Summit

foo (int i)
{

. . .
� L0 � :
p1 = PHI � &d, &c � ;

c5 = VDEF � c7 � ;
d18 = VDEF � d17 � ;
*p1 = 5;

. . .
� L3 � :
p2 = PHI � &b, &a � ;

a19 = VDEF � a4 � ;
a = 3;

b20 = VDEF � b6 � ;
b = 2;

VUSE � a19 � ;
VUSE � b20 � ;
T.08 = *p2;
. . .

a21 = VDEF � a19 � ;
b22 = VDEF � b20 � ;
*p2 = T.19;
. . .

}

Figure 5: Using flow-sensitive alias informa-
tion.

for p2. Since these memory tags are associ-
ated withSSA_NAMEobjects, they are known
asname memory tags(NMT).

In contrast, when the compiler cannot com-
pute flow-sensitive information for eachSSA_
NAME, it falls back to flow-insensitive infor-
mation which is computed using type-based or
points-to analysis. In these cases, the com-
piler creates a single memory tag that is asso-
ciated toall the different versions of a pointer
(i.e., it is associated with the actualVAR_DECL
or PARM_DECLnode). Such memory tag is
calledtype memory tag(TMT).

Figure 6 is similar to the previous example, but
in this case the addresses ofa, b, c andd es-
cape the current function, something which the
current implementation does not handle. This
forces the compiler to assume that all versions
of p may point to either of the four variablesa,
b, c andd. And so it creates a type memory tag
for p and puts all four variables in its alias set.

The concept of ‘escaping’ is the same one
used in the Java world. When a pointer or
an ADDR_EXPRescapes, it means that it has
been exposed outside of the current function.
So, assignment to global variables, function ar-
guments and returning a pointer are all escape
sites.

We also use escape analysis to determine
whether a variable is call-clobbered. If an
ADDR_EXPRescapes, then the associated vari-
able is call-clobbered. If a pointerPi escapes,
then all the variables pointed-to byPi (and its
memory tag) also escape.

In certain cases, the list of may aliases for a
pointer may grow too large. This may cause
an explosion in the number of virtual operands
inserted in the code. Resulting in increased
memory consumption and compilation time.

When the number of virtual operands needed

GCC Developers’ Summit 2004 • 129

foo (int i)
{
a6 = VDEF � a3

� ;
b4 = VDEF � b5

� ;
c13 = VDEF � c12

� ;
d15 = VDEF � d14

� ;
p2 = baz (&a, &b, &c, &d);

a16 = VDEF � a6
� ;

b17 = VDEF � b4
� ;

c18 = VDEF � c13
� ;

d19 = VDEF � d15
� ;

*p2 = 5;

a20 = VDEF � a16
� ;

a = 3;

b21 = VDEF � b17
� ;

b = 2;

VUSE � a20
� ;

VUSE � b21
� ;

VUSE � c18
� ;

VUSE � d19
� ;

T.17 = *p2;
. . .

}

Figure 6: Using flow-insensitive alias informa-
tion.

foo ()
{
TMT.513 = VDEF � TMT.512

� ;
p2 = baz (&a, &b, &c, &d);

TMT.514 = VDEF � TMT.513
� ;

*p2 = 5;

TMT.515 = VDEF � TMT.514
� ;

a = 3;

TMT.516 = VDEF � TMT.515
� ;

b = 2;

VUSE � TMT.516
� ;

T.17 = *p2;
. . .

}

Figure 7: Effects of alias grouping.

to represent aliased loads and stores grows
too large (configurable with-param max-

aliased-vops), alias sets are grouped to
avoid severe compile-time slow downs and
memory consumption. The alias grouping
heuristic essentially reduces the sizes of se-
lected alias sets so that they are represented by
a single symbol. This way, aliased references
to any of those variables will be represented by
a single virtual reference. Resulting in an im-
provement of compilation time at the expense
of precision in the alias information.

Figure 7 shows the same exam-
ple from Figure 6 compiled with
--param max-aliased-vops=1 .
Notice how all four variables are represented
by p’s type memory tag, namelyTMT.5. Even
references to individual variables, like the
assignmenta = 3 are considered references to
TMT.5.

8 Conclusions and future work

Tree SSA represents a useful foundation to
incorporate more powerful optimizations and

130 • GCC Developers’ Summit

analyses to GCC. Although the basic infras-
tructure is already functional and produces
encouraging results there is still much work
ahead of us. Over the next few months we will
concentrate on the following areas:

Compile time performance. Currently, Tree
SSA is in some cases slower than other
versions of GCC. In particular, C++ pro-
grams seem to be the most affected. Pre-
liminary findings point to memory man-
agement inside GCC and various data
structures that are being stressed.

Another source of compile time slowness
are the presence of RTL optimizations that
have been superseded by Tree SSA. While
some passes have already been disabled
or simplified, there still remain some RTL
passes which could be removed.

Run time performance. In general, Tree SSA
produces similar or better code than other
versions of GCC. However, there are still
some missing optimizations. Most no-
tably, loop optimizations, which we ex-
pect will be incorporated soon.

In the immediate future, most efforts will be fo-
cused on stabilizing the infrastructure in prepa-
ration for the next major release of GCC. Al-
though the framework is tested daily on sev-
eral different architectures, there are still some
known bugs open against it and there are some
architectures that have not been tested or have
had limited exposure.

We expect the infrastructure to keep evolv-
ing, particularly as new optimizations are
added, we will probably find design and/or
implementation limitations that will need to
be addressed. We have tried to make the
basic design sufficiently flexible to permit
such changes without overhauling the whole
middle-end.

References

[1] D. Berlin, D. Edelsohn, and S. Pop. High-
Level Loop Optimizations for GCC. In
Proceedings of the 2004 GCC Summit, Ot-
tawa, Canada, June 2004.

[2] R. Cytron, J. Ferrante, B. Rosen, M. Weg-
man, and K. Zadeck. Efficiently comput-
ing static single assignment form and the
control dependence graph.ACM Transac-
tions on Programming Languages and Sys-
tems, 13(4):451–490, October 1991.

[3] L. Hendren, C. Donawa, M. Emami,
G. Gao, Justiani, and B. Sridharan. De-
signing the McCAT Compiler Based on a
Family of Structured Intermediate Repre-
sentations. InProceedings of the 5th In-
ternational Workshop on Languages and
Compilers for Parallel Computing, pages
406–420. Lecture Notes in Computer Sci-
ence, no. 457, Springer-Verlag, August
1992.

[4] J. Merrill. GENERIC and GIMPLE: A
New Tree Representation for Entire Func-
tions. In Proceedings of the 2003 GCC
Summit, Ottawa, Canada, May 2003.

[5] M. J. Wolfe. High Performance Com-
pilers for Parallel Computing. Reading,
Mass.: Addison-Wesley, Redwood City,
CA, 1996.

