MIT Scheme Reference Manual

Edition 1.96
for Scheme Release 7.7.0
13 March 2002

by Chris Hanson
the MIT Scheme Team
and a cast of thousands

Copyright (©) 1988-2002 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License".

Acknowledgements 1

Acknowledgements

While "a cast of thousands" may be an overstatement, it is certainly the case that this
document represents the work of many people. First and foremost, thanks go to the authors
of the Revised™4 Report on the Algorithmic Language Scheme, from which much of this
document is derived. Thanks also to BBN Advanced Computers Inc. for the use of parts of
their Butterfly Scheme Reference, and to Margaret O’Connell for translating it from BBN’s
text-formatting language to ours.

Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software
Foundation, for creating and maintaining the Texinfo formatting language in which this
document is written.

This report describes research done at the Artificial Intelligence Laboratory and the
Laboratory for Computer Science, both of the Massachusetts Institute of Technology. Sup-
port for this research is provided in part by the Advanced Research Projects Agency of the
Department of Defense and by the National Science Foundation.

MIT Scheme Reference

Chapter 1: Overview 3

1 Overview

This manual is a detailed description of the MIT Scheme runtime system. It is intended
to be a reference document for programmers. It does not describe how to run Scheme or
how to interact with it — that is the subject of the MIT Scheme User’s Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT Scheme pro-
gramming environment, and explains the syntactic and lexical conventions of the language.
Subsequent chapters describe special forms, numerous data abstractions, and facilities for
input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised”4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.

4 MIT Scheme Reference

Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme
will call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples
have a common format that shows the expression being evaluated on the left hand side, an
“arrow” in the middle, and the value of the expression written on the right. For example:

(+12) = 3
Sometimes the arrow and value will be moved under the expression, due to lack of space.

Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,

prefaced by ‘[error] ’:
(+ 1 ’foo) Illegal datum

An example that shows printed output marks it with ‘

Chapter 1: Overview 5

(begin (write ’foo) ’bar)
- foo
= bar
When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT Scheme variable, special form, or procedure begins with one
or more header lines in this format:

template category
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.
A horizontal ellipsis (. ..) is describes repeated components. Specifically,
thing . ..
indicates zero or more occurrences of thing, while
thing thing . ..
indicates one or more occurrences of thing.
Brackets, [], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions|,
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,

6 MIT Scheme Reference

cdr pair procedure
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.

Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.
In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

e object: any object

e thunk: a procedure of no arguments

e x, y: real numbers

e (, n: integers

e k: an exact non-negative integer

Some examples:

list object . .. procedure
indicates that the standard Scheme procedure 1ist takes zero or more arguments, each of
which may be any Scheme object.

write-char char [output-port] procedure
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments|, page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a
variable, that variable is said to be unbound in that environment. Referencing an unbound
variable signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;

Chapter 1: Overview 7

rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x
is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions|, page 21) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions], page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT Scheme provides an initial environment that contains all of the variable bindings
described in this manual. Most environments are ultimately extensions of this initial envi-
ronment. In Scheme, the environment in which your programs execute is actually a child
(extension) of the environment containing the system’s bindings. Thus, system names are
visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like
Algol and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):
(define x 1)
(define (f x) (g 2))
(define (g y) (+ x y))
(f 5) = 3 :not 7
Here f and g are bound to procedures created in the initial environment. Because Scheme
is statically scoped, the call to g from f extends the initial environment (the one in which

8 MIT Scheme Reference

g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to £, in which x is bound to 5 by the call to £, and the answer would be 7.)

Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because
of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This manual
uses the word true to refer to any Scheme value that counts as true, and the word false to
refer to any Scheme value that counts as false. In conditional tests, all values count as true
except for #f, which counts as false (see Section 2.7 [Conditionals|, page 24).

Implementation note: In MIT Scheme, #f and the empty list are the same object, and
the printed representation of #f is always ‘()’. As this contradicts the Scheme standard,
MIT Scheme will be changed to make #f and the empty list different objects.

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000" and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘(08 13)’ and ‘(8 . (13 . ()))".

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 22).
External representations can also be used for input and output. The procedure read

parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Chapter 1: Overview 9

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates
writing programs such as interpreters and compilers that treat programs as data or data as
programs.

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False|, page 8, for an exception):

bit-string? environment? port? symbol?
boolean? null? procedure? vector?
cell? number? promise? weak-pair?
char? pair? string?

condition?

1.2.8 Storage Model

This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error
to attempt to store a new value into a location that is denoted by an immutable object.
Note that the MIT Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

10 MIT Scheme Reference

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used
to improve the readability of your programs and to separate tokens from each other, when
necessary. (A token is an indivisible lexical unit such as an identifier or number.) White-
space is otherwise insignificant. Whitespace may occur between any two tokens, but not
within a token. Whitespace may also occur inside a string, where it is significant.

1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as
delimiters:

¢y oo

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

L 1 { 1}
For example, if the value of the variable name is "max":
(list"Hi"name(+ 1 2)) = ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used
in several ways in Scheme programs:

e An identifier can be used as a variable or as a syntactic keyword.
e When an identifier appears as a literal or within a literal, it denotes a symbol.
Scheme accepts most of the identifiers that other programming languages allow. MIT
Scheme allows all of the identifiers that standard Scheme does, plus many more.

MIT Scheme defines a potential identifier to be a sequence of non-delimiter characters
that does not begin with either of the characters ‘#’ or ‘,’. Any such sequence of characters
that is not a syntactically valid number (see Chapter 4 [Numbers], page 57) is considered to
be a valid identifier. Note that, although it is legal for ‘#" and ,” to appear in an identifier
(other than in the first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q
list->vector soup

+ Vi7a

<=7 a34kTMNs

the-word-recursion-has—-many-meanings

Chapter 1: Overview 11

1.3.4 Uppercase and Lowercase

Scheme doesn’t distinguish uppercase and lowercase forms of a letter except within
character and string constants; in other words, Scheme is case-insensitive. For example,
‘Foo’ is the same identifier as ‘F00’, and ‘#x1AB’ is the same number as ‘#X1ab’. But ‘#\a’
and ‘#\A’ are different characters.

1.3.5 Naming Conventions

A predicate is a procedure that always returns a boolean value (#t or #£). By convention,
predicates usually have names that end in ‘7.

A mutation procedure is a procedure that alters a data structure. By convention, mu-
tation procedures usually have names that end in ‘!’.

1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything
on a line in which a semicolon appears, from the semicolon until the end of the line. The
entire comment, including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with
the characters ‘#|’ and ends with the characters ‘|#’. This alternative form is an MIT
Scheme extension. As with ordinary comments, all of the characters in an extended com-
ment, including the leading ‘#|’ and trailing ‘|#’, are treated as whitespace. Comments
of this form may extend over multiple lines, and additionally may be nested (unlike the
comments of the programming language C, which have a similar syntax).

;55 This is a comment about the FACT procedure. Scheme

;55 ignores all of this comment. The FACT procedure computes
;55 the factorial of a non-negative integer.

#]

This is an extended comment.

Such comments are useful for commenting out code fragments.

| #
(define fact
(lambda (n)
(if (= n 0) ;This is another comment:
1 ;Base case: return 1

(* n (fact (- n 1))))))

1.3.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Num-
bers|, page 57, for a description of the notations used for numbers.

+ - The plus sign, minus sign, and period are used in numbers, and may also occur
in an identifier. A delimited period (not occurring within a number or identifier)
is used in the notation for pairs and to indicate a “rest” parameter in a formal
parameter list (see Section 2.1 [Lambda Expressions|, page 15).

12

)

#t #f

#\

#(

MIT Scheme Reference

Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists],
page 105).
The double quote delimits strings (see Chapter 6 [Strings|, page 87).

The backslash is used in the syntax for character constants (see Chapter 5
[Characters], page 77) and as an escape character within string constants (see
Chapter 6 [Strings|, page 87).

The semicolon starts a comment.

The single quote indicates literal data; it suppresses evaluation (see Section 2.6
[Quoting], page 22).

The backquote indicates almost-constant data (see Section 2.6 [Quoting],
page 22).

The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 22).

A comma followed by an at-sign is used in conjunction with the backquote (see
Section 2.6 [Quoting], page 22).

The sharp (or pound) sign has different uses, depending on the character that
immediately follows it:

These character sequences denote the boolean constants (see Section 10.1
[Booleans|, page 127).

This character sequence introduces a character constant (see Chapter 5 [Char-
acters|, page 77).

This character sequence introduces a vector constant (see Chapter 8 [Vectors],
page 119). A close parenthesis,)’, terminates a vector constant.

#e #1 #b #o #d #1 #s #x

#]

#*

#[

#Q

These character sequences are used in the notation for numbers (see Chapter 4
[Numbers|, page 57).

This character sequence introduces an extended comment. The comment is
terminated by the sequence ‘|#’. This notation is an MIT Scheme extension.

This character sequence is used to denote a small set of named constants. Cur-
rently there are only two of these, #!optional and #!rest, both of which are
used in the lambda special form to mark certain parameters as being “optional”
or “rest” parameters. This notation is an MIT Scheme extension.

This character sequence introduces a bit string (see Chapter 9 [Bit Strings|,
page 123). This notation is an MIT Scheme extension.

This character sequence is used to denote objects that do not have a readable
external representation (see Section 14.7 [Custom Output], page 193). A close
bracket, ‘]’, terminates the object’s notation. This notation is an MIT Scheme
extension.

This character sequence is a convenient shorthand used to refer to objects by
their hash number (see Section 14.7 [Custom Output], page 193). This notation
is an MIT Scheme extension.

Chapter 1: Overview 13

These character sequences introduce a notation used to show circular structures
in printed output, or to denote them in input. The notation works much like
that in Common Lisp, and is an MIT Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal,
a variable reference, a special form, or a procedure call.

1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In
general, the external representation must be quoted (see Section 2.6 [Quoting|, page 22);
but some external representations can be used without quotation.

llabcll :> llabcll
145932 = 145932
#t = #t

#\a = #\a

The external representation of numeric constants, string constants, character constants,
and boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and
vectors require quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers|, page 10) is a
variable reference; the identifier is the name of the variable being referenced. The value of
the variable reference is the value stored in the location to which the variable is bound. An
error is signalled if the referenced variable is unbound or unassigned.

(define x 28)
X = 28

1.4.3 Special Form Syntax

(keyword component ...)
A parenthesized expression that starts with a syntactic keyword is a special form. Each
special form has its own syntax, which is described later in the manual.

Note that syntactic keywords and variable bindings share the same namespace. A local
variable binding may shadow a syntactic keyword, and a local syntactic-keyword definition
may shadow a variable binding.

The following list contains all of the syntactic keywords that are defined when MIT
Scheme is initialized:

access and begin

case cond cons-stream
declare default-object? define
define-integrable define-structure define-syntax

delay do er-macro-transformer

14 MIT Scheme Reference

fluid-let if lambda

let let* let*-syntax

let-syntax letrec letrec-syntax

local-declare named-lambda non-hygienic-macro-
transformer

or quasiquote quote

rsc-macro-transformer sc-macro-transformer set!

syntax-rules the-environment

1.4.4 Procedure Call Syntax

(operator operand ...)

A procedure call is written by simply enclosing in parentheses expressions for the proce-
dure to be called (the operator) and the arguments to be passed to it (the operands). The
operator and operand expressions are evaluated and the resulting procedure is passed the
resulting arguments. See Section 2.1 [Lambda Expressions|, page 15, for a more complete
description of this.

Another name for the procedure call expression is combination. This word is more
specific in that it always refers to the expression; “procedure call” sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression
and the operand expressions with the same evaluation rules, and the order of evaluation is
unspecified.

(+ 3 4) = 7
((if #f = %) 3 4) = 12

A number of procedures are available as the values of variables in the initial environment;
for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure
call: it is a special form.

Chapter 2: Special Forms 15

2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter de-
scribes the basic Scheme special forms.

2.1 Lambda Expressions

lambda formals expression expression . . . special form

A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called
the closing environment. When the procedure is later called with some arguments,
the closing environment is extended by binding the variables in the formal parameter
list to fresh locations, and the locations are filled with the arguments according to
rules about to be given. The new environment created by this process is referred to
as the invocation environment.

Once the invocation environment has been constructed, the expressions in the body
of the lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of
the procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required All of the required parameters are matched against the arguments first.
If there are fewer arguments than required parameters, an error of type
condition-type:wrong-number-of-arguments is signalled; this error is
also signalled if there are more arguments than required parameters and
there are no further parameters.

Optional Once the required parameters have all been matched, the optional param-
eters are matched against the remaining arguments. If there are fewer ar-
guments than optional parameters, the unmatched parameters are bound
to special objects called default objects. If there are more arguments
than optional parameters, and there are no further parameters, an error
of type condition-type:wrong-number-of-arguments is signalled.

The predicate default-object?, which is true only of default objects,
can be used to determine which optional parameters were supplied, and
which were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.
(If there are no remaining arguments, the rest parameter is bound to the
empty list.)
In Scheme, unlike some other Lisp implementations, the list to which a
rest parameter is bound is always freshly allocated. It has infinite extent
and may be modified without affecting the procedure’s caller.

16 MIT Scheme Reference

Specially recognized keywords divide the formals parameters into these three classes.
The keywords used here are ‘#'optional’, ‘.’, and ‘#!rest’. Note that only ‘.’
is defined by standard Scheme — the other keywords are MIT Scheme extensions.

‘#!rest’ has the same meaning as ‘.’ in formals.

The use of these keywords is best explained by means of examples. The following
are typical lambda lists, followed by descriptions of which parameters are required,
optional, and rest. We will use ‘#!rest’ in these examples, but anywhere it appears
.7 could be used instead.

(abc) a, b, and c are all required. The procedure must be passed exactly three
arguments.

(a b #!optional c)
a and b are required, c is optional. The procedure may be passed either
two or three arguments.

(#!optional a b ¢)
a, b, and c are all optional. The procedure may be passed any number
of arguments between zero and three, inclusive.

a

(#'rest a)
These two examples are equivalent. a is a rest parameter. The procedure
may be passed any number of arguments. Note: this is the only case in
which ‘.’ cannot be used in place of ‘#!rest’.

(a b #'!'optional c d #!rest e)
a and b are required, ¢ and d are optional, and e is rest. The procedure
may be passed two or more arguments.

Some examples of lambda expressions:
(lambda (x) (+ x x)) = #[compound-procedure 53]

((lambda (x) (+ x x)) 4) = 8

(define reverse-subtract
(lambda (x y)
-y x)))
(reverse-subtract 7 10) = 3

(define foo
(let ((x 4))
(lambda (y) (+ x y))))
(foo 6) = 10

named-lambda formals expression expression . . . special form
The named-lambda special form is similar to lambda, except that the first “required
parameter” in formals is not a parameter but the name of the resulting procedure;
thus formals must have at least one required parameter. This name has no semantic
meaning, but is included in the external representation of the procedure, making it

Chapter 2: Special Forms 17

useful for debugging. In MIT Scheme, 1lambda is implemented as named-lambda, with
a special name that means “unnamed”.

(named-lambda (f x) (+ x x)) = #[compound-procedure 53 f]
((named-lambda (f x) (+ x x)) 4) = 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The
syntax of the three constructs is identical, but they differ in the regions they establish for
their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound. In a let* expression, the evaluations and bindings are
sequentially interleaved. And in a letrec expression, all the bindings are in effect while
the initial values are being computed (thus allowing mutually recursive definitions).

let ((variable init) ...) expression expression . . . special form
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-
ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

Note that the following are equivalent:

(let ((variable init) ...) expression expression ...)
((lambda (variable ...) expression expression ...) init ...)

Some examples:

(let ((x 2) (y 3))
(x x y)) = 6
(let ((x 2) (y 3))
(let ((foo (lambda (z) (+ x y 2)))
(x 7))
(foo 4))) = 9

See Section 2.9 [Iteration], page 27, for information on “named let”.

let*® ((variable init) ...) expression expression . . . special form
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variablel initl)
(variable2 init2)

(variableN initN))
expression
expression . ..)

MIT Scheme Reference

(let ((variablel initl))
(let ((variable2 init2))

(let ((variableN initN))
expression
expression ...)

cea))

An example:

(let ((x 2) (y 3))
(letx ((x 7)
(z (+ xy)))
(* z x))) = 70

letrec ((variable init) ...) expression expression . . . special form

The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(odd? (- n 1)))))
(odd?
(lambda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88)) = #t

One restriction on letrec is very important: it shall be possible to evaluated each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all the
inits are lambda or delay expressions and the restriction is satisfied automatically.

2.3 Dynamic Binding

fluid-let ((variable init) ...) expression expression . . . special form

The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.

Chapter 2: Special Forms 19

The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead
it assigns the value of each init to the binding (determined by the rules of lexical
scoping) of its corresponding variable.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are temporarily unassigned.

An error of type condition-type:unbound-variable is signalled if any of the vari-
ables are unbound. However, because fluid-let operates by means of side effects,
it is valid for any variable to be unassigned when the form is entered.

Here is an example showing the difference between fluid-let and let. First see how
let affects the binding of a variable:

(define variable #t)
(define (access-variable) variable)

variable = #t
(let ((variable #f))

(access-variable)) = #t
variable = #t

access-variable returns #t in this case because it is defined in an environment with
variable bound to #t. fluid-1let, on the other hand, temporarily reuses an existing

variable:
variable = #t
(fluid-let ((variable #f)) ;reuses old binding
(access-variable)) = #f
variable = #t

The extent of a dynamic binding is defined to be the time period during which the
variable contains the new value. Normally this time period begins when the body is
entered and ends when it is exited; on a sequential machine it is normally a contiguous
time period. However, because Scheme has first-class continuations, it is possible to
leave the body and then reenter it, as many times as desired. In this situation, the
extent becomes non-contiguous.

When the body is exited by invoking a continuation, the new value is saved, and
the variable is set to the old value. Then, if the body is reentered by invoking a
continuation, the old value is saved, and the variable is set to the new value. In
addition, side effects to the variable that occur both inside and outside of body are
preserved, even if continuations are used to jump in and out of body repeatedly.

Here is a complicated example that shows the interaction between dynamic binding and
continuations:

20 MIT Scheme Reference

(define (complicated-dynamic-binding)
(let ((variable 1)
(inside-continuation))
(write-line variable)
(call-with-current-continuation
(lambda (outside-continuation)
(fluid-let ((variable 2))
(write-line variable)
(set! variable 3)
(call-with-current-continuation
(lambda (k)
(set! inside-continuation k)
(outside-continuation #t)))
(write-line variable)
(set! inside-continuation #£f))))
(write-line variable)
(if inside-continuation
(begin
(set! variable 4)
(inside-continuation #£f)))))

Evaluating ‘(complicated-dynamic-binding)’ writes the following on the console:

Commentary: the first two values written are the initial binding of variable and its
new binding after the fluid-let’s body is entered. Immediately after they are written,
variable is set to ‘3’, and then outside-continuation is invoked, causing us to exit the
body. At this point, ‘1’ is written, demonstrating that the original value of variable has
been restored, because we have left the body. Then we set variable to ‘4’ and reenter the
body by invoking inside-continuation. At this point, ‘3’ is written, indicating that the
side effect that previously occurred within the body has been preserved. Finally, we exit
body normally, and write ‘4’, demonstrating that the side effect that occurred outside of
the body was also preserved.

2.4 Definitions

define variable [expression] special form
define formals expression expression . . . special form
Definitions are valid in some but not all contexts where expressions are allowed.
Definitions may only occur at the top level of a program and at the beginning of
a lambda body (that is, the body of a lambda, let, let*, letrec, fluid-let, or
“procedure define” expression). A definition that occurs at the top level of a program
is called a top-level definition, and a definition that occurs at the beginning of a body
is called an internal definition.

Chapter 2: Special Forms 21

In the second form of define (called “procedure define”), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (namel name2 ...)

expression
expression . ..)

(define namel
(named-lambda (namel name2 ...)
expression
expression ...))

2.4.1 Top-Level Definitions

A top-level definition,
(define variable expression)
has essentially the same effect as this assignment expression, if variable is bound:
(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing the assignment (it is an error to perform a set! on an
unbound variable). If you omit expression, the variable becomes unassigned; an attempt to
reference such a variable is an error.

(define add3

(lambda (x) (+ x 3))) = unspecified
(add3 3) = 6
(define first car) = unspecified
(first ’(1 2)) = 1
(define bar) = unspecified
bar Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is,
the body of a lambda, let, let*, letrec, fluid-let, or “procedure define” expression),
rather than at the top level of a program. The variable defined by an internal definition is
local to the body. That is, variable is bound rather than assigned, and the region of the
binding is the entire body. For example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (x a b) a)))
(foo (+ x 3))) = 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to

22 MIT Scheme Reference
(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (*x a b) a))))
(foo (+ x 3))))
2.5 Assignments
set! variable [expression] special form

If expression is specified, evaluates expression and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; a subsequent reference to such a variable is an error. In either case, the
value of the set! expression is unspecified.

Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form
is entered.

(define x 2) = unspecified
(+ x 1) = 3
(set! x 4) = unspecified
(+ x 1) = b5

Variable may be an access expression (see Chapter 13 [Environments|, page 173).
This allows you to assign variables in an arbitrary environment. For example,

(define x (let ((y 0)) (the-environment)))
(define y ’a)

y = a
(access y x) = 0
(set! (access y x) 1) = unspecified
y = a
(access y x) = 1

2.6 Quoting

This section describes the expressions that are used to modify or prevent the evaluation
of objects.

quote datum special form

(quote datum) evaluates to datum. Datum may be any external representation of a
Scheme object (see Section 1.2.6 [External Representations|, page 8). Use quote to
include literal constants in Scheme code.

(quote a) = a
(quote #(a b c)) = #(a b <)
(quote (+ 1 2)) = (+12)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in
all respects.

Chapter 2: Special Forms

23

’a = a

#(a b c) = #(a b c)
Y(+ 1 2) = (+12)

> (quote a) = (quote a)
EEPN = (quote a)

Numeric constants, string constants, character constants, and boolean constants eval-

uate to themselves, so they don’t need to be quoted.

quasiquote template

’"abc" = "abc"
"abc" = "abc"
7145932 = 145932
145932 = 145932
TH#t = #t

#t = #t
‘#\a = #\a
#\a = #\a

“Backquote” or “quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no
commas appear within the template, the result of evaluating template is equivalent
(in the sense of equal?) to the result of evaluating ’template. If a comma appears
within the template, however, the expression following the comma is evaluated (“un-
quoted”) and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the
following expression shall evaluate to a list; the opening and closing parentheses of
the list are then “stripped away” and the elements of the list are inserted in place of
the comma at-sign expression sequence.

‘(list ,(+ 1 2) 4 = (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name)) = (list a ’a)
‘(a ,(+ 1 2) ,0(map abs ’(4 -5 6)) b) = (a3456D0b)

“((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(coms)))
= ((foo 7) . comns)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)
= #(10 52 4 3 8)

o+ 2 3) = 5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.

special form

24 MIT Scheme Reference

‘ta ‘(b ,(+12) ,(foo ,(+ 1 3) d) e) f)
= (a ‘(b ,(+12) ,(foo 4 d) e) f)

(let ((namel ’x)
(name2 ’y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(b ,x ,’y d) e)
The notations ‘template and (quasiquote template) are identical in all respects.
,expression is identical to (unquote expression) and ,@expression is identical to
(unquote-splicing expression).
(quasiquote (list (unquote (+ 1 2)) 4))
= (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))
= ‘“(list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))
Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true
or false. The conditional expressions count only #f as false. They count everything else,
including #t, pairs, symbols, numbers, strings, vectors, and procedures as true (but see
Section 1.2.5 [True and False], page 8).

In the descriptions that follow, we say that an object has “a true value” or “is true”
when the conditional expressions treat it as true, and we say that an object has “a false
value” or “is false” when the conditional expressions treat it as false.

if predicate consequent [alternative] special form
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = no
(if (> 3 2)
(- 32
(+ 3 2)) = 1
cond clause clause . . . special form

Each clause has this form:

Chapter 2: Special Forms 25

(predicate expression ...)
where predicate is any expression. The last clause may be an else clause, which has
the form:

(else expression expression ...)

A cond expression does the following;:

1. Evaluates the predicate expressions of successive clauses in order, until one of
the predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in
the associated clause in left to right order, and returns the result of evaluating
the last expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) = greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal

Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions
in which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.

Scheme supports an alternative clause syntax:
(predicate => recipient)
where recipient is an expression. If predicate evaluates to a true value, then recipient

is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.

(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #£f)) = 2

case key clause clause . . . special form
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)
A case expression does the following:
1. Evaluates key and compares the result with each object.

2. 1If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 51) to an object, case evaluates the expressions

26 MIT Scheme Reference

in the corresponding clause from left to right and returns the result of evaluating
the last expression in the clause as the result of the case expression.

3. If the result of evaluating key is different from every object, and if there’s an
else clause, case evaluates its expressions and returns the result of the last one
as the result of the case expression. If there’s no else clause, case returns an
unspecified result. Programs should not depend on the value of a case expression
that has no else clause.

For example,

(case (x 2 3)
((2 35 7) ’prime)
((1 4 6 89) ’composite)) = composite

(case (car ’(c d))
((a) ’a)
() ’b)) = unspecified

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) = consonant

and expression . . . special form
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evalu-
ated. If all the expressions evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.

(and (= 2 2) > 2 1)) = #t
(and (= 2 2) (< 2 1)) = #f
(and 1 2 ’c (£ g)) = (f g)
(and) = #t
or expression . . . special form

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not eval-
uated. If all expressions evaluate to false values, the value of the last expression is
returned. If there are no expressions then #f is returned.

(or (=22) (> 2 1)) = #t
(or (=2 2) (<2 1) = #t
(or #f #f #f) = #f
(or (memgq ’b ’(a b ¢)) (/ 3 0)) = (b ¢)

2.8 Sequencing

The begin special form is used to evaluate expressions in a particular order.

Chapter 2: Special Forms 27

begin expression expression . . . special form
The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as
input and output.

(define x 0)
(begin (set! x 5)
(+ x 1)) = 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1)))
<+ 4 plus 1 equals b5
= unspecified
Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

case
cond

define ;“procedure define” only
do

fluid-let

lambda

let

letx*

letrec

named-lambda

The obsolete special form sequence is identical to begin. It should not be used in
new code.

2.9 Iteration

The iteration expressions are: “named let” and do. They are also binding expressions,
but are more commonly referred to as iteration expressions. Because Scheme is properly
tail-recursive, you don’t need to use these special forms to express iteration; you can simply
use appropriately written “recursive” procedure calls.

let name ((variable init) ...) expression expression . . . special form
MIT Scheme permits a variant on the syntax of let called “named let” which pro-
vides a more general looping construct than do, and may also be used to express
recursions.

Named let has the same syntax and semantics as ordinary let except that name is
bound within the expressions to a procedure whose formal arguments are the variables
and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

Note: the following expressions are equivalent:

28 MIT Scheme Reference

(let name ((variable init) ...)
expression
expression . ..)

((letrec ((name

(named-lambda (name variable ...)
expression
expression ...)))
name)
init ...)

Here is an example:

(let loop
((numbers ’(3 -2 1 6 -5))
(nonneg ’())
(neg ()
(cond ((null? numbers)
(1ist nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)

neg))

(else

(loop (cdr numbers)
nonneg

(cons (car numbers) neg)))))
= (61 3) (-5 -2))

do ((variable init step) ...) (test expression ...) command . .. special form
do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Fach iteration begins by evaluating test; if the result is false, then the command
expressions are evaluated in order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh locations, the results of the
steps are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right
and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT Scheme, the value of test is returned.

The region of the binding of a variable consists of the entire do expression except
for the inits. It is an error for a variable to appear more than once in the list of do
variables.

Chapter 2: Special Forms 29

A step may be omitted, in which case the effect is the same as if (variable init
variable) had been written instead of (variable init).
(do ((vec (make-vector 5))
G0 (+1in)N
((= i 5) vec)
(vector-set! vec i i)) = #(0 12 3 4)

(let ((x (135799
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) = 25

2.10 Structure Definitions

This section provides examples and describes the options and syntax of define-
structure, an MIT Scheme macro that is very similar to defstruct in Common Lisp.
The differences between them are summarized at the end of this section. For more
information, see Steele’s Common Lisp book.

define-structure (name structure-option . ..) slot-description . . . special form

Fach slot-description takes one of the following forms:

slot-name

(slot-name default-init [slot-option value]*)
The fields name and slot-name must both be symbols. The field default-init is an
expression for the initial value of the slot. It is evaluated each time a new instance
is constructed. If it is not specified, the initial content of the slot is undefined.
Default values are only useful with a BOA constructor with argument list or a keyword
constructor (see below).

Evaluation of a define-structure expression defines a structure descriptor and a
set of procedures to manipulate instances of the structure. These instances are repre-
sented as records by default (see Section 10.4 [Records|, page 132) but may alternately
be lists or vectors. The accessors and modifiers are marked with compiler declara-
tions so that calls to them are automatically transformed into appropriate references.
Often, no options are required, so a simple call to define-structure looks like:

(define-structure foo a b c)

This defines a type descriptor foo, a constructor make-foo, a predicate foo?, ac-
cessors foo-a, foo-b, and foo-c, and modifiers set-foo-a!, set-foo-b!, and set-
foo-c!.

In general, if no options are specified, define-structure defines the following (using
the simple call above as an example):

type descriptor
The name of the type descriptor is the same as the name of the structure,
e.g. ‘foo’. The type descriptor satisfies the predicate record-type?.

constructor
The name of the constructor is "make-" followed by the name of the
structure, e.g. ‘make-foo’. The number of arguments accepted by the

30 MIT Scheme Reference

constructor is the same as the number of slots; the arguments are the
initial values for the slots, and the order of the arguments matches the
order of the slot definitions.

predicate The name of the predicate is the name of the structure followed by "?",
e.g. ‘foo?’. The predicate is a procedure of one argument, which re-
turns #t if its argument is a record of the type defined by this structure
definition, and #f otherwise.

accessors For each slot, an accessor is defined. The name of the accessor is formed
by appending the name of the structure, a hyphen, and the name of the
slot, e.g. ‘foo-a’. The accessor is a procedure of one argument, which
must be a record of the type defined by this structure definition. The
accessor extracts the contents of the corresponding slot in that record
and returns it.

modifiers For each slot, a modifier is defined. The name of the modifier is formed by
appending "set-", the name of the accessor, and "!", e.g. ‘set-foo-a!’.
The modifier is a procedure of two arguments, the first of which must
be a record of the type defined by this structure definition, and the sec-
ond of which may be any object. The modifier modifies the contents of
the corresponding slot in that record to be that object, and returns an
unspecified value.

When options are not supplied, (name) may be abbreviated to name. This convention
holds equally for structure-options and slot-options. Hence, these are equivalent:
(define-structure foo a b c)
(define-structure (foo) (a) b (c))
as are
(define-structure (foo keyword-constructor) a b c)
(define-structure (foo (keyword-constructor)) a b c)
When specified as option values, false and nil are equivalent to #£f, and true and
t are equivalent to #t.

Possible slot-options are:

read-only value slot option
When given a value other than #f, this specifies that no modifier should be created
for the slot.

type type-descriptor slot option
This is accepted but not presently used.

Possible structure-options are:

predicate [name] structure option
This option controls the definition of a predicate procedure for the structure. If name
is not given, the predicate is defined with the default name (see above). If name is
#f, the predicate is not defined at all. Otherwise, name must be a symbol, and the
predicate is defined with that symbol as its name.

Chapter 2: Special Forms 31

copier [name] structure option
This option controls the definition of a procedure to copy instances of the struc-
ture. This is a procedure of one argument, a structure instance, that makes a newly
allocated copy of the structure and returns it. If name is not given, the copier is
defined, and the name of the copier is "copy-" followed by the structure name (e.g.
‘copy-foo’). If name is #f, the copier is not defined. Otherwise, name must be a
symbol, and the copier is defined with that symbol as its name.

print-procedure expression structure option
Evaluating expression must yield a procedure of two arguments, which is used to print
instances of the structure. The procedure is an unparser method (see Section 14.7
[Custom Output], page 193). If the structure instances are records, this option has
the same effect as calling set-record-type-unparser-method!.

constructor [name [argument-list]] structure option
This option controls the definition of constructor procedures. These constructor pro-
cedures are called “BOA constructors”, for “By Order of Arguments”, because the
arguments to the constructor specify the initial contents the structure’s slots by the
order in which they are given. This is as opposed to “keyword constructors”, which
specify the initial contents using keywords, and in which the order of arguments is
irrelevant.

If name is not given, a constructor is defined with the default name and arguments (see
above). If name is #f, no constructor is defined; argument-list may not be specified
in this case. Otherwise, name must be a symbol, and a constructor is defined with
that symbol as its name. If name is a symbol, argument-list is optionally allowed;
if it is omitted, the constructor accepts one argument for each slot in the structure
definition, in the same order in which the slots appear in the definition. Otherwise,
argument-list must be a lambda list (see Section 2.1 [Lambda Expressions|, page 15),
and each of the parameters of the lambda list must be the name of a slot in the
structure. The arguments accepted by the constructor are defined by this lambda
list. Any slot that is not specified by the lambda list is initialized to the default-init
as specified above; likewise for any slot specified as an optional parameter when the
corresponding argument is not supplied.

If the constructor option is specified, the default constructor is not defined. Addi-
tionally, the constructor option may be specified multiple times to define multiple
constructors with different names and argument lists.
(define-structure (foo
(constructor make-foo (#!optional a b)))
(a 6 read-only #t)
(b 9))

keyword-constructor [name] structure option
This option controls the definition of keyword constructor procedures. A keyword
constructor is a procedure that accepts arguments that are alternating slot names
and values. If name is omitted, a keyword constructor is defined, and the name of
the constructor is "make-" followed by the name of the structure (e.g. ‘make-fo00’).

32 MIT Scheme Reference
Otherwise, name must be a symbol, and a keyword constructor is defined with this
symbol as its name.

If the keyword-constructor option is specified, the default constructor is not defined.
Additionally, the keyword-constructor option may be specified multiple times to
define multiple keyword constructors; this is usually not done since such constructors
would all be equivalent.

(define-structure (foo (keyword-constructor make-bar)) a b)

(foo-a (make-bar ’b 20 ’a 19)) = 19

type-descriptor name structure option
This option cannot be used with the type or named options.

By default, structures are implemented as records. The name of the structure is
defined to hold the type descriptor of the record defined by the structure. The type-
descriptor option specifies a different name to hold the type descriptor.

(define-structure foo a b)

foo = #[record-type 18]

(define-structure (bar (type-descriptor bar-rtd)) a b)

bar error| Unbound variable: bar

bar-rtd = #[record-type 19]

conc-name [name] structure option
By default, the prefix for naming accessors and modifiers is the name of the structure
followed by a hyphen. The conc-name option can be used to specify an alternative.

If name is not given, the prefix is the name of the structure followed by a hyphen (the
default). If name is #£, the slot names are used directly, without prefix. Otherwise,
name must a symbol, and that symbol is used as the prefix.
(define-structure (foo (conc-name moby/)) a b)
defines accessors moby/a and moby/b, and modifiers set-moby/a! and set-moby/b!.
(define-structure (foo (conc-name #f)) a b)
defines accessors a and b, and modifiers set-a! and set-b!.
type representation-type structure option

This option cannot be used with the type-descriptor option.

By default, structures are implemented as records. The type option overrides this
default, allowing the programmer to specify that the structure be implemented using
another data type. The option value representation-type specifies the alternate data
type; it is allowed to be one of the symbols vector or 1ist, and the data type used
is the one corresponding to the symbol.

If this option is given, and the named option is not specified, the representation will
not be tagged, and neither a predicate nor a type descriptor will be defined; also, the
print-procedure option may not be given.

(define-structure (foo (type list)) a b)
(make-foo 1 2) = (1 2)

Chapter 2: Special Forms 33

named [expression] structure option
This is valid only in conjunction with the type option and specifies that the structure
instances be tagged to make them identifiable as instances of this structure type. This
option cannot be used with the type-descriptor option.

In the usual case, where expression is not given, the named option causes a type
descriptor and predicate to be defined for the structure (recall that the type option
without named suppresses their definition), and also defines a default unparser method
for the structure instances (which can be overridden by the print-procedure option).
If the default unparser method is not wanted then the print-procedure option should
be specified as #F. This causes the structure to be printed in its native representation,
as a list or vector, which includes the type descriptor. The type descriptor is a unique
object, not a record type, that describes the structure instances and is additionally
stored in the structure instances to identify them: if the representation type is vector,
the type descriptor is stored in the zero-th slot of the vector, and if the representation
type is list, it is stored as the first element of the list.

(define-structure (foo (type vector) named) a b c)
(vector-ref (make-foo 1 2 3) 0) = #[structure-type 52]

If expression is specified, it is an expression that is evaluated to yield a tag object. The
expression is evaluated once when the structure definition is evaluated (to specify the
unparser method), and again whenever a predicate or constructor is called. Because
of this, expression is normally a variable reference or a constant. The value yielded by
expression may be any object at all. That object is stored in the structure instances
in the same place that the type descriptor is normally stored, as described above. If
expression is specified, no type descriptor is defined, only a predicate.

(define-structure (foo (type vector) (named ’foo)) a b c)
(vector-ref (make-foo 1 2 3) 0) = foo

safe-accessors [boolean] structure option

This option allows the programmer to have some control over the safety of the slot
accessors (and modifiers) generated by define-structure. If safe-accessors is not
specified, or if boolean is #£, then the accessors are optimized for speed at the expense
of safety; when compiled, the accessors will turn into very fast inline sequences, usually
one to three machine instructions in length. However, if safe-accessors is specified
and boolean is either omitted or #t, then the accessors are optimized for safety, will
check the type and structure of their argument, and will be close-coded.

(define-structure (foo safe-accessors) a b c)

initial-offset offset structure option
This is valid only in conjunction with the type option. Offset must be an exact non-
negative integer and specifies the number of slots to leave open at the beginning of
the structure instance before the specified slots are allocated. Specifying an offset of
zero is equivalent to omitting the initial-offset option.

If the named option is specified, the structure tag appears in the first slot, followed
by the “offset” slots, and then the regular slots. Otherwise, the “offset” slots come
first, followed by the regular slots.

34

MIT Scheme Reference

(define-structure (foo (type vector) (initial-offset 3))
abc)
(make-foo 1 2 3) = #(O O O 123

The essential differences between MIT Scheme’s def ine-structure and Common Lisp’s

defstruct are:

The default constructor procedure takes positional arguments, in the same order as
specified in the definition of the structure. A keyword constructor may be specified by
giving the option keyword-constructor.

BOA constructors are described using Scheme lambda lists. Since there is nothing
corresponding to &aux in Scheme lambda lists, this functionality is not implemented.

By default, no copier procedure is defined.

The side-effect procedure corresponding to the accessor foo is given the name set-
foo!.

Keywords are ordinary symbols — use foo instead of :foo.

The option values false, nil, true, and t are treated as if the appropriate boolean
constant had been specified instead.

The print-function option is named print-procedure. Its argument is a procedure
of two arguments (the unparser state and the structure instance) rather than three as
in Common Lisp.

By default, named structures are tagged with a unique object of some kind. In Common
Lisp, the structures are tagged with symbols. This depends on the Common Lisp
package system to help generate unique tags; MIT Scheme has no such way to generate
unique symbols.

The named option may optionally take an argument, which is normally the name of
a variable (any expression may be used, but it is evaluated whenever the tag name is
needed). If used, structure instances will be tagged with that variable’s value. The
variable must be defined when define-structure is evaluated.

The type option is restricted to the values vector and list.

The include option is not implemented.

2.11 Macros

(This section is largely taken from the Revised~4 Report on the Algorithmic Language

Scheme. The section on Syntactic Closures is derived from a document written by Chris
Hanson. The section on Explicit Renaming is derived from a document written by William
Clinger.)

Scheme programs can define and use new derived expression types, called macros.

Program-defined expression types have the syntax

(keyword datum ...)

where keyword is an identifier that uniquely determines the expression type. This identifier
is called the syntactic keyword, or simply keyword, of the macro. The number of the datums,
and their syntax, depends on the expression type.

Chapter 2: Special Forms 35

Each instance of a macro is called a use of the macro. The set of rules that specifies how
a use of a macro is transcribed into a more primitive expression is called the transformer
of the macro.

MIT Scheme also supports anonymous syntactic keywords. This means that it’s not
necessary to binding a macro transformer to a syntactic keyword before it is used. Instead,
any macro-transformer expression can appear as the first element of a form, and the form
will be expanded by the transformer.

The macro definition facility consists of these parts:

e A set of expressions used to establish that certain identifiers are macro keywords,
associate them with macro transformers, and control the scope within which a macro

is defined.

e A standard high-level pattern language for specifying macro transformers, introduced
by the syntax-rules special form.

e Two non-standard low-level languages for specifying macro transformers, syntactic clo-
sures and explicit renaming.

The syntactic keyword of a macro may shadow variable bindings, and local variable
bindings may shadow keyword bindings. All macros defined using the pattern language are
“hygienic” and “referentially transparent” and thus preserve Scheme’s lexical scoping:

e If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

e If a macro transformer inserts a free reference to an identifier, the reference refers to
the binding that was visible where the transformer was specified, regardless of any local
bindings that may surround the use of the macro.

2.11.1 Binding Constructs for Syntactic Keywords

let-syntax, letrec-syntax, let*-syntax and define-syntax are analogous to let,
letrec, let* and define, but they bind syntactic keywords to macro transformers instead
of binding variables to locations that contain values.

let-syntax bindings expression expression . . . special form
Bindings should have the form

((keyword transformer-spec) ...)

Each keyword is an identifier, each transformer-spec is a a macro-transformer ex-
pression, and the body is a sequence of one or more expressions. It is an error for a
keyword to appear more than once in the list of keywords being bound.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the let-syntax expression with macros whose keywords are
the keywords, bound to the specified transformers. Each binding of a keyword has
the expressions as its region.

36 MIT Scheme Reference

(let-syntax ((when (syntax-rules ()
((when test stmtl stmt2 ...)
(if test
(begin stmtl
stmt2 ...))))))
(let ((if #t))
(when if (set! if ’now))
if)) = now

(let ((x ’outer))
(let-syntax ((m (syntax-rules OO ((m) x))))
(let ((x ’inner))
(m)))) = outer

letrec-syntax bindings expression expression . . . special form
The syntax of letrec-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the bindings as well as the expressions within its region, so the transformers
can transcribe expressions into uses of the macros introduced by the letrec-syntax
expression.

(letrec-syntax
((my-or (syntax-rules ()
((my-or) #f£)
((my-or e) e)
((my-or el e2 ...)
(let ((temp el))
(if temp
temp
(my-or €2 ...)))))))
(let ((x #f)
(y 7)
(temp 8)
(let o0dd?)
(if even?))
(my-or x
(let temp)
(if y)
y))) = 7

let*-syntax bindings expression expression . . . special form
The syntax of let*-syntax is the same as for let-syntax

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the subsequent bindings as well as the expressions within its region. Thus

Chapter 2: Special Forms 37

(let*-syntax
((a (syntax-rules ...))
(b (syntax-rules ...)))
o)

is equivalent to

(let-syntax ((a (syntax-rules ...)))
(let-syntax ((b (syntax-rules ...)))
c))

define-syntax keyword transformer-spec special form
Keyword is an identifier, and transformer-spec is a macro transformer expression.
The syntactic environment is extended by binding the keyword to the specified trans-
former.

The region of the binding introduced by define-syntax is the entire block in which
it appears. However, the keyword may only be used after it has been defined.

MIT Scheme permits define-syntax to appear both at top level and within lambda
bodies. The Revised~4 Report permits only top-level uses of define-syntax.

When compiling a program, a top-level instance of define-syntax both defines the
syntactic keyword and generates code that will redefine the keyword when the program
is loaded. This means that the same syntax can be used for defining macros that will
be used during compilation and for defining macros to be used at run time.

Although macros may expand into definitions and syntax definitions in any context
that permits them, it is an error for a definition or syntax definition to shadow a
syntactic keyword whose meaning is needed to determine whether some form in the
group of forms that contains the shadowing definition is in fact a definition, or, for
internal definitions, is needed to determine the boundary between the group and the
expressions that follow the group. For example, the following are errors:

(define define 3)
(begin (define begin list))

(let-syntax
((foo (syntax-rules ()
((foo (proc args ...) body ...)
(define proc
(lambda (args ...)
body ...))))))
(let ((x 3))
(foo (plus x y) (+ x y))
(define foo x)
(plus foo x)))

2.11.2 Pattern Language

MIT Scheme supports a high-level pattern language for specifying macro transformers.
This pattern language is defined by the Revised~4 Report and is portable to other conform-

38 MIT Scheme Reference

ing Scheme implementations. To use the pattern language, specify a transformer-spec as a
syntax-rules form:

syntax-rules literals syntax-rule . . . special form
Literals is a list of identifiers and each syntax-rule should be of the form

(pattern template)

The pattern in a syntax-rule is a list pattern that begins with the keyword for the
macro.

A pattern is either an identifier, a constant, or one of the following

(pattern ...)

(pattern pattern pattern)

(pattern ... pattern ellipsis)
and a template is either an identifier, a constant, or one of the following

(element ...)

(element element template)
where an element is a template optionally followed by an ellipsis and an ellipsis is
the identifier ‘...’ (which cannot be used as an identifier in either a template or a
pattern).

An instance of syntax-rules produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose keyword is associated with
a transformer specified by syntax-rules is matched against the patterns contained
in the syntax-rules, beginning with the leftmost syntax-rule. When a match is found,
the macro use is transcribed hygienically according to the template.

An identifier that appears in the pattern of a syntax-rule is a pattern-variable, unless
it is the keyword that begins the pattern, is listed in literals, or is the identifier ‘. ..".
Pattern variables match arbitrary input elements and are used to refer to elements
of the input in the template. It is an error for the same pattern variable to appear
more than once in a pattern.

The keyword at the beginning of the pattern in a syntax-rule is not involved in the
matching and is not considered a pattern variable or literal identifier.

Identifiers that appear in literals are interpreted as literal identifiers to be matched
against corresponding subforms of the input. A subform in the input matches a literal
identifier if and only if it is an identifier and either both its occurrence in the macro
expression and its occurrence in the macro definition have the same lexical binding,
or the two identifiers are equal and both have no lexical binding.

A subpattern followed by ... can match zero or more elements of the input. It is an
error for ... to appear in literals. Within a pattern the identifier ... must follow
the last element of a nonempty sequence of subpatterns.

More formally, an input form F matches a pattern P if and only if:
e P is a non-literal identifier; or
e P is a literal identifier and F is an identifier with the same binding; or

e Pisalist (P_1 ... P_n) and F is a list of n forms that match P_I through P_n,
respectively; or

Chapter 2: Special Forms 39

e P is an improper list (P_.1 P.2 ... P.n . P_n+1) and F is a list or improper
list of n or more forms that match P_1 through P_n, respectively, and whose nth
“cdr” matches P_n+1; or

e P is of the form (P_1 ... P_n P_n+1 ellipsis) where ellipsis is the identifier . ..
and F is a proper list of at least n forms, the first n of which match P_1 through
P_n, respectively, and each remaining element of F' matches P_n+1; or

e P is a datum and F is equal to P in the sense of the equal? procedure.

It is an error to use a macro keyword, within the scope of its binding, in an expression
that does not match any of the patterns.

When a macro use is transcribed according to the template of the matching syntax
rule, pattern variables that occur in the template are replaced by the subforms they
match in the input. Pattern variables that occur in subpatterns followed by one or
more instances of the identifier ... are allowed only in subtemplates that are followed
by as many instances of They are replaced in the output by all of the subforms
they match in the input, distributed as indicated. It is an error if the output cannot
be built up as specified.

Identifiers that appear in the template but are not pattern variables or the identifier

. are inserted into the output as literal identifiers. If a literal identifier is inserted
as a free identifier then it refers to the binding of that identifier within whose scope
the instance of syntax-rules appears. If a literal identifier is inserted as a bound
identifier then it is in effect renamed to prevent inadvertent captures of free identifiers.

(let ((=> #£))
(cond (#t => ’0k))) = ok

The macro transformer for cond recognizes => as a local variable, and hence an
expression, and not as the top-level identifier =>, which the macro transformer treats
as a syntactic keyword. Thus the example expands into

(let ((=> #£))
(if #t (begin => ’0k)))

instead of

(let ((=> #1))
(let ((temp #t))
(if temp
(’ok temp))))

which would result in an invalid procedure call.

2.11.3 Syntactic Closures

MIT Scheme’s syntax-transformation engine is an implementation of syntactic closures,
a mechanism invented by Alan Bawden and Jonathan Rees. The main feature of the
syntactic-closures mechanism is its simplicity and its close relationship to the environment
models commonly used with Scheme. Using the mechanism to write macro transformers
is somewhat cumbersome and can be confusing for the newly initiated, but it is easily
mastered.

40 MIT Scheme Reference

2.11.3.1 Syntax Terminology

This section defines the concepts and data types used by the syntactic closures facility.

e Forms are the syntactic entities out of which programs are recursively constructed. A
form is any expression, any definition, any syntactic keyword, or any syntactic closure.
The variable name that appears in a set! special form is also a form. Examples of
forms:

17

#t

car

(+ x 4)

(lambda (x) x)
(define pi 3.14159)
if

define

e An alias is an alternate name for a given symbol. It can appear anywhere in a form that
the symbol could be used, and when quoted it is replaced by the symbol; however, it
does not satisfy the predicate symbol?. Macro transformers rarely distinguish symbols
from aliases, referring to both as identifiers. Another name for an alias is synthetic
identifier; this document uses both names.

e A syntactic environment maps identifiers to their meanings. More precisely, it deter-
mines whether an identifier is a syntactic keyword or a variable. If it is a keyword,
the meaning is an interpretation for the form in which that keyword appears. If it
is a variable, the meaning identifies which binding of that variable is referenced. In
short, syntactic environments contain all of the contextual information necessary for
interpreting the meaning of a particular form.

e A syntactic closure consists of a form, a syntactic environment, and a list of identifiers.
All identifiers in the form take their meaning from the syntactic environment, except
those in the given list. The identifiers in the list are to have their meanings determined
later.

A syntactic closure may be used in any context in which its form could have been used.
Since a syntactic closure is also a form, it may not be used in contexts where a form
would be illegal. For example, a form may not appear as a clause in the cond special
form.

A syntactic closure appearing in a quoted structure is replaced by its form.

2.11.3.2 Transformer Definition

This section describes the special forms for defining syntactic-closures macro transform-
ers, and the associated procedures for manipulating syntactic closures and syntactic envi-
ronments.

sc-macro-transformer expression special form
The expression is expanded in the syntactic environment of the sc-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This

Chapter 2: Special Forms 41

macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the syntactic closures facility, a macro transformer is a procedure that takes two
arguments, a form and a syntactic environment, and returns a new form. The first
argument, the input form, is the form in which the macro keyword occurred. The
second argument, the usage environment, is the syntactic environment in which the
input form occurred. The result of the transformer, the output form, is automatically
closed in the transformer environment, which is the syntactic environment in which
the transformer expression occurred.

For example, here is a definition of a push macro using syntax-rules:

(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))

Here is an equivalent definition using sc-macro-transformer:

(define-syntax push
(sc-macro-transformer
(lambda (exp env)
(let ((item (make-syntactic-closure env ’() (cadr exp)))
(1ist (make-syntactic-closure env ’() (caddr exp))))
“(set! ,1list (comns ,item ,1ist))))))

In this example, the identifiers set! and cons are closed in the transformer environ-

ment, and thus will not be affected by the meanings of those identifiers in the usage
environment env.

Some macros may be non-hygienic by design. For example, the following defines a
loop macro that implicitly binds exit to an escape procedure. The binding of exit
is intended to capture free references to exit in the body of the loop, so exit must
be left free when the body is closed:

(define-syntax loop
(sc-macro-transformer
(lambda (exp env)
(let ((body (cdr exp)))
¢(call-with-current-continuation
(lambda (exit)
(let £ O
,0(map (lambda (exp)
(make-syntactic-closure env ’(exit)
exp))
body)
(£32))))))

rsc-macro-transformer expression special form
This form is an alternative way to define a syntactic-closures macro transformer. Its
syntax and usage are identical to sc-macro-transformer, except that the roles of the
usage environment and transformer environment are reversed. (Hence RSC stands for
Reversed Syntactic Closures.) In other words, the procedure specified by expression

42 MIT Scheme Reference

still accepts two arguments, but its second argument will be the transformer environ-
ment rather than the usage environment, and the returned expression is closed in the
usage environment rather than the transformer environment.

The advantage of this arrangement is that it allows a simpler definition style in some
situations. For example, here is the push macro from above, rewritten in this style:

(define-syntax push
(rsc-macro-transformer
(lambda (exp env)
“(, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)
, (caddr exp))))))

In this style only the introduced keywords are closed, while everything else remains
open.

Note that rsc-macro-transformer and sc-macro-transformer are easily
interchangeable. Here is how to emulate rsc-macro-transformer using
sc-macro-transformer. (This technique can be used to effect the opposite
emulation as well.)

(define-syntax push
(sc-macro-transformer
(lambda (exp usage-env)
(capture-syntactic-environment
(lambda (env)
(make-syntactic-closure usage-env ’ ()
“(, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)

, (caddr exp)))))))))

To assign meanings to the identifiers in a form, use make-syntactic-closure to close
the form in a syntactic environment.

make-syntactic-closure environment free-names form procedure
Environment must be a syntactic environment, free-names must be a list of identi-
fiers, and form must be a form. make-syntactic-closure constructs and returns a
syntactic closure of form in environment, which can be used anywhere that form could
have been used. All the identifiers used in form, except those explicitly excepted by
free-names, obtain their meanings from environment.

Here is an example where free-names is something other than the empty list. It is
instructive to compare the use of free-names in this example with its use in the loop
example above: the examples are similar except for the source of the identifier being
left free.

Chapter 2: Special Forms 43

(define-syntax letl
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
‘((lambda (,id)
, (make-syntactic-closure env (list id) exp))
, (make-syntactic-closure env ’() init))))))

let1 is a simplified version of let that only binds a single identifier, and whose body
consists of a single expression. When the body expression is syntactically closed in
its original syntactic environment, the identifier that is to be bound by let1 must be
left free, so that it can be properly captured by the lambda in the output form.

In most situations, the free-names argument to make-syntactic-closure is the empty
list. In those cases, the more succinct close-syntax can be used:

close-syntax form environment procedure
Environment must be a syntactic environment and form must be a form. Returns a
new syntactic closure of form in environment, with no free names. Entirely equivalent
to

(make-syntactic-closure environment ’() form)

To obtain a syntactic environment other than the usage environment, use capture-
syntactic-environment.

capture-syntactic-environment procedure procedure
capture-syntactic-environment returns a form that will, when transformed, call
procedure on the current syntactic environment. Procedure should compute and
return a new form to be transformed, in that same syntactic environment, in place of
the form.

An example will make this clear. Suppose we wanted to define a simple loop-until
keyword equivalent to

(define-syntax loop-until
(syntax-rules ()
((loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))

The following attempt at defining loop-until has a subtle bug:

44

MIT Scheme Reference

(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init *())))))))

This definition appears to take all of the proper precautions to prevent unintended
captures. It carefully closes the subexpressions in their original syntactic environment
and it leaves the id identifier free in the test, return, and step expressions, so that it
will be captured by the binding introduced by the lambda expression. Unfortunately
it uses the identifiers if and loop within that lambda expression, so if the user of
loop-until just happens to use, say, if for the identifier, it will be inadvertently
captured.

The syntactic environment that if and loop want to be exposed to is the one just
outside the lambda expression: before the user’s identifier is added to the syntactic
environment, but after the identifier loop has been added. capture-syntactic-
environment captures exactly that environment as follows:

Chapter 2: Special Forms 45

(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
, (capture-syntactic-environment
(lambda (env)
“(lambda (,id)
(, (make-syntactic-closure env ’() ‘if)
,(close test (list id))
,(close return (list id))
(, (make-syntactic-closure env ’() ‘loop)
,(close step (list id)))))))))
(loop ,(close init >())))))))
In this case, having captured the desired syntactic environment, it is convenient to

construct syntactic closures of the identifiers if and the loop and use them in the
body of the lambda.

A common use of capture-syntactic-environment is to get the transformer envi-
ronment of a macro transformer:
(sc-macro-transformer
(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)

o))

2.11.3.3 Identifiers

This section describes the procedures that create and manipulate identifiers. The iden-
tifier data type extends the syntactic closures facility to be compatible with the high-level
syntax-rules facility.

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented
as a syntactic closure whose form is an identifier:

(make-syntactic-closure env ’() ’a) = an alias

Aliases are implemented as syntactic closures because they behave just like syntactic closures
most of the time. The difference is that an alias may be bound to a new value (for example
by lambda or let-syntax); other syntactic closures may not be used this way. If an alias is
bound, then within the scope of that binding it is looked up in the syntactic environment
just like any other identifier.

Aliases are used in the implementation of the high-level facility syntax-rules. A macro
transformer created by syntax-rules uses a template to generate its output form, substi-

46 MIT Scheme Reference

tuting subforms of the input form into the template. In a syntactic closures implementation,
all of the symbols in the template are replaced by aliases closed in the transformer envi-
ronment, while the output form itself is closed in the usage environment. This guarantees
that the macro transformation is hygienic, without requiring the transformer to know the
syntactic roles of the substituted input subforms.

identifier? object procedure
Returns #t if object is an identifier, otherwise returns #f. Examples:
(identifier? ’a) = #t
(identifier? (make-syntactic-closure env ’() ’a))
= #t
(identifier? "a") = #f
(identifier? #\a) = #f
(identifier? 97) = #f
(identifier? #f) = #f
(identifier? ’(a)) = #f
(identifier? ’#(a)) = #f

The predicate eq? is used to determine if two identifers are “the same”. Thus eq? can
be used to compare identifiers exactly as it would be used to compare symbols. Often,
though, it is useful to know whether two identifiers “mean the same thing”. For example,
the cond macro uses the symbol else to identify the final clause in the conditional. A
macro transformer for cond cannot just look for the symbol else, because the cond form
might be the output of another macro transformer that replaced the symbol else with an
alias. Instead the transformer must look for an identifier that “means the same thing” in
the usage environment as the symbol else means in the transformer environment.

identifier=7 environmentl identifierl environment?2 identifier2 procedure

Environment1 and environment2 must be syntactic environments, and identifier]l and
identifier2 must be identifiers. identifier=7 returns #t if the meaning of identifier1l
in environmentl is the same as that of identifier2 in environment2, otherwise it returns
#f. Examples:

(let-syntax
((foo

(sc-macro-transformer

(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)

(identifier=? transformer-env ’x env ’x)))))))
(1ist (foo)
(let ((x 3))
(f00))))
= (#t #f)

Chapter 2: Special Forms 47

(let-syntax ((bar foo))
(let-syntax
((foo

(sc-macro-transformer

(lambda (form env)
(capture-syntactic-environment

(lambda (transformer-env)
(identifier=? transformer-env ’foo
env (cadr form))))))))
(1ist (foo foo)
(foo bar))))
= (#f #t)

Sometimes it is useful to be able to introduce a new identifier that is guaranteed to
be different from any existing identifier, similarly to the way that generate-uninterned-
symbol is used.

make-synthetic-identifier identifier procedure
Creates and returns and new synthetic identifier (alias) that is guaranteed to be
different from all existing identifiers. Identifier is any existing identifier, which is
used in deriving the name of the new identifier.

This is implemented by syntactically closing identifier in a special empty environment.

2.11.4 Explicit Renaming

Explicit renaming is an alternative facility for defining macro transformers. In the MIT
Scheme implementation, explicit-renaming transformers are implemented as an abstraction
layer on top of syntactic closures. An explicit-renaming macro transformer is defined by an
instance of the er-macro-transformer keyword:

er-macro-transformer expression special form
The expression is expanded in the syntactic environment of the er-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the explicit-renaming facility, a macro transformer is a procedure that takes three
arguments, a form, a renaming procedure, and a comparison predicate, and returns
a new form. The first argument, the input form, is the form in which the macro
keyword occurred.

The second argument to a transformation procedure is a renaming procedure that
takes the representation of an identifier as its argument and returns the representa-
tion of a fresh identifier that occurs nowhere else in the program. For example, the
transformation procedure for a simplified version of the let macro might be written
as

MIT Scheme Reference

(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
‘((lambda ,vars ,@body)
,0inits)))

This would not be hygienic, however. A hygienic 1let macro must rename the identifier
lambda to protect it from being captured by a local binding. The renaming effectively
creates an fresh alias for lambda, one that cannot be captured by any subsequent
binding:
(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
“((,(rename ’lambda) ,vars ,@body)
,0inits)))

The expression returned by the transformation procedure will be expanded in the
syntactic environment obtained from the syntactic environment of the macro appli-
cation by binding any fresh identifiers generated by the renaming procedure to the
denotations of the original identifiers in the syntactic environment in which the macro
was defined. This means that a renamed identifier will denote the same thing as the
original identifier unless the transformation procedure that renamed the identifier
placed an occurrence of it in a binding position.

The renaming procedure acts as a mathematical function in the sense that the identi-
fiers obtained from any two calls with the same argument will be the same in the sense
of eqv?. It is an error if the renaming procedure is called after the transformation
procedure has returned.

The third argument to a transformation procedure is a comparison predicate that
takes the representations of two identifiers as its arguments and returns true if and
only if they denote the same thing in the syntactic environment that will be used to
expand the transformed macro application. For example, the transformation proce-
dure for a simplified version of the cond macro can be written as

(lambda (exp rename compare)
(let ((clauses (cdr exp)))
(if (null? clauses)
“(, (rename ’quote) unspecified)
(let* ((first (car clauses))
(rest (cdr clauses))
(test (car first)))
(cond ((and (identifier? test)
(compare test (rename ’else)))
“(, (rename ’begin) ,@(cdr first)))
(else ‘(,(rename ’if)
,test
(, (rename ’begin) ,@(cdr first))
(cond ,@rest))))))))))

Chapter 2: Special Forms 49

In this example the identifier else is renamed before being passed to the comparison
predicate, so the comparison will be true if and only if the test expression is an
identifier that denotes the same thing in the syntactic environment of the expression
being transformed as else denotes in the syntactic environment in which the cond
macro was defined. If else were not renamed before being passed to the comparison
predicate, then it would match a local variable that happened to be named else, and
the macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following defines a loop
macro that implicitly binds exit to an escape procedure. The binding of exit is
intended to capture free references to exit in the body of the loop, so exit is not
renamed.

(define-syntax loop
(er-macro-transformer
(lambda (x r c)
(let ((body (cdr x)))
“(,(r ’call-with-current-continuation)
(,(r ’lambda) (exit)
(,(r ’let) ,(r ’f) O ,@body (,(r ’£)))))))))

Suppose a while macro is implemented using loop, with the intent that exit may
be used to escape from the while loop. The while macro cannot be written as

(define-syntax while
(syntax-rules ()
((while test body ...)
(loop (if (not test) (exit #f))
body ...))))
because the reference to exit that is inserted by the while macro is intended to be
captured by the binding of exit that will be inserted by the loop macro. In other
words, this while macro is not hygienic. Like loop, it must be written using the
er-macro-transformer syntax:
(define-syntax while
(er-macro-transformer
(lambda (x r c)
(let ((test (cadr x))
(body (cddr x)))
“(,(r ’loop)
(,(r ’if) (,(r ’not) ,test) (exit #f))
,@body)))))

50

MIT Scheme Reference

Chapter 3: Equivalence Predicates 51

3 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equiva-
lence predicate is the computational analogue of a mathematical equivalence relation (it is
symmetric, reflexive, and transitive). Of the equivalence predicates described in this sec-
tion, eq? is the finest or most discriminating, and equal? is the coarsest. eqv? is slightly
less discriminating than eq?.

eqv? objl obj2 procedure
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns
#t if objl and obj2 should normally be regarded as the same object.

The eqv? procedure returns #t if:
e 0bjl and obj2 are both #t or both #f£.
e 0bjl and obj2 are both interned symbols and
(string=7 (symbol->string objl)

(symbol->string obj2))
= #t

e o0bjl and obj2 are both numbers, are numerically equal according to the = pro-
cedure, and are either both exact or both inexact (see Chapter 4 [Numbers],
page 57).

e o0bjl and obj2 are both characters and are the same character according to the
char=7 procedure (see Chapter 5 [Characters], page 77).

e both objl and obj2 are the empty list.

e o0bjl and obj2 are procedures whose location tags are equal.

e o0bjl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote the same locations in the store.

The eqv? procedure returns #£f if:

e objl and obj2 are of different types.

e one of objl and obj2 is #t but the other is #f.

e o0bjl and obj2 are symbols but

(string=7 (symbol->string objl)
(symbol->string obj2))
= #f

e one of objl and obj2 is an exact number but the other is an inexact number.
e objl and obj2 are numbers for which the = procedure returns #f.

e objl and obj2 are characters for which the char=? procedure returns #f.

e one of objl and obj2 is the empty list but the other is not.

e objl and obj2 are procedures that would behave differently (return a different
value or have different side effects) for some arguments.

e o0bjl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote distinct locations.

Some examples:

MIT Scheme Reference

(eqv? ’a ’a) = #t
(eqv? ’a ’b) = #f
(eqv? 2 2) = #t
(eqv? 7O 2 0) = #t
(eqv? 100000000 100000000) = #t
(eqv? (cons 1 2) (comns 1 2)) = #f
(eqv? (lambda () 1)
(lambda () 2)) = #f
(eqv? #f ’nil) = #f
(let ((p (lambda (x) x)))
(eqv? p p)) = #t

The following examples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(equ? "™ ") = unspecified
(eqv? ’#0) #0)) = unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) = unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) = unspecified

The next set of examples shows the use of eqv? with procedures that have local state.
gen-counter must return a distinct procedure every time, since each procedure has
its own internal counter. gen-loser, however, returns equivalent procedures each
time, since the local state does not affect the value or side effects of the procedures.

(define gen-counter
(lambda Q)
(et ((n 0))
(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g)) = #t
(eqv? (gen-counter) (gen-counter))
= #f

(define gen-loser

(lambda ()

(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) = #t
(eqv? (gen-loser) (gen-loser))

= unspecified

Chapter 3: Equivalence Predicates 53

(letrec ((f (lambda () (if (eqv? f g) ’both ’£)))
(g (lambda () (if (eqv? f g) ’both ’g)))
(eqv? £ g))
= unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))
(g (lambda () (if (eqv? f g) ’g ’both)))
(eqv? £ g))
= #f
Objects of distinct types must never be regarded as the same object.

Since it is an error to modify constant objects (those returned by literal expressions),
the implementation may share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes unspecified.

(let ((x ’(a)))

(eqv? x x)) = #t
(eqv? ’(a) ’(a)) = unspecified
(equ? "a" "a") = unspecified
(equ? ’(b) (cdr ’(a b))) = unspecified

Rationale: The above definition of eqv? allows implementations latitude in their
treatment of procedures and literals: implementations are free either to detect or to
fail to detect that two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent objects by using the
same pointer or bit pattern to represent both.

54

eq? objl obj2

MIT Scheme Reference

procedure

eq? is similar to eqv? except that in some cases it is capable of discerning distinctions

finer than those detectable by eqv?.

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, records, and non-empty strings and vectors. eq?’s behavior on
numbers and characters is implementation-dependent, but it will always return either
true or false, and will return true only when eqv? would also return true. eq? may
also behave differently from eqv? on empty vectors and empty strings.

(eq?
(eq?
(eq?
(eq?
(eq?
(eq?
(eq?
(eq?
(eq?
(let

’a ’a)

’(a) ’(a))

(1ist ’a) (list ’a))
||all "a")

nn llll)

O 2 0)

2 2)

#\A #\A)

car car)

((n (+ 23))

(eq? n n))

(1let

((x 7 (a)))

(eq? x x))

(let

((x "#0))

(eq? x %))

(let

((p (lambda (x) x)))

(eq? p p))
Rationale: It will usually be possible to implement eq? much more efficiently than
eqv?, for example, as a simple pointer comparison instead of as some more compli-
cated operation. One reason is that it may not be possible to compute eqv? of two
numbers in constant time, whereas eq? implemented as pointer comparison will always
finish in constant time. eq? may be used like eqv? in applications using procedures
to implement objects with state since it obeys the same constraints as eqv?.

N 2 e I A

Y

=

#t
unspecified
#f
unspecified
unspecified
#t
unspecified
unspecified
#t

unspecified
#t
#t

#t

Chapter 3: Equivalence Predicates 55

equal? objl obj2 procedure
equal? recursively compares the contents of pairs, vectors, and strings, applying
eqv? on other objects such as numbers, symbols, and records. A rule of thumb is
that objects are generally equal? if they print the same. equal? may fail to terminate
if its arguments are circular data structures.

(equal? ’a ’a) = #t
(equal? ’(a) ’(a)) = #t
(equal? ’(a (b) c)

>(a (b) ©)) = #t
(equal? "abc" "abc") = #t
(equal? 2 2) = #t
(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) = #t
(equal? (lambda (x) x)

(lambda (y) y)) = unspecified

56

MIT Scheme Reference

Chapter 4: Numbers 57

4 Numbers

(This section is largely taken from the Revised~4 Report on the Algorithmic Language
Scheme.)

Numerical computation has traditionally been neglected by the Lisp community. Until
Common Lisp there was no carefully thought out strategy for organizing numerical com-
putation, and with the exception of the MacLisp system little effort was made to execute
numerical code efficiently. This report recognizes the excellent work of the Common Lisp
committee and accepts many of their recommendations. In some ways this report simplifies
and generalizes their proposals in a manner consistent with the purposes of Scheme.

It is important to distinguish between the mathematical numbers, the Scheme numbers
that attempt to model them, the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report uses the types number, complex,
real, rational, and integer to refer to both mathematical numbers and Scheme numbers.
Machine representations such as fixed point and floating point are referred to by names
such as firnum and flonum.

4.1 Numerical types

Mathematically, numbers may be arranged into a tower of subtypes in which each level
is a subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex. The
same is true of the Scheme numbers that model 3. For Scheme numbers, these types are
defined by the predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number’s type and its representation inside
a computer. Although most implementations of Scheme will offer at least two different
representations of 3, these different representations denote the same integer.

Scheme’s numerical operations treat numbers as abstract data, as independent of their
representation as possible. Although an implementation of Scheme may use fixnum, flonum,
and perhaps other representations for numbers, this should not be apparent to a casual
programmer writing simple programs.

It is necessary, however, to distinguish between numbers that are represented exactly
and those that may not be. For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact, and irrational numbers may be
approximated by rational and therefore inexact approximations. In order to catch uses of
inexact numbers where exact numbers are required, Scheme explicitly distinguishes exact
from inexact numbers. This distinction is orthogonal to the dimension of type.

58 MIT Scheme Reference

4.2 Exactness

Scheme numbers are either exact or ineract. A number is exact if it was written as an
exact constant or was derived from exact numbers using only exact operations. A number is
inexact if it was written as an inexact constant, if it was derived using inexact ingredients,
or if it was derived using inexact operations. Thus inexactness is a contagious property of
a number.

If two implementations produce exact results for a computation that did not involve in-
exact intermediate results, the two ultimate results will be mathematically equivalent. This
is generally not true of computations involving inexact numbers since approximate methods
such as floating point arithmetic may be used, but it is the duty of each implementation to
make the result as close as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact
arguments. If the operation is unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may silently coerce its result to an
inexact value. See Section 4.3 [Implementation restrictions|, page 58.

With the exception of inexact->exact, the operations described in this section must
generally return inexact results when given any inexact arguments. An operation may,
however, return an exact result if it can prove that the value of the result is unaffected by
the inexactness of its arguments. For example, multiplication of any number by an exact
zero may produce an exact zero result, even if the other argument is inexact.

4.3 Implementation restrictions

Implementations of Scheme are not required to implement the whole tower of subtypes
(see Section 4.1 [Numerical types|, page 57), but they must implement a coherent subset
consistent with both the purposes of the implementation and the spirit of the Scheme
language. For example, an implementation in which all numbers are real may still be quite
useful.!

Implementations may also support only a limited range of numbers of any type, subject
to the requirements of this section. The supported range for exact numbers of any type
may be different from the supported range for inexact numbers of that type. For example,
an implementation that uses flonums to represent all its inexact real numbers may support
a practically unbounded range of exact integers and rationals while limiting the range of
inexact reals (and therefore the range of inexact integers and rationals) to the dynamic range
of the flonum format. Furthermore the gaps between the representable inexact integers and
rationals are likely to be very large in such an implementation as the limits of this range
are approached.

An implementation of Scheme must support exact integers throughout the range of
numbers that may be used for indexes of lists, vectors, and strings or that may result from
computing the length of a list, vector, or string. The length, vector-length, and string-
length procedures must return an exact integer, and it is an error to use anything but an

L MIT Scheme implements the whole tower of numerical types. It has unlimited-precision exact integers
and exact rationals. Flonums are used to implement all inexact reals; on machines that support IEEE
floating-point arithmetic these are double-precision floating-point numbers.

Chapter 4: Numbers 59

exact integer as an index. Furthermore any integer constant within the index range, if
expressed by an exact integer syntax, will indeed be read as an exact integer, regardless of
any implementation restrictions that may apply outside this range. Finally, the procedures
listed below will always return an exact integer result provided all their arguments are exact
integers and the mathematically expected result is representable as an exact integer within
the implementation:

* gecd modulo

+ imag-part numerator

- inexact->exact quotient
abs lcm rationalize
angle magnitude real-part
ceiling make-polar remainder
denominator make-rectangular round

expt max truncate
floor min

Implementations are encouraged, but not required, to support exact integers and exact
rationals of practically unlimited size and precision, and to implement the above procedures
and the / procedure in such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an exact result when given exact
arguments, then it may either report a violation of an implementation restriction or it may
silently coerce its result to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strate-
gies for inexact numbers. This report recommends, but does not require, that the IEEE
32-bit and 64-bit floating point standards be followed by implementations that use flonum
representations, and that implementations using other representations should match or ex-
ceed the precision achievable using these floating point standards.

In particular, implementations that use flonum representations must follow these rules:
A flonum result must be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If,
however, an exact number is operated upon so as to produce an inexact result (as by sqrt),
and if the result is represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then the representation
must have at least as much precision as the most precise flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular im-
plementation may support only some of them.? For example, an implementation in which
all numbers are real need not support the rectangular and polar notations for complex num-
bers. If an implementation encounters an exact numerical constant that it cannot represent
as an exact number, then it may either report a violation of an implementation restriction
or it may silently represent the constant by an inexact number.

2 MIT Scheme implements all of the written notations for numbers.

60 MIT Scheme Reference

4.4 Syntax of numerical constants

A number may be written in binary, octal, decimal, or hexadecimal by the use of a radix
prefix. The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal).
With no radix prefix, a number is assumed to be expressed in decimal.

A numerical constant may be specified to be either exact or inexact by a prefix. The
prefixes are #e for exact, and #i for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation of a number has no exactness
prefix, the constant may be either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a # character in the place of a digit, otherwise it is exact.

In systems with inexact numbers of varying precisions it may be useful to specify the
precision of a constant. For this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the inexact representation. The
letters s, f, d, and 1 specify the use of short, single, double, and long precision, respectively.
(When fewer than four internal inexact representations exist, the four size specifications
are mapped onto those available. For example, an implementation with two internal repre-
sentations may map short and single together and long and double together.) In addition,
the exponent marker e specifies the default precision for the implementation. The default
precision has at least as much precision as double, but implementations may wish to allow
this default to be set by the user.

3.14159265358979F0
Round to single — 3.141593
0.6L0
Extend to long — .600000000000000

4.5 Numerical operations

See Section 1.1.3 [Entry Format], page 5, for a summary of the naming conventions
used to specify restrictions on the types of arguments to numerical routines. The examples
used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact number. Some examples also assume that certain numerical
constants written using an inexact notation can be represented without loss of accuracy;
the inexact constants were chosen so that this is likely to be true in implementations that
use flonums to represent inexact numbers.

number? object procedure
complex? object procedure
real? object procedure
rational? object procedure
integer? object procedure

These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f. In general, if a type predicate is true of a number then all higher type
predicates are also true of that number. Consequently, if a type predicate is false of
a number, then all lower type predicates are also false of that number.?

3 In MIT Scheme the rational? procedure is the same as real?, and the complex? procedure is the same
as number?.

Chapter 4: Numbers 61

If z is an inexact complex number, then (real? z) is true if and only if (zero?
(imag-part z)) is true. If x is an inexact real number, then (integer? x) is true if
and only if (= x (round x)).

(complex? 3+41i) = #t
(complex? 3) = #t
(real? 3) = #t
(real? -2.5+0.01) = #t
(real? #elel0) = #t
(rational? 6/10) = #t
(rational? 6/3) = #t
(integer? 3+0i) = #t
(integer? 3.0) = #t
(integer? 8/4) = #t

Note: The behavior of these type predicates on inexact numbers is unreliable, since
any inaccuracy may affect the result.

exact? z procedure

inexact? z procedure
These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

exact-integer? object procedure
exact-nonnegative-integer? object procedure
exact-rational? object procedure

These procedures test for some very common types of numbers. These tests could be
written in terms of simpler predicates, but are more efficient.

= z12z223 ... procedure
< xIx2x3 ... procedure
> x1 x2x3 ... procedure
<= x1x2x3 ... procedure
>= x1x2x3 ... procedure

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are transitive. Note that the traditional implementations of these
predicates in Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers using these predicates,
the results may be unreliable because a small inaccuracy may affect the result; this
is especially true of = and zero?. When in doubt, consult a numerical analyst.

62 MIT Scheme Reference

zero? z procedure
positive? x procedure
negative? x procedure
odd? x procedure
even? x procedure

These numerical predicates test a number for a particular property, returning #t or
#f. See note above regarding inexact numbers.

max xI x2 ... procedure
min xI x2 ... procedure
These procedures return the maximum or minimum of their arguments.
(max 3 4) = 4 ; exact
(max 3.9 4) = 4.0 ;inexact

Note: If any argument is inexact, then the result will also be inexact (unless the
procedure can prove that the inaccuracy is not large enough to affect the result, which
is possible only in unusual implementations). If min or max is used to compare numbers
of mixed exactness, and the numerical value of the result cannot be represented as an
inexact number without loss of accuracy, then the procedure may report a violation
of an implementation restriction.*

+ zI1 ... procedure
* 71 ... procedure
These procedures return the sum or product of their arguments.

(+ 3 4) = 7

(+ 3) = 3

(+) = 0

(x 4) = 4

(%) = 1
-z1z2 ... procedure
J 72122 ... procedure

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.

(- 3 4) = -1

(- 345) = -6

(- 3) = -3

(/ 34 5) = 3/20

/ 3 = 1/3
1+ z procedure
-1+ z procedure

(1+ z) is equivalent to (+ z 1); (-1+ z) is equivalent to (- z 1).

4 MIT Scheme signals an error of type condition-type:bad-range-argument in this case.

Chapter 4: Numbers 63

abs x procedure
abs returns the magnitude of its argument.
(abs -7) = 7
quotient nl n2 procedure
remainder nl n2 procedure
modulo nl n2 procedure

These procedures implement number-theoretic (integer) division: for positive integers
nl and n2, if n3 and n4 are integers such that

N1 = NaN3 + Ny

0<ny <no
then
(quotient nl n2) = n3
(remainder nl n2) = n4
(modulo nl n2) = n4
For integers n1 and n2 with n2 not equal to 0,

(= nl
(+ (x n2 (quotient nl n2))
(remainder nl n2)))
= {#t

provided all numbers involved in that computation are exact.

The value returned by quotient always has the sign of the product of its arguments.

remainder and modulo differ on negative arguments — the remainder always has
the sign of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) = 1

(remainder 13 4) = 1

(modulo -13 4) = 3

(remainder -13 4) = -1

(modulo 13 -4) = -3

(remainder 13 -4) = 1

(modulo -13 -4) = -1

(remainder -13 -4) = -1

(remainder -13 -4.0) = -1.0 ;inexact

Note that quotient is the same as integer-truncate.

integer-floor ni n2 procedure
integer-ceiling nl n2 procedure
integer-truncate nl n2 procedure
integer-round nl n2 procedure

These procedures combine integer division with rounding. For example, the following
are equivalent:

64 MIT Scheme Reference

(integer-floor nl n2)
(floor (/ nl n2))

However, the former is faster and does not produce an intermediate result.

Note that integer-truncate is the same as quotient.

integer-divide nl n2 procedure
integer-divide-quotient qgr procedure
integer-divide-remainder qr procedure

integer-divide is equivalent to performing both quotient and remainder at
once. The result of integer-divide is an object with two components; the
procedures integer-divide-quotient and integer-divide-remainder select
those components. These procedures are useful when both the quotient and
remainder are needed; often computing both of these numbers simultaneously is
much faster than computing them separately.

For example, the following are equivalent:

(lambda (n d)
(cons (quotient n d)
(remainder n d)))

(lambda (n 4)
(let ((qr (integer-divide n d)))
(cons (integer-divide-quotient qr)
(integer-divide-remainder qr))))

ged nl ... procedure

lecm nil ... procedure
These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non-negative.

(gcd 32 -36) = 4

(ged) = 0

(1cm 32 -36) = 288

(lcm 32.0 -36) = 288.0 ;inexact

(1cm) = 1
numerator q procedure
denominator ¢ procedure

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) = 3
(denominator (/ 6 4)) = 2
(denominator (exact->inexact (/ 6 4))) = 2.0

Chapter 4: Numbers 65

floor x procedure
ceiling x procedure
truncate x procedure
round x procedure

These procedures return integers. floor returns the largest integer not larger than
x. ceiling returns the smallest integer not smaller than x. truncate returns the
integer closest to x whose absolute value is not larger than the absolute value of x.
round returns the closest integer to x, rounding to even when x is halfway between
two integers.

Rationale: round rounds to even for consistency with the rounding modes required
by the IEEE floating point standard.

Note: If the argument to one of these procedures is inexact, then the result will also
be inexact. If an exact value is needed, the result should be passed to the inexact-
>exact procedure (or use one of the procedures below).

(floor -4.3) = -5.0

(ceiling -4.3) = -4.0

(truncate -4.3) = -4.0

(round -4.3) = -4.0

(floor 3.5) = 3.0

(ceiling 3.5) = 4.0

(truncate 3.5) = 3.0

(round 3.5) = 4.0 ;inexact

(round 7/2) = 4 ; exact

(round 7) = 7
floor->exact x procedure
ceiling->exact x procedure
truncate->exact x procedure
round->exact x procedure

These procedures are similar to the preceding procedures except that they always
return an exact result. For example, the following are equivalent

(floor->exact x)
(inexact->exact (floor x))

except that the former is faster and has fewer range restrictions.

rationalize x y procedure

rationalize->exact x y procedure
rationalize returns the simplest rational number differing from x by no more than
v. A rational number rl is simpler than another rational number r2 if ri=pl1/ql
and r2=p2/q2 (both in lowest terms) and |pl|<=|p2| and |ql|<=|q2|. Thus 3/5 is
simpler than 4/7. Although not all rationals are comparable in this ordering (consider
2/7 and 3/5) any interval contains a rational number that is simpler than every other
rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5). Note
that 0=0/1 is the simplest rational of all.

66 MIT Scheme Reference

(rationalize (inexact->exact .3) 1/10) = 1/3 ; exact
(rationalize .3 1/10) = #i1/3 ;inexact
rationalize->exact is similar to rationalize except that it always returns an exact
result.
simplest-rational x y procedure
simplest-exact-rational x y procedure

simplest-rational returns the simplest rational number between x and y inclusive;
simplest-exact-rational is similar except that it always returns an exact result.

These procedures implement the same functionality as rationalize and
rationalize->exact, except that they specify the input range by its endpoints;
rationalize specifies the range by its center point and its (half-) width.

exp z procedure
log z procedure
sin z procedure
COS z procedure
tan z procedure
asin z procedure
acos z procedure
atan z procedure
atan y x procedure

These procedures compute the usual transcendental functions. log computes the
natural logarithm of z (not the base ten logarithm). asin, acos, and atan compute
arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes (angle (make-rectangular x y)) (see below).

In general, the mathematical functions log, arcsine, arccosine, and arctangent are
multiply defined. For nonzero real x, the value of log x is defined to be the one
whose imaginary part lies in the range minus pi (exclusive) to pi (inclusive). log 0 is
undefined. The value of log z when z is complex is defined according to the formula

log z = log magnitude(z) + iangle(z)

With log defined this way, the values of arcsine, arccosine, and arctangent are accord-
ing to the following formulae:

sin™'z = —ilog(iz + V1 — 2?)

cos 'z =7/2 —sin"' 2

tan~! 2z = (log(1 +iz) — log(1 —iz))/(2i)

The above specification follows Common Lisp: the Language, which in turn cites
Principal Values and Branch Cuts in Complex APL; refer to these sources for more
detailed discussion of branch cuts, boundary conditions, and implementation of these
functions. When it is possible these procedures produce a real result from a real
argument.

Chapter 4: Numbers 67

sqrt z procedure
Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.

expt zI1 z2 procedure
Returns z1 raised to the power z2:

2 z2 — o2 log z1
0% is defined to be equal to 1.
make-rectangular xI x2 procedure
make-polar x3 x4 procedure
real-part z procedure
imag-part z procedure
magnitude z procedure
angle z procedure
conjugate z procedure

Suppose x1, x2, x3, and x4 are real numbers and z is a complex number such that

2 =Xy + Tt = x5 - T4

Then make-rectangular and make-polar return z, real-part returns xI, imag-
part returns x2, magnitude returns x3, and angle returns x4. In the case of angle,
whose value is not uniquely determined by the preceding rule, the value returned will
be the one in the range minus pi (exclusive) to pi (inclusive).

conjugate returns the complex conjugate of z.

exact->inexact z procedure

inexact->exact z procedure
exact->inexact returns an inexact representation of z. The value returned is the in-
exact number that is numerically closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT Scheme signals an error of type condition-type:bad-range-
argument in this case.

inexact->exact returns an exact representation of z. The value returned is the exact
number that is numerically closest to the argument. If an inexact argument has no
reasonably close exact equivalent, then a violation of an implementation restriction
may be reported; in MIT Scheme this case does not occur because all inexact numbers
are representable as exact numbers.

These procedures implement the natural one-to-one correspondence between exact
and inexact integers throughout an implementation-dependent range. See Section 4.3
[Implementation restrictions], page 58.

68 MIT Scheme Reference

4.6 Numerical input and output

number->string number [radix] procedure
Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to
10. The procedure number->string takes a number and a radix and returns as a
string an external representation of the given number in the given radix such that

(let ((number number)
(radix radix))
(eqv? number
(string->number (number->string number radix)
radix)))

is true. It is an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression can be satisfied by
a result that contains a decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result
is unspecified.

The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when number is not a complex number or is a
complex number with an non-rational real or imaginary part.

Rationale: If number is an inexact number represented using flonums, and the radix
is 10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representa-
tions.

flonum-parser-fast? variable
This variable controls the behavior of string->number when parsing inexact numbers.
Specifically, it allows the user to trade off accuracy against speed.

When set to its default value, #f, the parser provides maximal accuracy, as required
by the Scheme standard. If set to #t, the parser uses faster algorithms that will
sometimes introduce small errors in the result. The errors affect a few of the least-
significant bits of the result, and consequently can be tolerated by many applications.

flonum-unparser-cutoff variable
This variable controls the action of number->string when number is a flonum (and
consequently controls all printing of flonums). The value of this variable is normally
a list of three items:

rounding-type
One of the following symbols: normal, relative, or absolute. The sym-
bol normal means that the number should be printed with full precision.
The symbol relative means that the number should be rounded to a
specific number of digits. The symbol absolute means that the number
should be rounded so that there are a specific number of digits to the
right of the decimal point.

Chapter 4: Numbers 69

precision An exact integer. If rounding-type is normal, precision is ignored. If
rounding-type is relative, precision must be positive, and it specifies
the number of digits to which the printed representation will be rounded.
If rounding-type is absolute, the printed representation will be rounded
precision digits to the right of the decimal point; if precision is negative,
the representation is rounded (- precision) digits to the left of the decimal
point.

format-type

One of the symbols: normal, scientific, or engineering. This speci-
fies the format in which the number will be printed.

scientific specifies that the number will be printed using scientific no-
tation: x.xxxeyyy. In other words, the number is printed as a mantissa
between zero inclusive and ten exclusive, and an exponent. engineering
is like scientific, except that the exponent is always a power of three,
and the mantissa is constrained to be between zero inclusive and 1000
exclusive. If normal is specified, the number will be printed in positional
notation if it is “small enough”, otherwise it is printed in scientific nota-
tion. A number is “small enough” when the number of digits that would
be printed using positional notation does not exceed the number of digits
of precision in the underlying floating-point number representation; IEEE
double-precision floating-point numbers have 17 digits of precision.

This three-element list may be abbreviated in two ways. First, the symbol normal
may be used, which is equivalent to the list (normal O normal). Second, the third
element of the list, format-type, may be omitted, in which case it defaults to normal.

The default value for flonum-unparser-cutoff is normal. If it is bound to a value
different from those described here, number->string issues a warning and acts as
though the value had been normal.

Some examples of flonum-unparser-cutoff:

(number->string (* 4 (atan 1 1)))
= "3.141592653589793"
(fluid-let ((flonum-unparser-cutoff ’(relative 5)))
(number->string (* 4 (atan 1 1))))
= "3.1416"
(fluid-let ((flonum-unparser-cutoff ’(relative 5)))
(number->string (* 4000 (atan 1 1))))
= "3141.6"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 scientific)))
(number->string (* 4000 (atan 1 1))))
= "3.1416e3"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 scientific)))
(number->string (* 40000 (atan 1 1))))
= "3.1416e4"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 engineering)))
(number->string (* 40000 (atan 1 1))))
= "31.416e3"
(fluid-let ((flonum-unparser-cutoff ’(absolute 5)))

70 MIT Scheme Reference

(number->string (* 4 (atan 1 1))))
= "3.14159"
(fluid-let ((flonum-unparser-cutoff ’(absolute 5)))
(number->string (* 4000 (atan 1 1))))
= "3141.59265"
(fluid-let ((flonum-unparser-cutoff ’(absolute -4)))
(number->string (* 4e10 (atan 1 1))))
= "31415930000."
(fluid-let ((flonum-unparser-cutoff ’(absolute -4 scientific)))
(number->string (* 4e10 (atan 1 1))))
= "3.141593e10"
(fluid-let ((flonum-unparser-cutoff ’(absolute -4 engineering)))
(number->string (* 4e10 (atan 1 1))))
= "31.41593e9"
(fluid-let ((flonum-unparser-cutoff ’(absolute -5)))
(number->string (* 4e10 (atan 1 1))))
= "31415900000."

string->number string [radix] procedure

Returns a number of the maximally precise representation expressed by the given
string. Radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#0177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

(string->number "100") = 100
(string->number "100" 16) = 256
(string->number "1e2") = 100.0
(string->number "15##") = 1500.0

Note that a numeric representation using a decimal point or an exponent marker is
not recognized unless radix is 10.

4.7 Fixnum and Flonum Operations

This section describes numerical operations that are restricted forms of the operations
described above. These operations are useful because they compile very efficiently. However,
care should be exercised: if used improperly, these operations can return incorrect answers,
or even malformed objects that confuse the garbage collector.

4.7.1 Fixnum Operations

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT
Scheme, fixnums are typically 24 or 26 bits, depending on the machine; it is reasonable to
assume that fixnums are at least 24 bits. Fixnums are signed; they are encoded using 2’s
complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as

fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums.

Chapter 4: Numbers 71

fix:fixnum? object procedure

Returns #t if object is a fixnum; otherwise returns #£.

Here is an expression that determines the largest fixnum:

(let loop ((n 1))
(if (fix:fixnum? n)
(loop (* n 2))

(- n 1))
A similar expression determines the smallest fixnum.
fix:= fixnum fixnum procedure
fix:< fixnum fixnum procedure
fix:> fixnum fixnum procedure
fix:<= fixnum fixnum procedure
fix:>= fixnum fixnum procedure
These are the standard order and equality predicates on fixnums. When compiled,
they do not check the types of their arguments.
fix:zero? fixnum procedure
fix:positive? fixnum procedure
fix:negative? fixnum procedure
These procedures compare their argument to zero. When compiled, they do not
check the type of their argument. The code produced by the following expressions is
identical:
(fix:zero? fixnum)
(fix:= fixnum 0)
Similarly, fix:positive? and fix:negative? produce code identical to equivalent
expressions using fix:> and fix:<.
fix:+ fixnum fixnum procedure
fix:- fixnum fixnum procedure
fix:* fixnum fixnum procedure
fix:quotient fixnum fixnum procedure
fix:remainder fixnum fixnum procedure
fix:ged fixnum fixnum procedure
fix:1+ fixnum procedure
fix:-1+ fixnum procedure
These procedures are the standard arithmetic operations on fixnums. When compiled,
they do not check the types of their arguments. Furthermore, they do not check to
see if the result can be encoded as a fixnum. If the result is too large to be encoded
as a fixnum, a malformed object is returned, with potentially disastrous effect on the
garbage collector.
fix:divide fixnum fixnum procedure

This procedure is like integer-divide, except that its arguments and its results must
be fixnums. It should be used in conjunction with integer-divide-quotient and
integer-divide-remainder.

72 MIT Scheme Reference

The following are bitwise-logical operations on fixnums.

fix:not fixnum procedure
This returns the bitwise-logical inverse of its argument. When compiled, it does not
check the type of its argument.

(fix:not 0) = -1
(fix:not -1) = 0
(fix:not 1) = -2
(fix:not -34) = 33
fix:and fixnum fixnum procedure

This returns the bitwise-logical “and” of its arguments. When compiled, it does not
check the types of its arguments.

(fix:and #x43 #x0f) = 3
(fix:and #x43 #xf0) = #x40
fix:andc fixnum fixnum procedure

Returns the bitwise-logical “and” of the first argument with the bitwise-logical inverse
of the second argument. When compiled, it does not check the types of its arguments.

(fix:andc #x43 #x0f) = #x40
(fix:andc #x43 #xf0) = 3
fix:or fixnum fixnum procedure

This returns the bitwise-logical “inclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:or #x40 3) = #x43
(fix:or #x41 3) = #x43
fix:xor fixnum fixnum procedure

This returns the bitwise-logical “exclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:xor #x40 3) = #x43
(fix:xor #x41 3) = #x42
fix:1sh fixnuml fixnum2 procedure

This procedure returns the result of logically shifting fixnuml by fixnum2 bits. If
fixnum?2 is positive, fixnuml is shifted left; if negative, it is shifted right. When
compiled, it does not check the types of its arguments, nor the validity of its result.

(fix:1sh 1 10) = #x400
(fix:1lsh #x432 -10) = 1
(fix:1sh -1 3) = -8
(fix:1sh -128 -4) = #x3FFFF8

Chapter 4: Numbers 73

4.7.2 Flonum Operations

A flonum is an inexact real number that is implemented as a floating-point number. In
MIT Scheme, all inexact real numbers are flonums. For this reason, constants such as 0.
and 2.3 are guaranteed to be flonums.

flo:flonum? object procedure
Returns #t if object is a flonum; otherwise returns #f.

flo:= flonuml flonum?2 procedure
flo:< flonuml flonum?2 procedure
flo:> flonuml flonum?2 procedure

These procedures are the standard order and equality predicates on flonums. When
compiled, they do not check the types of their arguments.

flo:zero? flonum procedure
flo:positive? flonum procedure
flo:negative? flonum procedure

Each of these procedures compares its argument to zero. When compiled, they do
not check the type of their argument.

flo:+ flonuml flonum?2 procedure
flo:- flonuml flonum2 procedure
flo:* flonuml flonum2 procedure
flo:/ flonum1 flonum?2 procedure

These procedures are the standard arithmetic operations on flonums. When compiled,
they do not check the types of their arguments.

flo:finite? flonum procedure
The IEEE floating-point number specification supports three special “numbers”: posi-
tive infinity (+inf), negative infinity (-inf), and not-a-number (NaN). This predicate
returns #f if flonum is one of these objects, and #t if it is any other floating-point
number.

flo:negate flonum procedure
This procedure returns the negation of its argument. When compiled, it does not
check the type of its argument. Equivalent to (flo:- 0. flonum).

74 MIT Scheme Reference

flo:abs flonum procedure
flo:exp flonum procedure
flo:log flonum procedure
flo:sin flonum procedure
flo:cos flonum procedure
flo:tan flonum procedure
flo:asin flonum procedure
flo:acos flonum procedure
flo:atan flonum procedure
flo:sqrt flonum procedure
flo:expt flonumi flonum2 procedure
flo:floor flonum procedure
flo:ceiling flonum procedure
flo:truncate flonum procedure
flo:round flonum procedure
flo:floor->exact flonum procedure
flo:ceiling->exact flonum procedure
flo:truncate->exact flonum procedure
flo:round->exact flonum procedure

These procedures are flonum versions of the corresponding procedures. When com-
piled, they do not check the types of their arguments.

flo:atan2 flonuml flonum?2 procedure
This is the flonum version of atan with two arguments. When compiled, it does not
check the types of its arguments.

4.8 Random Numbers

MIT Scheme provides a facility for generating pseudo-random numbers. The current im-
plementation is a “subtract-with-carry” random-number generator, based on the algorithm
from A New Class of Random Number Generators, George Marsaglia and Arif Zaman, The
Annals of Applied Probability, Vol. 1, No. 3, 1991. At the time it was implemented, this
was a good algorithm for general purposes, but the state of the art in random-number gen-
eration is constantly changing. If necessary, the implementation will be updated to use a
new algorithm while retaining the same interface.

The interface described here is very similar to that of Common Lisp.

random modulus [state] procedure
Modulus must be a positive real number. random returns a pseudo-random number
between zero (inclusive) and modulus (exclusive). The exactness of the returned
number is the same as the exactness of modulus. Additionally, if modulus is an exact
integer, the returned number will be also. Usually, modulus is either an exact integer
or an inexact real; the current implementation has been tuned to make these two
cases fast.

If state is given and not #£f, it must be a random-state object; otherwise, it defaults
to the value of the variable *random-state*. This object is used to maintain the

Chapter 4: Numbers 75

state of the pseudo-random-number generator and is altered as a side effect of the
random procedure.

(random 1.0) = .32744744667719056

(random 1.0) = .01668326768172354

(random 10) = 3

(random 10) = 8

(random 100) = 38

(random 100) = 63

(random 100/3) = 130501475769920525/6755399441055744
(random 100/3) = 170571694016427575/13510798882111488

flo:random-unit state procedure
State must be a random-state object. flo:random-unit returns a pseudo-random
number between zero inclusive and one exclusive; the returned number is always
a flonum and therefore an inexact real number. flo:random-unit is equivalent to
random with a modulus of 1.0, except that it is faster.

The next three definitions concern random-state objects. In addition to these definitions,
it is important to know that random-state objects are specifically designed so that they
can be saved to disk using the fasdump procedure, and later restored using the fasload
procedure. This allows a particular random-state object to be saved in order to replay a
particular pseudo-random sequence.

random-state variable
This variable holds a data structure, a random-state object, that encodes the internal
state of the random-number generator that random uses by default. A call to random
will perform a side effect on this data structure. This variable may be changed, using
set! or fluid-let, to hold a new random-state object.

make-random-state [state] procedure
This procedure returns a new random-state object, suitable for use as the value of the
variable *random-state*, or as the state argument to random. If state is not given
or #f, make-random-state returns a copy of the current random-number state object
(the value of the variable *random-statex). If state is a random-state object, a copy
of that object is returned. If state is #t, then a new random-state object is returned
that has been “randomly” initialized by some means (such as by a time-of-day clock).

random-state? object procedure
Returns #t if object is a random-state object, otherwise returns #f£.

76

MIT Scheme Reference

Chapter 5: Characters 7

5 Characters

Characters are objects that represent printed characters, such as letters and digits.!

5.1 External Representation of Characters

Characters are written using the notation #\character or #\character-name. For exam-
ple:

#\a ; lowercase letter

#\A ; uppercase letter

#\ (: left parenthesis
#\space ; the space character
#\newline ; the newline character

Case is significant in #\character, but not in #\character-name. If character in #\character
is a letter, character must be followed by a delimiter character such as a space or parenthesis.
Characters written in the #\ notation are self-evaluating; you don’t need to quote them.

A character name may include one or more bucky bit prefixes to indicate that the
character includes one or more of the keyboard shift keys Control, Meta, Super, Hyper, or
Top (note that the Control bucky bit prefix is not the same as the Ascir control key). The
bucky bit prefixes and their meanings are as follows (case is not significant):

Key Bucky bit prefix Bucky bit
Meta M- or Meta- 1
Control C- or Control- 2
Super S- or Super- 4
Hyper H- or Hyper- 8
Top T- or Top- 16

For example,

#\c-a ; Control-a
#\meta-b : Meta-b
#\c-s-m-h-a ; Control-Meta-Super-Hyper-A

The following character-names are supported, shown here with their ASCII equivalents:

! Some of the details in this section depend on the fact that the underlying operating system uses the
ASCII character set. This may change when someone ports MIT Scheme to a non-ASCII operating system.

78 MIT Scheme Reference

Character Name ASCII Name
altmode ESC
backnext Us
backspace BS
call SUB
linefeed LF
page FF
return CR
rubout DEL
space

tab HT

In addition, #\newline is the same as #\linefeed (but this may change in the future, so
you should not depend on it). All of the standard AscIl names for non-printing characters
are supported:

NUL SOH STX ETX EOT ENQ ACK BEL
BS HT LF VT FF CR S0 SI
DLE DC1 DC2 DC3 DC4 NAK SYN ETB
CAN EM SUB ESC FS GS RS Us
DEL
char->name char [slashify?] procedure

Returns a string corresponding to the printed representation of char. This is the
character or character-name component of the external representation, combined with
the appropriate bucky bit prefixes.

(char->name #\a) = "a"
(char->name #\space) = "Space"
(char->name #\c-a) = "C-a"
(char->name #\control-a) = "C-a"

Slashify?, if specified and true, says to insert the necessary backslash characters in
the result so that read will parse it correctly. In other words, the following generates
the external representation of char:

(string-append "#\\" (char->name char #t))
If slashify? is not specified, it defaults to #£.

name->char string procedure
Converts a string that names a character into the character specified. If string does
not name any character, name->char signals an error.

(name->char "a") = #\a
(name->char "space") = #\Space
(name->char "c-a" = #\C-a
(name->char "control-a") = #\C-a

Chapter 5: Characters 79

5.2 Comparison of Characters

char=7? charl char2 procedure
char<? charl char2 procedure
char>? charl char2 procedure
char<=7? charl char2 procedure
char>="? charl char2 procedure
char-ci=7? charl char2 procedure
char-ci<? charl char?2 procedure
char-ci>? charl char2 procedure
char-ci<=? charl char2 procedure
char-ci>="? charl char2 procedure

Returns #t if the specified characters are have the appropriate order relationship to
one another; otherwise returns #f. The -ci procedures don’t distinguish uppercase
and lowercase letters.

Character ordering follows these rules:
e The digits are in order; for example, (char<? #\0 #\9) returns #t.

e The uppercase characters are in order; for example, (char<? #\A #\B) returns
#t.

e The lowercase characters are in order; for example, (char<? #\a #\b) returns
#t.

In addition, MIT Scheme orders those characters that satisfy char-standard? the
same way that 1S0-8859-1 does.

Characters are ordered by first comparing their bucky bits part and then their code
part. In particular, characters without bucky bits come before characters with bucky
bits.

5.3 Miscellaneous Character Operations

char? object procedure
Returns #t if object is a character; otherwise returns #f.

char-upcase char procedure

char-downcase char procedure
Returns the uppercase or lowercase equivalent of char if char is a letter; otherwise
returns char. These procedures return a character char2 such that (char-ci=? char
char2).

char->digit char [radix] procedure
If char is a character representing a digit in the given radix, returns the corresponding
integer value. If you specify radix (which must be an exact integer between 2 and 36
inclusive), the conversion is done in that base, otherwise it is done in base 10. If char
doesn’t represent a digit in base radix, char->digit returns #f.

Note that this procedure is insensitive to the alphabetic case of char.

80

MIT Scheme Reference

(char->digit #\8) = 8
(char->digit #\e 16) = 14
(char->digit #\e) = #f

digit->char digit [radix]

Returns a character that represents digit in the radix given by radix. Radix must be

an exact integer between 2 and 36 (inclusive), and defaults to 10. Digit, which must

be an exact non-negative integer, should be less than radix; if digit is greater than or
equal to radix, digit->char returns #f.

(digit->char 8)

(digit->char 14 16) = #\E

procedure

= #\8

5.4 Internal Representation of Characters

An MIT Scheme character consists of a code part and a bucky bits part. The MIT
Scheme set of characters can represent more characters than ASCII can; it includes characters
with Super, Hyper, and Top bucky bits, as well as Control and Meta. Every AScCII character
corresponds to some MIT Scheme character, but not vice versa.?

MIT Scheme uses a 16-bit character code with 5 bucky bits. Normally, Scheme uses the
least significant 8 bits of the character code to contain the 1S0-8859-1 representation for
the character. The representation is expanded in order to allow for the use of UTF-16 in

the future.

make-char code bucky-bits
Builds a character from code and bucky-bits. Both code and bucky-bits must be
exact non-negative integers in the appropriate range. Use char-code and char-bits
to extract the code and bucky bits from the character. If 0 is specified for bucky-bits,
make-char produces an ordinary character; otherwise, the appropriate bits are turned

on as follows:

1
2
4
8
16

For example,

(make-char
(make-char
(make-char
(make-char

char-bits char

97 0)
97 1)
97 2)
97 3)

procedure

Meta

Control

Super

Hyper

Top
= #\a
= #\M-a
= #\C-a
= #\C-M-a

procedure

Returns the exact integer representation of char’s bucky bits. For example,

2 Note that the Control bucky bit is different from the AscII control key. This means that #\SOH (ascu
ctrl-A) is different from #\C-A. In fact, the Control bucky bit is completely orthogonal to the Asci
control key, making possible such characters as #\C-SOH.

Chapter 5: Characters 81

(char-bits #\a) = 0

(char-bits #\m-a) = 1

(char-bits #\c-a) = 2

(char-bits #\c-m-a) = 3
char-code char procedure

Returns the character code of char, an exact integer. For example,

(char-code #\a) = 97

(char-code #\c-a) = 97
char-code-limit variable
char-bits-limit variable

These variables define the (exclusive) upper limits for the character code and bucky
bits (respectively). The character code and bucky bits are always exact non-negative
integers, and are strictly less than the value of their respective limit variable.

char->integer char procedure

integer->char k procedure
char->integer returns the character code representation for char. integer->char
returns the character whose character code representation is k.

In MIT Scheme, if (char-ascii? char) is true, then
(eqv? (char->ascii char) (char->integer char))

However, this behavior is not required by the Scheme standard, and code that depends
on it is not portable to other implementations.

These procedures implement order isomorphisms between the set of characters under
the char<=? ordering and some subset of the integers under the <= ordering. That
is, if

(char<=7 a b) = #t and k=xy) = #t

and x and y are in the range of char->integer, then

(<= (char->integer a)

(char->integer b)) = #t
(char<=? (integer->char x)
(integer->char y)) = #t

Note: If the argument to char->integer or integer->char is a constant, the com-
piler will constant-fold the call, replacing it with the corresponding result. This is a
very useful way to denote unusual character constants or ASCII codes.

char-integer-limit variable
The range of char->integer is defined to be the exact non-negative integers that are
less than the value of this variable (exclusive).

82 MIT Scheme Reference

5.5 ISO-8859-1 Characters

MIT Scheme internally uses 150-8859-1 codes for 1/0, and stores character objects in
a fashion that makes it convenient to convert between 150-8859-1 codes and characters.
Also, character strings are implemented as byte vectors whose elements are 1S0-8859-1
codes; these codes are converted to character objects when accessed. For these reasons it is
sometimes desirable to be able to convert between 150-8859-1 codes and characters.

Not all characters can be represented as 1SO-8859-1 codes. A character that has an
equivalent 1SO-8859-1 representation is called an ISO-8859-1 character.

For historical reasons, the procedures that manipulate 1S0-8859-1 characters use the
word “Ascir” rather than “1SO-8859-1".

char-ascii? char procedure
Returns the 150-8859-1 code for char if char has an 1S0-8859-1 representation; oth-
erwise returns #f.

In the current implementation, the characters that satisfy this predicate are those in
which the bucky bits are turned off, and for which the character code is less than 256.

char->ascii char procedure
Returns the 150-8859-1 code for char. An error condition-type:bad-range-
argument is signalled if char doesn’t have an 1S0-8859-1 representation.

ascii->char code procedure
Code must be the exact integer representation of an 1S0-8859-1 code. This procedure
returns the character corresponding to code.

5.6 Character Sets

MIT Scheme’s character-set abstraction is used to represent groups of characters, such as
the letters or digits. Character sets may contain only 1SO-8859-1 characters; in the future
this may be changed to allow the full range of characters.

There is no meaningful external representation for character sets; use char-set-members
to examine their contents. There is (at present) no specific equivalence predicate for char-
acter sets; use equal? for this purpose.

char-set? object procedure
Returns #t if object is a character set; otherwise returns #f.

Chapter 5: Characters 83

char-set:upper-case variable
char-set:lower-case variable
char-set:alphabetic variable
char-set:numeric variable
char-set:alphanumeric variable
char-set:whitespace variable
char-set:not-whitespace variable
char-set:graphic variable
char-set:not-graphic variable
char-set:standard variable

These variables contain predefined character sets. To see the contents of one of these
sets, use char-set-members.

Alphabetic characters are the 52 upper and lower case letters. Numeric characters
are the 10 decimal digits. Alphanumeric characters are those in the union of these two
sets. Whitespace characters are #\space, #\tab, #\page, #\linefeed, and #\return.
Graphic characters are the printing characters and #\space. Standard characters are
the printing characters, #\space, and #\newline. These are the printing characters:

P #8%&” C)*x+, - ./

01234567829

: ;< =>70

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

L\N] - _ ¢

abcdefghijklmnopgqrstuvwxyz

{12~
char-upper-case? char procedure
char-lower-case? char procedure
char-alphabetic? char procedure
char-numeric? char procedure
char-alphanumeric? char procedure
char-whitespace? char procedure
char-graphic? char procedure
char-standard? object procedure

These predicates are defined in terms of the respective character sets defined above.

char-set-members char-set procedure
Returns a newly allocated list of the characters in char-set.

char-set-member? char-set char procedure
Returns #t if char is in char-set; otherwise returns #f.

char-set char ... procedure
Returns a character set consisting of the specified 150-8859-1 characters. With no
arguments, char-set returns an empty character set.

chars->char-set chars procedure
Returns a character set consisting of chars, which must be a list of 1S0-8859-1 char-
acters. This is equivalent to (apply char-set chars).

84 MIT Scheme Reference

string->char-set string procedure
Returns a character set consisting of all the characters that occur in string.

ascii-range->char-set lower upper procedure
Lower and upper must be exact non-negative integers representing 1S0-8859-1 char-
acter codes, and lower must be less than or equal to upper. This procedure creates
and returns a new character set consisting of the characters whose 150-8859-1 codes
are between lower (inclusive) and upper (exclusive).

For historical reasons, the name of this procedure refers to “Ascir” rather than “1so-
8859-1".

predicate->char-set predicate procedure
Predicate must be a procedure of one argument. predicate->char-set creates and
returns a character set consisting of the 150-8859-1 characters for which predicate is
true.

char-set-difference char-setl char-set2 procedure
Returns a character set consisting of the characters that are in char-setl but aren’t
in char-set2.

char-set-intersection char-set ... procedure
Returns a character set consisting of the characters that are in all of the char-sets.

char-set-union char-set . . . procedure
Returns a character set consisting of the characters that are in at least one o the
char-sets.

char-set-invert char-set procedure
Returns a character set consisting of the 150-8859-1 characters that are not in char-
set.

5.7 Unicode

MIT Scheme provides rudimentary support for Unicode characters. In an ideal world,
Unicode would be the base character set for MIT Scheme, but this implementation predates
the invention of Unicode. And converting an application of this size is a considerable
undertaking. So for the time being, the base character set is 150-8859-1 and Unicode
support is grafted on.

This Unicode support was implemented as a part of the XML parser (see Section 14.12
[XML Parser|, page 217) implementation. XML uses Unicode as its base character set, and
any XML implementation must support Unicode.

The Unicode implementation consists of two parts: 1/0 procedures that read and write
UTF-8 characters, and an alphabet abstraction, which is an efficient implementation of sets
of Unicode code points (similar to the char-set abstraction).

The basic unit in a Unicode implementation is the code point.

Chapter 5: Characters 85

unicode-code-point? object procedure
Returns #t if object is a Unicode code point. Code points are implemented as exact
non-negative integers. Code points are further limited, by the Unicode standard, to
be strictly less than #x80000000.

The next few procedures do 1/0 on code points.

read-utf8-code-point port procedure
Reads and returns a UTF-8-encoded code point from port. Returns an end-of-file
object if there are no more characters available from port. Signals an error if the
input stream isn’t a valid UTF-8 encoding.

write-utf8-code-point code-point port procedure
Writes code-point to port in the UTF-8 encoding.

utf8-string->code-point string procedure
Reads and returns a UTF-8-encoded code point from string. Equivalent to

(read-utf8-code-point (string->input-port string))

code-point->utf8-string code-point procedure
Returns a newly-allocated string containing the UTF-8 encoding of code-point. Equiv-
alent to

(with-string-output-port
(lambda (port)
(write-utf8-code-point code-point port)))

Applications often need to manipulate sets of characters, such as the set of alphabetic
characters or the set of whitespace characters. The alphabet abstraction provides an efficient
implementation of sets of Unicode code points.

alphabet? object procedure
Returns #t if object is a Unicode alphabet, otherwise returns #f.

code-points->alphabet items procedure
Returns a Unicode alphabet containing the code points described by items. Items
must satisfy well-formed-code-points-1list?.

alphabet->code-points alphabet procedure
Returns a well-formed code-points list that describes the code points represented by
alphabet.

well-formed-code-points-list? object procedure

Returns #t if object is a well-formed code-points list, otherwise returns #f. A well-
formed code-points list is a proper list, each element of which is either a code point
or a pair of code points. A pair of code points represents a contiguous range of code
points. The CAR of the pair is the lower limit, and the CDR is the upper limit. Both
limits are inclusive, and the lower limit must be strictly less than the upper limit.

86 MIT Scheme Reference

code-point-in-alphabet? code-point alphabet procedure
Returns #t if code-point is a member of alphabet, otherwise returns #f.

char-in-alphabet? char alphabet procedure
Returns #t if char is a member of alphabet, otherwise returns #f. Equivalent to

(code-point-in-alphabet? (char-code char) alphabet)

Character sets and alphabets can be converted to one another, provided that the alphabet
contains only 8-bit code points. This is true because 8-bit code points in Unicode map
directly to 150-8859-1 characters, which is what character sets contain.

char-set->alphabet char-set procedure
Returns a Unicode alphabet containing the code points that correspond to characters
that are members of char-set.

alphabet->char-set alphabet procedure
Returns a character set containing the characters that correspond to 8-bit code points
that are members of alphabet. (Code points outside the 8-bit range are ignored.)

string->alphabet string procedure
Returns a Unicode alphabet containing the code points corresponding to the charac-
ters in string. Equivalent to

(char-set->alphabet (string->char-set string))

alphabet->string alphabet procedure
Returns a newly-allocated string containing the characters corresponding to the 8-bit
code points in alphabet. (Code points outside the 8-bit range are ignored.)

8-bit-alphabet? alphabet procedure
Returns #t if alphabet contains only 8-bit code points, otherwise r