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Abstract

We consider a set of n tasks, each of them is composed by a set of

sequential operations. A set of bu�ers B is given : each bu�er b 2 B is

de�ned between two tasks Ti ! Tj , has a weight wb and is managed

as a FIFO structure. Some operations from Ti write data in the bu�er

b, other from Tj get data in b.

The writings and readings on bu�ers generate precedence con-

straints between the operations. The limitation of the size of the

bu�ers generates an other set of precedence constraints between them

and circuits in this precedence graph may appear. In this case, there

is no feasible schedule for the operations. The aim is to �nd the size of

each bu�er �(b); b 2 B such that
P

b2B wb�(b) is minimum and there

is no circuit in the precedence graph.

We prove that this problem is polynomial for 2 tasks using a ow

algorithm. We also prove that it is NP-hard in the strong sense for 3

tasks.

1 Introduction

An embedded system is the association of an hardware and a software system
to realize a given application : the synthesis of such a system is divided into

several phases. In this paper, we consider that the allocation of the tasks to

the processors is given. These tasks communicate using bu�ers. The model

of communication that we consider is knowned as Kahn Process Network [4],

and suppose that the capacity of the bu�ers is not bounded.
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The problem is that to realize the system on a chip, the size of the bu�ers
has to be bounded : moreover, the cost of a bu�er is proportionnal to the

size of the data that can be stored by it. So, the problem tackle in this paper

is to limit the size of the bu�ers such that the application can be realize and

the global surface of the bu�ers is minimum.

In the litterature, few studies are dedicated to this �eld. Authors usually

arbitrarily bound the capacities of the bu�ers and simulate to show if no
deadlocks appear [3]. In [5], the author has develop a greedy heuristic that

increase the capacity of a bu�er everytime a deadlock appears.

This paper is organized as follows : in the section 2, we de�ne the problem
and we show how the communications with bu�ers can be modelled using

a precedence graph. In section 3, we prove that the problem is polynomial
for 2 sequentiel tasks using a ow algorithm. In section 4, we show that

the associated decision problem is NP-complete in the strong sense for 3

sequential tasks. We give some ideas for further research in section 5.

2 Problem de�nition

Let us consider a set of n tasks denoted by T = fT1; : : : ; Tng and corre-

sponding to the load of n di�erent processors. These tasks may exchange
data using a given set of bu�ers B managed as a FIFO (First In/First Out)
structures. Each bu�er b 2 B is de�ned by a couple of tasks (Ti; Tj) : Ti

(resp. Tj) is the task allowed to write (resp. read) data in b. Moreover, the

values stored by a bu�er are all of the same type : 8b 2 B, wb is the size of
a value that may be stored by b.

The Kahn process network of an application is an oriented graph where
the vertices correspond to the tasks and the arcs to the bu�ers.

More precisely, each task Ti may be decomposed into ni sequential opera-
tions o1i ; : : : ; o

ni
i which write or read a value in a bu�er. Let us suppose that

task Ti sends data to Tj. Bij is the set of bu�ers from Ti to Tj dedicated to

these communications.
Each operation opi is associated with a bu�er denoted by b(opi ). If o

p

i write
a data in b(opi ), then b(opi ) 2 [j2T Bij, else, b(o

p
i ) 2 [j2T Bji.

The capacity of a bu�er is the maximal number of values that can be

stored simultaneously. It is denoted by �(b); b 2 B and is a variable of the
problem. The problem is that writing in a full bu�er is not possible : in

this case, the next writing operation has to wait until a reading operation
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Table 1: N(o
p
i ), i = 1; 2, p = 1; : : : ; 7

i 1 2 3 4 5 6 7

N(oi1) 0 1 0 1 2 0 1

N(oi2) 0 1 0 1 0 1 2

empties the bu�er. Deadlocks may occur if the size of some bu�ers is too

small.

Now, the surface needed in a component for b is proportional to wb�(b).

The aim here is to minimize this global surface of the bu�ers noted by C� =P
b2B wb�(b).

De�nition of the precedence graph We prove here that the commu-
nication with bu�ers can be modeled by a precedence graph on operations.
Let us de�ne, for every operation o

p
i , the value N(opi ) as :

N(opi ) = jfq 2 f1; : : : ; p� 1g; b(oqi ) = b(opi )gj

� If opi is a writing operation, then N(opi ) is the number of values written
in the bu�er b(opi ) before the execution of opi .

� Else, opi is a reading operation and N(opi ) is the number of values read
in the bu�er b(opi ) before the execution of opi .

For example, let us consider two tasks T1; T2, each of them composed by
7 operations and 3 bu�ers b, b0 and b

00 with B12 = fbg and B21 = fb0; b00g.
Moreover, b = b(o11) = b(o21) = b(o51) = b(o52) = b(o62) = b(o72), b

0 = b(o31) =

b(o41) = b(o32) = b(o42) and b
00 = b(o12) = b(o22) = b(o61) = b(o71). N is presented

by table 1.
Let us suppose that, 8b 2 B, the capacity of the bu�ers is denoted by

�(b); b 2 B. Then, the constraints between the operations can be modeled

by a precedence graph G(�) = (V;E(�)) built as follows :

� The vertices of the graph are the operations opi , i 2 f1; : : : ; ng, p 2

f1; : : : ; nig.

� Precedence relations E(�) can be split into 3 classes E1, E2 and E3(�)
de�ned as follows :
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1. The operations of any task Ti are performed sequentially.

E1 =

n[

i=1

f(opi ; o
p+1
i ); p = 1; : : : ; ni � 1g

2. Let us suppose that o
p

i is a writing operation, oqj is a reading

operation and that they used the same bu�er (i.e b(opi ) = b(oqj) =

b). Then, oqj get the value written in b by o
p
i if and only if N(opi ) =

N(o
q
i ). An arc (o

p
i ; o

q
j ) 2 E2 i� N(o

p
i ) = N(o

q
i ).

3. Using the same notations as the previous case, opi has to wait for

the execution of o
q

j if :

(a) Before the execution of o
q
j , there is no enough room for o

p
i to

write an additional value in b, so N(opi ) + 1�N(oqj ) > �(b).

(b) There is enough room in b after the execution of oqj , so N(opi )+

1 � (N(oqj) + 1) � �(b).

Then, an arc (oqj ; o
p
i ) 2 E3(�) i� N(opi )�N(oqj) = �(b).

We also denote by G(1) the precedence graph with no limitations on the

capacity of the bu�ers : we get E(1) = E1 [ E2. In the following, we
suppose that G(1) has no circuit : in the opposite, there is a mistake in the

application. The graph G(1) of our example is pictured by �gure 1.
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Figure 1: G(1) of our example

If the size of some bu�ers is too small, some circuit may occur in G(�).
For example, if �(b00) = 1, we obtain a circuit between the operations o61, o

2
2,

o
3
2 and o

3
1.

The problem is to �nd �(b) for every b 2 B such that the sum C� =P
b2B wb�(b) is minimum and that G(�) has no circuit.
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Figure 2: Structure of a circuit

3 A polynomial algorithm for two tasks

Let us consider two tasks T1 and T2 which communicate using a set of bu�ers
B. We study �rtly the structure of the circuit in the precedence graph. Then,

we prove that the presence of circuits can be described as a set of clauses of
size less than or equal to 2. Lastly, we show that the problem is equivalent
with the decision problem associated with the minimum weighted vertex
cover of a bipartite graph, which is knwoned to be polynomial [1].

3.1 Structure of the circuits

We suppose here that the capacity � of the bu�ers is �xed. The following

theorem characterizes the structure of the circuits of G(�) (if it exists).

Theorem 1. Let c be a circuit of G(�). Then, there are 4 operations op1,

o
q
1, o

r
2 and o

s
2 with p < q and r < s such that (os2, o

p
1) and (o

q
1; o

r
2) are in G(�)

(see �gure 2).

Proof

Let oq1 (resp.o
s
2) be the operation of T1 \ c (resp.T2 \ c) with a maximum q

(resp.s). Since oq1 and o
s
2 are in c, there exist in G(�) the arcs (oq1; o

r
2) with

r � s and (os2; o
p
1) with p � q.

We prove now by contradiction that r < s and p < q. Indeed, if r = s,
then o

s
2 = o

r
2 and b = b(os2) = b(op1) = b(oq1).

1. If oq1 is a writing operation, b is a bu�er from T1 to T2.

� The arc (oq1; o
s
2) 2 E2, so N(oq1) = N(os2).
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� The arc (os2; o
p
1) 2 E3(�), so N(o

p
1)�N(os2) = �(b).

Since N(o
p
1) � N(o

q
1), we get �(b) � 0, which is impossible.

2. Now, if oq1 is a reading operation, b is a bu�er from T2 to T1.

� The arc (o
q
1; o

s
2) 2 E3(�) so N(os2)�N(o

q
1) = �(b).

� The arc (os2; o
p
1) 2 E2 so N(o

p
1) = N(os2).

We get N(o
p
1) � N(o

q
1) = �(b). As N(o

p
1) � N(o

q
1) we obtain again

�(b) � 0.

3.2 Conditions on the capacities of the bu�ers

We consider here a couple of bu�ers (b1; b2) 2 B. A basic circuit c associated
with a couple of bu�ers (b1; b2) 2 B is composed by 4 operations o

p
1, o

q
1,

o
r
2 and o

s
2 with p < q and r < s and by the paths �1 = (op1; o

p+1
1 ; : : : o

q
1),

�2 = (or2; o
r+1
2 ; : : : o

s
2) and the arcs (oq1; o

r
2) and (os2; o

p
1). Moreover, we have

b2 = b(oq1) = b(or2) and b1 = b(op1) = b(os2).

In this section, we �x a couple of bu�ers (b1; b2) 2 B
2, b1 6= b2, and we

express necessary and suÆcient conditions on the capacities �(b1) and �(b2)
to avoid basic circuits associated with this couple of bu�ers. We have 3 cases
to consider :

Case 1 If (b1; b2) 2 B21 � B12, then arcs (oq1; o
r
2) and (os2; o

p
1) are both in E2.

The lemma 1 follows :

Lemma 1. If (b1; b2) 2 B21�B12 and G(1) has no circuit, then there
is no basic circuit in G(�) associated with these two bu�ers.

Case 2 If (b1; b2) 2 B
2
12 [ B

2
21, then we consider two subcases :

1. If (b1; b2) 2 B
2
12, then (oq1; o

r
2) 2 E2 and (op1; o

s
2) 2 E3(�). So, the

only way to eliminate this circuit is to increase �(b1).

Let x1 be the minimum capacity of b1 such that there is no basic

circuit associated with the couple (b1; b2) in the corresponding

precedence graph. We set y1 = 1. Then, a precedence graph G(�)

has no basic circuit associated with (b1; b2) i� �(b1) � x1^�(b2) �

y1.
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2. By symmetry, we get the same property for the case (b1; b2) 2 B
2
21.

Lemma 2. If (b1; b2) 2 B
2
12 [ B

2
21, there exists two integers x1 and y1

such that G(�) has no circuit associated with (b1; b2) if and only if
�(b1) � x1 ^�(b2) � y1.

Case 3 If (b1; b2) 2 B12�B21, then arcs (o
q
1; o

r
2) and (os2; o

p
1) are both in E3(�).

We de�ne a set of points ui = (xi; yi); i = 1; : : : ; l as follows :

1. y1 = 1 and x1 is the minimumvalue of the capacity of b1 such that,

if a capacity �0 veri�es �0(b1) = x1 and �0(b2) = 1, then there
is no basic circuit associated with the couple of bu�ers (b1; b2) in

G(�0). u1 = (x1; y1).

2. Let us assume that ui; i � 1 has been de�ned.

{ If xi = 1, we stop the recurrence and we set l = i.

{ Else, we set yi+1 the smallest value strictly greater than yi such

that if �0(b2) = yi+1, then minimumvalue needed for �0(b1) to
avoid basic circuits associated with (b1;b2) in G(�

0) is denoted
by xi+1 and veri�es xi+1 < xi. We get then ui+1 = (xi+1; yi+1).

Notice that the value l is bounded by the number n of operations.
Indeed, if �0(b2) = n, there is no associated precedence constraint in
E3(�

0) and we can set �0(b1) = 1.

Lemma 3. If (b1; b2) 2 B12�B21, there exists a sequence ui = (xi; yi); i =
1; : : : ; l such that G(�) has no basic circuit associated with the couple
(b1; b2) if and only if 9i 2 f1; : : : ; lg with �(b1) � xi and �(b2) � yi.

Proof

1. A ) B : let us suppose that, 8i 2 f1; : : : ; lg, �(b1) < xi or

�(b2) < yi.

{ If �(b2) � yl, then 8i 2 f1; : : : ; lg;�(b1) < xi. As xl = 1,

this is impossible.

{ So, there exists k 2 f1; : : : ; l � 1g with yk � �(b2) < yk+1.

By hypothesis, we get �(b1) < xi for i 2 f1; : : : ; kg.
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Now, by de�nition of the sequences ui, if yk � �(b2) < yk+1,
then the minimum value for �(b1) to avoid basic circuits as-

sociated with (b1; b2) is xk. So, G(�) has a basic circuit asso-

ciated with (b1; b2).

2. B ) A : If 9i 2 f1; : : : ; lg with �(b1) � xi and �(b2) � yi, then,

by de�nition of ui, G(�) has no circuit.

For any (b1; b2) 2 B
2, we set

C(b1; b2) =

l_

i=1

(�(b1) � xi ^�(b2) � yi)

For the case 1, we set l = 1 and x1 = y1 = 1. We prove the following

theorem :

Theorem 2. The graph G(�) has no circuit if and only if, for every couple

of bu�ers (b1; b2) 2 B with b1 6= b2, C(b1; b2) is true.

Proof

� A) B: If there is a couple of bu�er for which C(b1; b2) is false, then,

by lemmas 2 and 3, G(�) has a circuit.

� B ) A: if G(�) has a circuit c, then, using theorem 1, we can build a
basic circuit associated with a couple of bu�ers (b1; b2). Using lemmas

2 and 3, we know that C(b1; b2) is false.

3.3 Description of the polynomial algorithm for 2 tasks

The following lemma is a rewriting of C(b1; b2),

Lemma 4. 8(b1; b2) 2 B,

C(b1; b2) = (�(b1) � xl) ^ (�(b2) � y1) ^

l�1^

i=1

(�(b1) � xi _�(b2) � yi+1)

Proof

We prove it by recurrence on l :
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� The lemma is trivially true for logical expressions with l = 1.

� Let us suppose now that the lemma is true for l and that the sequences
associated with C(b1; b2) have l + 1 terms. Then

C(b1; b2) = (�(b1) � xl+1 ^�(b2) � yl+1)

_ (�(b1) � xl ^�(b2) � y1 ^

l�1̂

i=1

(�(b1) � xi _�(b2) � yi+1))

Using the distributivity of the logical operators, we get for C(b1; b2) the

following clauses :

1. �(b1) � xl _�(b1) � xl+1 = (�(b1) � xl+1);

2. �(b1) � xl+1_�(b2) � y1 is always true because of the �rst clause
and can be suppressed;

3. 8i 2 f1; : : : ; l� 1g, �(b1) � xl+1 _ (�(b1) � xi _�(b2) � yi+1) is

always true since the �rst clause is included in these terms;

4. �(b2) � yl+1 _�(b1) � xl;

5. �(b2) � yl+1 _�(b2) � y1 = �(b2) � y1;

6. 8i 2 f1; : : : ; l � 1g, �(b2) � yl+1 _ (�(b1) � xi _�(b2) � yi+1) =

(�(b1) � xi _�(b2) � yi+1);

If we consider all these clauses except the second and the third ones,

we get the lemma.

Lemma 5. Let I be an instance of the problem with two tasks. 8(b1; b2) 2 B
2,

C(b1; b2) may be computed in O(n2).

Proof

Let n be the number of operations of each task. In the case 3, l � jnj and at

each step, the presence of circuits must be tested.

MINIMUM WEIGHTED VERTEX COVER OF A BIPARTITE

GRAPH

� Instance: an undirected bipartite graph X = (A[B;E), and a function

v : A [B ! IN .
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� Question: is there a coverD of the vertices ofX (i.e, a subsetD � A[B
such that, for every edge e = fu;wg 2 E, at leat u 2 D or w 2 D)

such that
P

u2D
v(u) is minimum ?

Let us consider an instance I of our problem with two tasks. For every

couple (b1; b2) 2 B2, we can associate a logical expression C(b1; b2). Us-

ing notations of lemma 4, we de�ne the following sequences to describe the

extremum values of the capacity of the bu�ers :

xmin(C(b1; b2)) = xl and xmax(C(b1; b2)) = x1

ymin(C(b1; b2)) = y1 and ymax(C(b1; b2)) = yl

Then, we get for every b 2 B the minimum and maximum feasible val-

ues for the capacity are �min(b) = maxb02B12 xmin(C(b; b
0)) and �max(b) =

maxfmaxb02B xmax(C(b; b
0));maxb02B ymax(C(b

0
; b))g.

For example, let us consider 2 tasks T1 and T2 and the bu�ers B12 = fb; b0g
and B21 = fb00g. We suppose that wb = 1, wb0 = 4 and wb00 = 2. We also

consider the following logical expressions : C(b; b0) = �(b) � 3 ^�(b0) � 1,
C(b0; b) = �(b0) � 1 ^�(b) � 1, C(b; b00) = �(b) � 2 ^�(b00) � 1 ^ (�(b) �

5 _�(b00) � 7) ^ (�(b) � 7 _�(b00) � 4), C(b00; b) = �(b00) � 1 ^�(b) � 1,

C(b0; b00) = �(b0) � 2 ^�(b00) � 1 ^ (�(b0) � 3 ^�(b00) � 3), and C(b00; b0) =
�(b00) � 1^�(b0) � 1. The extremum values are �min(b) = 3, �min(b

0) = 2,
�min(b

00) = 1, and �max(b) = 7, �max(b
0) = 3 and �max(b

00) = 7.

� For every bu�er b 2 B, we de�ne the sequence �i(b); i = 0; : : : ; k(b) of
feasible values of �(b) as follows :

1. �0(b) = �min(b);

2. For i > 0, if there exists a minimum value x > �i�1(b) such that
there is a logical expression C(b; b0) or C(b0; b) with the inequality

�(b) � x, then set �i(b) = x and continue with i+1. Else, we get
�i(b) = �max(b) then we set k(b) = i and we stop the recurrence.

We build an instance f(I) of the minimum weighted cover problem of a

bipartite graph as follows :

� For every bu�er b 2 B, we associate k(b) vertices (b; 1); : : : ; (b; k(b))
with the weight v(b; i) = wb(�

i(b)��i�1(b)), i = 1; : : : ; k(b).

We denote byA = f(b; 1); : : : ; (b; k(b)); b 2 B12g and byB = f(b; 1); : : : ;
(b; k(b)), b 2 B21g
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Figure 3: Graph X = (A [B;E) and a cover D

� For every couple (b1; b2) 2 B12 � B21, we build an edge between the

vertices (b1; k1) and (b2; k2) if there exists a term (�(b1) � xi_�(b2) �
yi+1) in C(b1; b2) with �k1(b1) � xi and �k2(b2) � yi+1.

Let E be the set of edges. The graph X = (A [B;E) is bipartite.

For our former example, we get :

� k(b) = 2, �0(b) = 3, �1(b) = 5 and �2(b) = 7. v(b; 1) = 2 and
v(b; 2) = 2.

� k(b0) = 1 and v(b0; 1) = 4.

� k(b00) = 3, �0(b00) = 1, �1(b00) = 3, �2(b00) = 4 and �1(b00) = 7.
v(b00; 1) = 4, v(b00; 2) = 2 and v(b00; 3) = 6.

The corresponding graph is pictured by �gure 3.

Lemma 6. f is a polynomial transformation.

Proof

Let us denote by m the total number of bu�ers and by L the maximum

number of inequalities of a logical expression C(b; b0). Then, jAj+ jBj � mL.

So, f is polynomial.

Lemma 7. Let �� be a solution of an intance I. We can build a cover D

for the corresponding instance f(I). Moreover,
X

b2B12[B21

wb�
�(b) =

X

b2B12[B21

wb�
0(b) +

X

i2D

v(i)
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Proof

For every bu�er b 2 B12 [B21, we de�ned �
�(b) as ���(b)(b) = ��(b). We set

D = f(b; i); b 2 B12 [ B21; 1 � i � �
�(b)g.

We prove that D is a cover of X : for every edge f(b1; k1); (b2; k2)g in the

graph X, there exists a term (�(b1) � xi _ �(b2) � yi+1) of C(b1; b2) with

�k1(b1) � xi and �k2(b2) � yi+1.

Since �� is a solution of I, we get (��(b1) � xi _ ��(b2) � yi+1). If
��(b1) � xi, then we get �k1(b1) � ��(b1), so k1 � �

�(b1) and (b1; k1) 2 D.

On the same way, if ��(b2) � yi+1, (b2; k2) 2 D. So, D is a feasible solution

of f(I).
Now,

P
i2D v(i) =

P
b2B12[B21

wb(�
��(b)(b)��0(b)) =

P
b2B12[B21

wb(�
�(b)�

�0(b)), so the equality holds.

Four our example, ��(b) = 7, ��(b0) = 2 and ��(b00) = 4 is a solution

to I. For f(I), we obtain D = f(b; 1); (b; 2); (b00; 1)g. The equality trivially
holds.

Lemma 8. Let D be a solution for f(I). Then, we can build a solution �
of I. Moreover, the previous equality between the two criteria holds.

Proof

Let D be a solution for f(I). We prove that, 8b 2 B12 [ B21, there exists
a maximum value �(b) 2 f1; : : : ; k(b)g such that all the vertices (b; 1); : : : ;

(b; �(b)) are in D.

By contradiction, let us suppose that there exists a vertex (b; �) 2 D with
(b; � � 1) 62 D. By construction of X, if �(b; �) denotes the set of adjacent
vertices of (b; �), we get �(b; �) � �(b; � � 1). Since (b; � � 1) 62 D, then

�(b; � � 1) � D. So, (b; �) can be removed from D; D is not optimal, the
contradiction.

For every b 2 B12[B21, we set �
�(b) = ��(b)(b). For any couple (b1; b2) 2

B12 � B21 and for any term (�(b1) � xi _ �(b2) � yi+1) from C(b1; b2), we

de�ne k1 and k2 such that �k1(b) = xi and �k2(b) = yi+1. Then, since there

is an edge f(b1; k1); (b2; k2)g 2 E, (b1; k1) 2 D or (b2; k2) 2 D. So �(b1) � k1

or �(b2) � k2. We get ��(b1) � xi or �
�(b2) � yi+1.

Theorem 3. The minimization of the bu�ers for two tasks is a polynomial

problem.

12



The construction of an instance f(I) is polynomial. Moreover, the mini-
mum weighted cover problem of a bipartite graph is solved polynomially by

a ow algorithm. So, the theorem holds.

4 Complexity for 3 tasks

In this section, we prove that the decision problem associated with the min-

imzation of the bu�ers is NP-complete in the strong sense for 3 tasks using

a transformation from 3-SAT [2].

3-TASKS MIN WEIGHTED BUFFERS

� Instance: 3 tasks T1; T2; T3, a set of bu�ers B, an execution graphs G

and a value K.

� Question: is there a feasible size function � : B ! IN such thatP
i2B wb�(b) � K?

For i 2 IN
� and the bu�ers (b1; b2; b3) 2 B21 � B13 � B32 we consider 16

operations de�ned as follows :

� The operations are noted o
4(i�1)+1

1 , o
4(i�1)+2

1 , o
4(i�1)+3

1 , o
4(i�1)+4

1 , o
4(i�1)+1

2 ,

o
4(i�1)+2

2 , o
4(i�1)+3

2 , o
4(i�1)+4

2 , o
4(i�1)+1

3 , o
4(i�1)+2

3 , o
4(i�1)+3

3 , o
4(i�1)+4

3

� Their associated bu�er are :

1. b(o
4(i�1)+1

1 ) = b(o
4(i�1)+2

1 ) = b(o
4(i�1)+3

3 ) = b(o
4(i�1)+4

3 ) = b2

2. b(o
4(i�1)+1

2 ) = b(o
4(i�1)+2

2 ) = b(o
4(i�1)+3

1 ) = b(o
4(i�1)+4

1 ) = b1

3. b(o
4(i�1)+1

3 ) = b(o
4(i�1)+2

3 ) = b(o
4(i�1)+3

2 ) = b(o
4(i�1)+4

2 ) = b3

gi(b1; b2; b3)(1) (resp.gi(b1; b2; b3)(�)) is the associated precedence graph for
an unlimited values on the size of the bu�ers (resp.. for a capacity function

�).

Lemma 9. Let us consider a capacity function � : B ! IN
� and the prece-

dence graph G(�) = [p

i=1gi(�
i
1; �

i
2; �

i
3)(�) with (�i

1; �
i
2; �

i
3) 2 B21�B13�B32.

G(�) has no circuit if and only if �(�i
1) > 1 _�(�i

2) > 1 _�(�i
3) > 1.

Proof

13



o1
4(i-1)+1

o1
4(i-1)+2

o1
4(i-1)+3

o1
4(i-1)+4

o2
4(i-1)+1

o2
4(i-1)+4

3o
4(i-1)+4

3o
4(i-1)+2

o3
4(i-1)+3

o2
4(i-1)+2

o2
4(i-1)+3

3o
4(i-1)+1

T1 T2

T3

b
1

b
2 b

3

Figure 4: Graph gi(b1; b2; b3)(1) and the Kahn subgraph for bu�ers b1, b2
and b3
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� A ) B: if there exists i 2 f1; : : : ; pg such that �(�i
1) = �(�i

2) =

�(�i
3) = 1 then there is the circuit c = (o

4(i�1)+2

1 , o
4(i�1)+3

1 , o
4(i�1)+2

2 ,

o
4(i�1)+3

2 , o
4(i�1)+2

3 , o
4(i�1)+3

3 , o
4(i�1)+2

1 ) in G(�), so � is not feasible.

� B ) A: Let us suppose now that � is not a feasible solution. Then,
there is a circuit in G(�). A circuit in G(�) can't involve several sub-

graphs gi, even if all the size of the bu�ers is set to 1. So, there exists

i 2 f1; : : : ; pg such that gi(�
i
1; �

i
2; �

i
3)(�) has a circuit. The only way

to get this circuit is to set �(�i
1) = �(�i

2) = �(�i
3) = 1.

3-SAT

� Instance: set U of variables, collection C of clauses over U such that

each clause c 2 C has jcj = 3.

� Question: Is there a satisfying truth assignment of C ?

Let us consider an instance I of 3-SAT given by a set of of variables
U = fu1; : : : ; ukg and a set of clauses C = fC1; : : : ; Cqg. We build and

instance f(I) of 3-TASKS MIN WEIGHTED BUFFERS as follows :
The set of bu�ers B is composed by 3 sets B21, B32 and B13 de�ned as

follows :

� 3 bu�ers b1 2 B21, b2 2 B32 and b3 2 B13 with wb1 = wb2 = wb3 = 3k+1.

The sizes of these bu�ers is important to oblige their capacity to be 1.

� For every variable ui 2 U , we associate 6 bu�ers (b1i ;
�b1i ) 2 B21, (b

2
i ;
�b2i ) 2

B32 and (b3i ;
�b3i ) 2 B13 with wb

p
i
= w�b

p
i
= 1 for p = 1; 2; 3.

The precedence graph G(1) is de�ned as the union of a sequences of
6k + q graphs g�i ; i = 1; : : : ; 6k + q as follows :

� For every variable ui 2 U; i = 1; : : : ; k, we would like to express that

every feasible capacity � veri�es �(b1i ) = �(b2i ) = �(b3i ) 2 f1; 2g

�(�b1i ) = �(�b2i ) = �(�b3i ) 2 f1; 2g and that these two values are di�erent.

For that, we build the following sequences of graphs :

1. g�
6(i�1)+1

= g6(i�1)+1(b
1
i ;
�b2i ; b3)(1)

2. g�
6(i�1)+2

= g6(i�1)+2(b
1
i ; b2;

�b3i )(1)

15



3. g�6(i�1)+3 = g6(i�1)+3(�b
1
i ; b

2
i ; b3)(1)

4. g�6(i�1)+4 = g6(i�1)+4(�b
1
i ; b2; b

3
i )(1)

5. g�6(i�1)+5 = g6(i�1)+5(b1;�b
2
i ; b

3
i )(1)

6. g�6(i�1)+6 = g6(i�1)+6(b1; b
2
i ;
�b3i )(1).

� For every clause Cj = c
1
j _ c

2
j _ c

3
j , j = 1; : : : ; q, we associate a sub-

graph g
�

6k+j = g6k+j(�
1
j ; �

2
j ; �

3
j ) with the bu�ers �l

j; l = 1; 2; 3 de�ned

as follows : if clj = ui, we set �
l
j = b

l
i. Otherwise, clj = �ui and we set

�
l
j =

�bli.

The question is : is there a capacity function � : B ! IN
� such thatP

b2B
wb�(b) � 18k + 3 ?

Lemma 10. For every instance I of 3-SAT, the determination of f(I) is
polynomial.

For every instance I with k variables and q clauses, the execution graph
of the instance f(I) has 3 tasks and 4(6k + q) operations.

Lemma 11. f is a polynomial tranformation from 3-SAT to 3-TASKS MIN
WEIGHTED BUFFERS .

Proof

Let us assume that the answer of an intance I of 3-SAT is "yes", then we
build a solution to the corresponding instance f(I) as follows :

� �(b1) = �(b2) = �(b3) = 1.

� Let us de�ne a function v : U ! f0; 1g as v(ui) = 1 if ui is true,
0 otherwise. Then, we set �(b1i ) = �(b2i ) = �(b3i ) = 1 + v(ui) and

�(�b1i ) = �(�b2i ) = �(�b3i ) = 2� v(ui).

Clearly,
P

b2B
wb�(b) = 3(3k + 1) + 9k = 18k + 3. For every variable

ui 2 U , the 6 corresponding sub-graphs g�6(i�1)+1; : : : g
�

6(i�1)+6 have all at least

one bu�er which size is strictly greater than 1. Lastly, since each clause Cj

is true, the associated graph g
�

6k+j has also at least one bu�er with a size
strictly greater than 1. By lemma 9, � is a solution of f(I) and the answer

to f(I) is "yes".
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Conversely, let us assume that � is a solution to f(I). Then, we �rst
prove that �(b1) = �(b2) = �(b3) = 1. Indeed, if �(b1) � 2, then

X

b2B

wb�(b) � 4(3k + 1) + 6k = 18k + 4

So, from the same reasonning with b2 and b3, we deduce that �(b1) = �(b2) =

�(b3) = 1.
For every variable ui, the graphs g�

6(i�1)+�
; � = 1; : : : 6 have all at least

one bu�er whose capacity is strictly superior than 2. So, by lemma 9 we

get necessarily : �(b1i ) + �(�b2i ) � 3, �(b1i ) + �(�b3i ) � 3, �(�b1i ) + �(b2i ) � 3,
�(�b1i ) +�(b3i ) � 3, �(�b2i ) +�(b3i ) � 3, and �(b2i ) +�(�b3i ) � 3. By summing

these inequalities, we get :

�(b1i ) + �(�b1i ) + �(b2i ) + �(�b2i ) + �(b3i ) + �(�b3i ) � 9

Now, 18k + 3 � wb1�(b1)� wb2�(b2) �wb3�(b3) = 9k. So, we have �(b1i ) +
�(�b1i ) + �(b2i ) + �(�b2i ) + �(b3i ) + �(�b3i ) = 9 for every variable ui.

Now, by contradiction, let us suppose that there is a variable ui 2 U with

�(b1i ) = �(�b2i ) = 2. Then, since there is no circuit in g
�

6(i�1)+3, g
�

6(i�1)+4 and
g
�

6(i�1)+6 we get :

�(�b1i ) � 2 _�(b2i ) � 2

�(�b1i ) � 2 _�(b3i ) � 2

�(b2i ) � 2 _�(�b3i ) � 2

A minimum solution is �(�b1i ) = �(b2i ) = 2 and �(b3i ) = �(�b3i ) = 1. So,

�(b1i ) + �(�b1i ) + �(b2i ) + �(�b2i ) + �(b3i ) + �(�b3i ) � 10

which is impossible. So, �(b1i ) = �(b2i ) = �(b3i ) and �(�b1i ) = �(�b2i ) = �(�b3i ).

We can set ui = (�(b1i ) � 2). Notice that the equality �ui = (�(�b1i ) � 2)

is true. We prove now that every clause Cj 2 C is true. Indeed, by lemma
9, the bu�ers �p

j ; p = 1; 2; 3 verify

�(�1j ) + �(�2j ) + �(�3j ) � 4

So, 9p 2 f1; 2; 3g such that �(�p

j ) � 2. Now, if cpj = ui, then �
p

j = b
p

i . So, ui
is true and Cj is true. Else, c

p
j = �ui and then �

p
j =

�bpi . So, �ui is true, and Cj

is true.
So, the answer for the instance I of 3-SAT is "yes".

Theorem 4. 3-TASKS MIN WEIGHTED BUFFERS is NP-complete in the
strong sense for 3 tasks.
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5 Conclusion

We proved in this paper that the communication with bu�ers can be modeled

using a precedence graph and two complexity results on the problem. Further

research will consists on develop exact and approximate methods to solve the

eÆciently the general problem.
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