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Abstract

We address a multi-item capacitated lot-sizing problem with setup times and shortage
costs that arises in real-world production planning problems. Demand cannot be back-
logged, but can be totally or partially lost. The problem can be modelled as a mixed
integer program and it is NP-hard. In this paper, we propose some classes of valid in-
equalities based on a generalization of Miller et al. [17] results. We study the polyhedral
structure of the convex hull of this model which help us to prove that these inequalities
induce facets of the convex hull under certain conditions.
Keywords: Multi-item, capacitated lot-sizing, Setup times, shortage costs, Production
planning, Mixed integer programming, Branch-and-cut.

Introduction

The Multi-item Capacitated Lot-Sizing Problem with with Setup times and Shortage
costs (MCLSSP) is a production planning problem in which there is a time-varying de-
mand for a set of N items denoted I = {1, 2, · · · , N} over T periods. The production
should satisfy a restricted capacity and must take into account a set of additional con-
straints. Indeed, launching the production of an item i at a given period t for a demand
requirement dit involves a variable capacity vit and a fixed consumption of resource fit

usually called setup time. The total available capacity at period t is ct. The production
should also satisfy lot-sizing constraints. For each period t, an inventory cost γit is at-
tached to each item i as well as a variable unit production cost αit and a setup cost βit.
The problem has the distinctive feature of allowing requirement shortages because we deal
with problems with tight capacities. Indeed, when we are in lack of capacity to produce
the total demand, we try to spread the capacity among the items by minimizing the total
amount of demand shortages. Thus, we introduce in the model a unit cost parameter ϕit

for item i at period t for the requirement not met regarding the demand. These costs
should be viewed as penalty costs and their values are very high in comparison with other
cost components.
To try to meet the demand for an item i at period t, we could anticipate the produc-
tion over some periods of time. Therefore, σit denote the last period at which an item
i produced at period t can be consumed. The problem MCLSSP is to find a produc-
tion planning that minimizes the demand shortage, the setup, the inventory and the
production costs.

∗This work has been partially financed by DYNASYS S.A., under research contract no. 588/2002.
†Corresponding author. E-mail: Safia.Kedad-Sidhoum@lip6.fr
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Florian et al. [10] and Bitran and Yanasse [4] have shown that the single-item capac-
itated lot-sizing problem is NP-hard, even for many special cases. Chen and Thizy [6]
have proved that multi-item capacitated lot-sizing problem (MCLSP) with setup times
is strongly NP-hard. The problem of finding a feasible solution to the MCLSP problem
with setup times is NP-Complete (Bin packing is a special case of MCLSP with setup
times, see [18]).

Since the seminal papers by Wagner and Within [24] and Manne [14] in the late 1950s,
a lot of research has been done on lot-sizing problems. The single-item problem has been
given special interest for its relative simplicity and for its importance as a sub-problem
of some more complex lot-sizing problems. For a complete review, the reader can refer
to [5].

Although production planning models involving multiple items, restrictive capacities
and significant setup times occur frequently in industrial situations and have often been
studied in the literature, obtaining optimal and sometimes even feasible solutions remains
challenging. Trigeiro et al. [23] were among the firsts to try to solve such models. They
proposed a lagrangean relaxation based heuristic to solve the single-machine, multi-item,
capacitated lot-sizing problem with setup times to obtain near-optimal solutions. Since
the lagrangean solutions were not always feasible, they used a production smoothing
heuristic in order to obtain feasible production plans. However, we can notice that for all
the instances with tight capacities, they were not able to find feasible solutions.

Pochet and Wolsey [21], Belvaux and Wolsey [3] and Leung et al. [12] proposed exact
methods to solve multi-item capacitated lot-sizing problems by strengthening the LP
formulation with valid inequalities and then using a MIP solver. Barany et al. [2] have
defined some inequalities for the uncapacitated lot-sizing problem. Miller et al. [17] have
studied the polyhedral structure of some capacitated production planning problems with
setup times. We can also mention the work of Marchand and Wolsey [15] for the 0-1
knapsack problem which appear as a relaxation of a number of structured MIP problems
such as the MCLSP problem.

There are few works addressing lot-sizing problems with shortage costs. Recently,
Sandbothe and Thompson [22] addressed a single-item uncapacitated lot-sizing problem
with shortage costs. The authors proposed a O(T 3) forward dynamic programming algo-
rithm to solve the problem optimally. Aksen et al. [1] proposed a dynamic programming
algorithm to solve the same problem optimally in O(T 2) time. Loparic et al. [13] pro-
posed valid inequalities for the single-item uncapacitated lot-sizing problem with sales
and lower bounds on stock variables. The authors considered sales instead of fixed de-
mands and shortages. In our knowledge, we are the first to combine setup times and
shortage cost for a multi-item capacitated lot-sizing problem.

In the literature two methods are presented for dealing with problems where demand
cannot be met in every period. Dixon et al. [9] deal with lack of capacity by considering
overtimes. The capacity constraint is expanded by making extra capacity available at
a cost. The multi-item capacitated lot-sizing problem with setup times and overtime
decisions is investigated by Diaby et al. [8], Özdamar and Birbil [19] and Özdamar and
Bozyel [20]. The second method is allowing backlog (see Zangwill [25]). Here demand
must be satisfied, but the items can be produced later than requested at an extra cost. In
these two cases, demand must be satisfied and the amount of lost sales for each item at
each period is not given. The only information that we have are, the amount of missing
capacity at each period to satisfy all demands, and the amount of backlogged items.

Usually, factories already produce at full capacity. In this case, overtimes are impos-
sible. Meeting the demand at later period is also frequently prohibited by clients. In our
case, demand should be met, but when we are in lack of capacity demand is lost at a cost
instead of adding overtimes or using backlogging.

The main contributions of this paper are twofold. First, we show that the results
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obtained from considering relaxations based on single-period sub-model can be used to
derive new valid inequalities for the MCLSSP problem. These results are derived from
Miller et al. [17] previous work on the polyhedral structure of the single-period relaxation
of the multi-item capacitated lot-sizing problem. Second, we show that these inequalities
induce facets of the convex hull under certain conditions.

An outline of the remainder of the paper follows. Sections 1 and 2 describe MIP
formulations of the MCLSSP problem and its single-period relaxation. We also state
results concerning the generalization of the (l, S) valid inequalities. In Section 3 we
present cover and reverse cover valid inequalities. In section 4 we study the polyhedral
structure of the convex hull of this model and we prove that cover inequalities induce
facets of the convex hull under certain conditions.

1 Formulation of the MCLSSP problem

In this section we present a MIP formulation of the MCLSSP problem, which is an exten-
sion to the classical formulation of the MCLSP problem previously studied by Trigeiro
et al. [23] and Miller [16]. In the sequel, we consider that i = 1, . . . , N and t = 1, . . . , T .
We set xit as the quantity of item i produced at period t. To deal with the fixed setup
times and costs, we need also to define yit as a binary variable equal to 1 if item i is
produced at period t (i.e. if xit > 0). The variable sit is the inventory value for item
i at the end of period t. The demand shortage for item i at period t is modeled by
a non-negative variable rit added to the production variables xit with a very high unit
penalty cost in the objective function, because the main goal is to satisfy the customer
and thus to have the minimum amount of the requirements not met. We can notice that
rit = −(si,t−1 + xit) + dit if rit > 0 and 0 otherwise.

min

N∑

i=1

T∑

t=1

αitxit + βityit + γitsit + ϕitrit (1)

subject to:

xit + rit − sit + si,t−1 = dit, i = 1, . . . , N, t = 1, . . . , T. (2)

N∑

i=1

vitxit +
N∑

i=1

fityit ≤ ct, t = 1, . . . , T. (3)

xit ≤ min

{
ct − fit

vit

,

σit∑

t′=t

dit′

}
yit, i = 1, . . . , N, t = 1, . . . , T. (4)

rit ≤ dit, i = 1, . . . , N, t = 1, . . . , T (5)

xit, sit, rit ≥ 0, i = 1, . . . , N, t = 1, . . . , T (6)

yit ∈ {0, 1} , i = 1, . . . , N, t = 1, . . . , T (7)
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The objective function (1) minimizes the total cost induced by the production plan
(unit production costs, inventory costs, shortage costs and setup costs). Constraints (2)
are the flow conservation of the inventory through the planning horizon. Constraints (3)
are the capacity constraints, the overall consumption must remain lower than the avail-
able capacity. If we produce an item then the production must not exceed a maximum
production level, this condition is ensured by constraints (4). Indeed, the maximum pro-
duction is the minimum between the maximum quantity of the item that we can produce
and the total requirement on section [t, . . . , σit] of the horizon (σit denote the last period
at which an item i produced at period t can be consumed). Constraints (5) define up-
per bounds on the requirement not met for item i on period t. Constraints (6) and (7)
characterize the variable’s domain: xit, sit and rit are non-negative for i = 1, . . . , N and
t = 1, . . . , T and yit is a binary variable for i = 1, . . . , N and t = 1, . . . , T .

In the sequel of the paper, we refer to valid inequalities for the set defined by (2)− (7)
as valid for MCLSSP.

2 Single-period relaxation of the MCLSSP problem

Based on the previous formulation of the MCLSSP problem, we define a simplified sub-
model obtained by considering a single time period and the interaction with future pe-
riods. This model is called the single-period relaxation of the MCLSSP with preceding
inventory. Our approach is similar that used by Constantino [7] and Miller [16] to derive
a set of valid inequalities for the MCLSP problem based on a single-period relaxation.
This is particularly useful to derive valid inequalities for the MCLSSP problem. In this
relaxation, the production over a given period could satisfy the requirement of a sec-
tion of consecutive periods. Consequently, for each period t = 1, . . . , T and each item
i = 1, . . . , N we use the parameter σit previously defined with σit = 1, . . . , T . This will
enable us to create a mathematical model for each period t = 1, . . . , T which captures the
interaction between the tight capacity in one hand and the requirements, the productions
and the setups on the other hand from period t to σit, for each item i = 1, . . . , N .
Here our goal is to derive valid inequalities for MCLSSP by considering simplified models
obtained from a single-time period relaxation with preceding inventory.

Let us denote: δi
a,b =

∑b

t=a dit. One simple family of valid inequalities is given by

Proposition 1. The inequalities

xit +

σit∑

t′=t

rit′ +

(
si,t−1 +

σit∑

t′=t+1

δi
t′,σit

yit′

)
≥ δi

t,σit
, i = 1, . . . , N, t = 1, . . . , T. (8)

are valid for MCLSSP.

Proof. Summing the constraints (2) over the section of horizon [t, . . . , σit] gives:

σit∑

t′=t

(xit′ + rit′) − si,σit
+ si,t−1 =

σit∑

t′=t

dit′ , i = 1, . . . , N, t = 1, . . . , T. (9)

The variable xit can be redefined by considering the period where the production
is really consumed. This reformulation is called the facility location-based formulation
introduced initially by Krarup and Bilde [11]. Therefore, we denote witt′ with t′ ∈ [t, σit]
the quantity of the item i produced at period t (t 6= 0) and consumed at period t′. The
variables wi0t then represent the opening inventory of item i at the beginning of the
horizon which will be consumed at period t. We will have:
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xit =

T∑

t′=t

witt′ , i = 1, . . . , N, t = 1, . . . , T. (10)

and

sit =
t∑

t′=0

T∑

t′′=t+1

wit′t′′ , i = 1, . . . , N, t = 1, . . . , T. (11)

By replacing (10) and (11) in (9), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit∑

t′=t+1

T∑

t′′=t′

wit′t′′ +

σit∑

t′=t

rit′ −
σit∑

t′=0

T∑

t′′=σit+1

wit′t′′ =

σit∑

t′=t

dit′ (12)

Moreover:

σit∑

t′=t+1

T∑

t′′=t′

wit′t′′ =

σit∑

t′=t+1

σit∑

t′′=t′

wit′t′′ +

σit∑

t′=t+1

T∑

t′′=σit+1

wit′t′′ (13)

and:

σit∑

t′=0

T∑

t′′=σit+1

wit′t′′ =

t∑

t′=0

T∑

t′′=σit+1

wit′t′′ +

σit∑

t′=t+1

T∑

t′′=σit+1

wit′t′′ (14)

By replacing (13) and (14) in (12), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit∑

t′=t+1

σit∑

t′′=t′

wit′t′′ −
t∑

t′=0

T∑

t′′=σit+1

wit′t′′ +

σit∑

t′=t

rit′ =

σit∑

t′=t

dit′ (15)

By definition of variables wit′t′′ , we know that:

1. wit′t′′ ≤ dit′′yit′

2. wi0t ≤ dit

3.
∑t

t′=0

∑T

t′′=σit+1 wit′t′′ = 0

Consequently, from (15), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit∑

t′=t+1

σit∑

t′′=t′

dit′′yit′ +

σit∑

t′=t

rit′ ≥
σit∑

t′=t

dit′

Furthermore,

σit∑

t′′=t′

dit′′ = δi
t′,σit

Finally,

xit +

σit∑

t′=t

rit′ + si,t−1 +

σit∑

t′=t+1

δi
t′,σit

yit′ ≥ δi
t,σit
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In the sequel of the paper, we denote by SPMCLSSP the Single-Period relaxation of
the problem MCLSSP where (2) is replaced by (8). As previously mentioned, we refer to
valid inequalities for the set defined by (3) − (8) as valid for SPMCLSSP.

Since each period is examined separately in the SPMCLSSP, some simplifications could
be done on inequations (8) . The expression si,t−1 +

∑σit

t′=t+1 δi
t′,σit

yit′ can be considered
as being the ending inventory of item i at period t− 1 and denoted s̃i,t−1. Thus, we have

s̃i,t−1 = si,t−1 +
∑σit

t′=t+1 δi
t′,σit

yit′ . Similarly, we note
∑σit

t′=t rit′ by r̃it and δi
t,σit

by d̃it.
The inequalities (8) are equivalent to:

xit + r̃it + s̃it ≥ d̃it, i = 1, . . . , N, t = 1, . . . , T. (16)

For the sake of simplicity, we remove the temporal index in the previous expression
since we work on a single-period in SPMCLSSP.

The inequalities (8) are written:

xi + r̃i + s̃i ≥ d̃i, i = 1, . . . , N. (17)

Proposition 2. Given a partition (U, V ) of the interval [t + 1, . . . , σit], the inequalities

xit +

σit∑

t′=t

rit′ +

(
si,t−1 +

∑

U

δi
t′,σit

yit′ +
∑

V

xit′

)
≥ δi

t,σit
, i = 1, . . . , N, t = 1, . . . , T (18)

are valid for MCLSSP.

Proof. The proof is similar to the proof of proposition 1.

The inequalities (18) are called the (l, S) inequalities for the problem SPMCLSSP.

3 Cover and reverse cover inequalities for the SPM-

CLSSP

In this section, we generalize some results on the cover and reverse cover inequalities
defined by Miller et al. [17].

Definition 1. (Cover)
A subset of items S of I is known as ”cover” of the problem SPMCLSSP if:

λS =
∑

i∈S

(
fi + vid̃i

)
− c ≥ 0 (19)

For the cover S, λs expresses the lack of capacity when all the items of S are produced.
Indeed, if λs > 0 then the total requirements of all the items of S are strictly higher than
the available capacity.

Proposition 3. (Cover inequalities)

The inequality

∑

i∈S

vi (s̃i + r̃i) ≥ λS +
∑

i∈S

max
{
−fi, vid̃i − λS

}
(1 − yi) (20)

is valid for SPMCLSSP.
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Proof. The proof is similar to the one presented in Miller et al. [17] by adding the demand
shortage variables r̃i as well as the variable resource consumption vi.

The inequalities (17) can be written:

s̃i + r̃i ≥ d̃i − xi, i = 1, . . . , N.

Then:

∑

i∈S

vis̃i +
∑

i∈S

vir̃i ≥
∑

i∈S

vid̃i −
∑

i∈S

vixi

If all the items of S are produced, yi = 1 ∀i ∈ S, from (3) we get:

∑

i∈S

vixi ≤ c −
∑

i∈S

fi

Then:

∑

i∈S

vis̃i +
∑

i∈S

vir̃i ≥
∑

i∈S

vid̃i −

(
c −

∑

i∈S

fi

)
=

∑

i∈S

(
vid̃i + fi

)
− c

By replacing
∑

i∈S

(
vid̃i + fi

)
− c by λS we get:

∑

i∈S

vi (s̃i + r̃i) ≥ λS (21)

We define a set S0 = {i ∈ S : yi = 0} that represents the items in S that are not
produced.

If
∣∣S0

∣∣ = 1, we have exactly one item i′ ∈ S such that yi′ = 0.
From (21) we can write:

∑

i∈S

vi (s̃i + r̃i) ≥ λS − fi′ (22)

We know that:

∑

i∈S

vi (s̃i + r̃i) ≥ vi′ (s̃i′ + r̃i′) ≥ vi′ d̃i′ (23)

Thus, from (22) and (23) we can conclude that:

∑

i∈S

vi (s̃i + r̃i) ≥ λS + max
{
−fi′ , vi′ d̃i′ − λS

}
(24)

Let us consider now the case where
∣∣S0

∣∣ > 1. The inequality (24) can easily be generalized
by considering the items in S0 one by one. Hence, we get:

∑

i∈S

vi (s̃i + r̃i) ≥ λS +
∑

i∈S0

max
{
−fi, vid̃i − λS

}
(25)

The inequality (25) can be generalized for the set S by introducing the term (1 − yi)
to take into account the production of the item. Hence, we have:
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∑

i∈S

vi (s̃i + r̃i) ≥ λS +
∑

i∈S

max
{
−fi, vid̃i − λS

}
(1 − yi)

In what follows, we describe another class of valid inequalities based on the reverse
cover set.

Definition 2. (Reverse Cover)
A subset S of I is known as reverse cover of SPMCLSSP if:

µS = c −
∑

i∈S

(
fi + vid̃i

)
≥ 0 (26)

For a reverse cover S, µS expresses the available capacity left when the total require-
ment for each item of S is produced.

Proposition 4. Let S be a reverse cover of SPMCLSSP, T = I \ S and (T ′, T ′′) be any
partition of T . The inequality

∑

i∈S

vi (s̃i + r̃i) ≥

(
∑

i∈S

(
fi + vid̃i

))
∑

i∈T ′

yi −
∑

i∈S

fi (1 − yi) −
∑

i∈T ′

((c − fi) yi − vixi) (27)

is valid for SPMCLSSP.

Proof. The proof presented here is similar to the one described in Miller et al. [17]. In the
following, we take into account the demand shortage variables r̃i as well as the variable
resource consumption vi.
Let (x∗, y∗, s̃∗, r̃∗) be any point of the convex hull of SPMCLSSP.
We have to consider three cases:
If y∗

i = 0 for all i ∈ T ′, then the inequality is valid, because
∑

i∈S vi (s̃∗i + r̃∗i ) ≥
−

∑
i∈S fi (1 − ỹ∗

i ).

Let T̄ ′ =
{
j ∈ T ′ : y∗

j = 1
}

If
∣∣T̄ ′

∣∣ = 1, we assume that T̄ ′ = {i′}
From (3) we have:

c − fi′ ≥
∑

i∈S

(vix
∗
i + fiy

∗
i ) + vi′x

∗
i′

From (17) we also have:

x∗
i ≥ d̃i − s̃∗i − r̃∗i

Consequently, we get:

c − fi′ ≥
∑

i∈S

(
vi

(
d̃i − s̃∗i − r̃∗i

)
+ fiy

∗
i

)
+ vi′x

∗
i′

Which gives:

∑

i∈S

vi (s̃∗i + r̃∗i ) ≥
∑

i∈S

vid̃i +
∑

i∈S

fiy
∗
i − ((c − fi′) − vi′x

∗
i′)

The inequality
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∑

i∈S

vi (s̃∗i + r̃∗i ) ≥

(
∑

i∈S

(
fi + vid̃i

))
−

∑

i∈S

fi (1 − y∗
i ) − ((c − fi′) − vi′x

∗
i′) (28)

is thus valid for SPMCLSSP.
If

∣∣T̄ ′
∣∣ > 1, the inequality (28) can be easily generalized by considering the items of T̄ ′

one by one. The inequality (27) follows.

4 Polyhedral results

In this section we present some results concerning the polyhedral structure of SPMCLSSP.
We will discuss the extreme points and rays of conv(SPMCLSSP), conv(SPMCLSSP)
denote the convex hull of SPMCLSSP. We show that cover inqualities are facet defining
of conv(SPMCLSPS).

4.1 Extreme points and rays

Given an extreme point (x̄, ȳ, s̄, r̄) of conv(SPMCLSSP). Let, Q = {i ∈ I : ȳi = 1}. Also,

let Qu =
{

i ∈ Q : x̄i = d̃i

}
, Qm =

{
i ∈ Q : x̄i > 0, x̄i 6= d̃i

}
, Ql = {i ∈ Q : x̄i = 0}. For

a given i we define types of (x̄i, ȳi, s̄i, r̄i)

Type 1 : x̄i = d̃i, ȳi = 1, s̄i = 0, r̄i = 0.
Type 2 : x̄i = 0, ȳi = 1, s̄i = d̃i, r̄i = 0.
Type 3 : x̄i = 0, ȳi = 1, s̄i = 0, r̄i = d̃i.
Type 4 : x̄i = 0, ȳi = 0, s̄i = d̃i, r̄i = 0.
Type 5 : x̄i = 0, ȳi = 0, s̄i = 0, r̄i = d̃i.

Proposition 5. In every extreme point (x̄, ȳ, s̄, r̄) of conv(SPMCLSSP), (x̄i, ȳi, s̄i, r̄i) is
of type 1, i ∈ Qu; (x̄i, ȳi, s̄i, r̄i) is of type 2 or type 3, i ∈ Ql; and (x̄i, ȳi, s̄i, r̄i) is of type
4 or type 5, i ∈ N \ Q. Moreover, either Qm = ∅ or |Qm| = 1 and

x̄m = c −
∑

i∈Qu

(
fi + vid̃i

)
−

∑

i∈Ql

fi − fm, ȳm = 1, s̄m = (d̃i − x̄m)+, r̄m = 0.

Or

x̄m = c −
∑

i∈Qu

(
fi + vid̃i

)
−

∑

i∈Ql

fi − fm, ȳm = 1, s̄m = 0, r̄m = (d̃i − x̄m)+.

Proof. The proposition says that there is only one i ∈ I for which the constraint (20)
plays a part in determining the value x̄i. For the other i ∈ I, xi is determined by the
other constraints. If |Qm| > 1 for some (x̄, ȳ, s̄, r̄) in conv(SPMCLSSP), then it’s not
difficult to construct two points such that (x̄, ȳ, s̄, r̄) is a convex combination of the two.

We will denote SPMCLSSP0 the set of points defined by constraints (29)-(33).
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xi + si + ri ≥ 0, i = 1, . . . , N. (29)
N∑

i=1

vixi +
N∑

i=1

fiyi ≤ 0 (30)

xi ≤ min

{
c − fi

vi

, d̃i

}
yit, i = 1, . . . , N (31)

xi, si, ri ≥ 0, i = 1, . . . , N. (32)

yi ∈ {0, 1} , i = 1, . . . , N. (33)

Definition 3. (x̂, ŷ, ŝ, r̂) is a ray of conv(SPMCLSSP) if (x̂, ŷ, ŝ, r̂) ∈ SPMCLSSP 0 \
{0}.

Definition 4. a ray (x̂, ŷ, ŝ, r̂) of conv(SPMCLSSP) is an extreme ray if there does no ex-
ist rays (x̂1, ŷ1, ŝ1, r̂1), (x̂2, ŷ2, ŝ2, r̂2) ∈ SPMCLSSP 0\{0}, (x̂1, ŷ1, ŝ1, r̂1) 6= η(x̂2, ŷ2, ŝ2, r̂2)
for any η ∈ R+, sush that : (x̂, ŷ, ŝ, r̂) = 1

2 (x̂1, ŷ1, ŝ1, r̂1) + 1
2 (x̂2, ŷ2, ŝ2, r̂2).

Proposition 6. All extreme rays of conv(SPMCLSSP) have the form xi = yi = 0, si =
1, ri = 0 or xi = yi = 0, si = 0, ri = 1 for some i ∈ I and xj = yj = sj = rj = 0, j 6= i.

Proof. From (30), (32) and (33) we have : x̂i = ŷi = 0 for all i ∈ I. Then extreme rays
of conv(SPMCLSSP) have the form : (0, 0, ŝ, r̂).

if for a ray (0, 0, ŝ, r̂) we have more than one nonzero components, then it’s not difficult
to construct two rays such that (0, 0, ŝ, r̂) is a convex combination of the two.

Rays that have the form xi = yi = 0, si = ŝi, ri = 0 or xi = yi = 0, si = 0, ri = r̂i for
some i ∈ I and xj = yj = sj = rj = 0, j 6= i connot be expressed as a convex combination
of two rays.

All the extreme rays of conv(SPMCLSSP) have the form xi = yi = 0, si = 1, ri = 0
or xi = yi = 0, si = 0, ri = 1 for some i ∈ I and xj = yj = sj = rj = 0, j 6= i.

Proposition 7. Given a cover S of SPMCLSPS, and an order of items i ∈ S such that
f[1] + v[1]d̃[1] ≥ · · · ≥ f[|S|] + v[|S|]d̃[|S|]. Let T = I \S. We define µ1 = f[1] + v[1]d̃[1] −λS.

If |S| ≥ 2, λS > 0, f[2] + v[2]d̃[2] ≥ λS and fi < µ1, i ∈ T . The inequality (20) induces a
facet of conv(SPMCLSPS).

Proof. conv(SPMCLSPS) is full-dimentional. It suffices to show that the intersection of
the hyperplane defined by (20) and conv(SPMCLSPS) has dimension 4N − 1. Note that
the 2 |T | rays with si = 1 and ri = 1, i ∈ T , are extreme rays of conv(SPMCLSPS)
and also lie in the hyperplan defined by (20). We will take into account only the T
extreme rays si = 1, i ∈ T . Therefore, it suffices to show 4P − |T | linearly independant
feasible points that lies in this hyperplane, and that are also linearly independant of the
|T | extreme rays si = 1. Consider the 4P − |T | points.

• For each i′ ∈ S \ [1],

xi′ = (v
i′

d̃
i′
−λS

v
i′

)+, yi′ = 1, si′ = d̃i′ − xi′ , ri′ = 0

x[1] = d̃[1] − (λS−v
i′

d̃
i′

v[1]
)+, y[1] = 1, s[1] = d̃[1] − x[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {i′ ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
|S| - 1 points.

• For [1],

x[1] = (
v[1]d̃[1]−λS

v[1]
)+, y[1] = 1, s[1] = d̃[1] − x[1], r[1] = 0
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x[2] = d̃[2] − (
λS−v[1]d̃[1]

v[2]
)+, y[2] = 1, s[2] = d̃[2] − x[2], r[2] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[2] ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
1 points.

• For each i′ ∈ S \ [1],

xi′ = yi′ = 0, si′ = d̃i′ , ri′ = 0

x[1] = d̃[1] − (λS−f
i′
−v

i′
d̃

i′

v[1]
)+, y[1] = 1, s[1] = d̃[1] − x[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {i′ ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
|S| - 1 points.

• For [1],

x[1] = y[1] = 0, s[1] = d̃[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
1 points.

• For each i′ ∈ S \ [1],

xi′ = d̃i′ + (
v[1]d̃[1]+f[1]−λS

v
i′

)+, yi′ = 1, si′ = 0, ri′ = 0

x[1] = y[1] = 0, s[1] = d̃[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {i′ ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
|S| - 1 points.

• For [1],

x[1] = d̃[1] + (
v[2]d̃[2]+f[2]−λS

v[1]
)+, y[1] = 1, s[1] = 0, r[1] = 0

x[2] = y[2] = 0, s[2] = d̃[2], r[2] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[2] ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
1 points.

• For each i′ ∈ S \ [1],

xi′ = d̃i′ + (
v[1]d̃[1]+f[1]−λS

v
i′

)+, yi′ = 1, si′ = 0, ri′ = 0

x[1] = y[1] = 0, s[1] = 0, r[1] = d̃[1]

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {i′ ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
|S| - 1 points.

• For [1],

x[1] = d̃[1] + (
v[2]d̃[2]+f[2]−λS

v[1]
)+, y[1] = 1, s[1] = 0, r[1] = 0

x[2] = y[2] = 0, s[2] = 0, r[2] = d̃[2]

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[2] ∪ [1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S
1 points.

• For each i′ ∈ T ,
xi′ = 0, yi′ = 1, si′ = d̃i′ , ri′ = 0
x[1] = y[1] = 0, s[1] = d̃[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S ∪ {i′}
|S| - 1 points.

11



• For each i′ ∈ T ,

xi′ = (
v[1]d̃[1]+f[1]−λS−f

i′

v
i′

)+, yi′ = 1, si′ = d̃i′ − xi′ , ri′ = 0

x[1] = y[1] = 0, s[1] = d̃[1], r[1] = 0

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S ∪ {i′}
|S| - 1 points.

• For each i′ ∈ T ,

xi′ = (
v[1]d̃[1]+f[1]−λS−f

i′

v
i′

)+, yi′ = 1, si′ = d̃i′ − xi′ , ri′ = 0

x[1] = y[1] = 0, s[1] = 0, r[1] = d̃[1]

xi = d̃i, yi = 1, si = 0, ri = 0, i ∈ S \ {[1]}

xi = yi = 0, si = d̃i, ri = 0, i /∈ S ∪ {i′}
|S| - 1 points.

We have showed (4 |S| + 3 |T |) = (4N − |T |) independant points. It can be checked
that these (4N − |T |) points and the |T | rays si = 1, i ∈ T , are linearly independant.

5 Conclusion

We proposed a mathematical formulation of a capacitated lot-sizing problem with addi-
tional constraints. A polyhedral approach has yielded strong valid inequalities. We also
study the polyhedral structure of the convex hull of the signle-period relaxation of this
model. We prove that these inequalities induce facets of the convex hull under certain
conditions. By following the same approach, we can prove that reverse cover inequalities
are also facet defining under certain conditions. The valid inequalities presented in this
document were generalized to take into account other constraints that occur frequently in
industrial situations. Some extensions could be done when we have to deal with setup con-
straints on groups of items or minimal production and minimum run constraints. These
inequalities were also generalized when more than one resource is available. Further re-
search will be devoted to find new inequalities to take into account several production
processes. It would be also interesting to use this approach in conjunction with a time
decomposition heuristic.
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