
Using Alliance
Tutorials

Abstract

These tutorials introduce the design flow to be used in the Alliance CAD framework for the
design and verification of a standard cells circuit, including the pads. Each step of the desgin
flow is supported by one or more specific tools, whose use is briefly explained in the tutorials.

These texts are meant to be simple and comprehensive, and are to be used to get into the
system. Should something be unclear or wrong, please indicate this by sending an e-mail to
alliance-users@asim.lip6.fr.

1 Introduction

In these tutorials, you will learn the practical use of some basic Alliance tools by building some
very simple circuits from scratch. It is recommended that you read the overview.pdf file before
proceeding, as it describes the main steps of the design conceptually.

2 Before starting

In those tutorials you will learn the practical use of the following Alliance tools :
In the first tutorial (simulation/ directory) :

• asimut : VHDL compiler and simulator.

• genpat : patterns generator.

• genlib : Netlist capture.

• xpat : Graphical pattern viewer.

In the second tutorial (place route/ directory) :

• ocp : Standard cell placer.

• ocr : Over cell router (obsolete)

• nero : Over cell router

• druc : Design rule checker.

• ring : Core to pads router.

• cougar : Symbolic layout extractor.

1



• lvx : Netlist comparator.

• graal : Graphic layout editor.

In the third tutorial (synthesis/ directory) :

• syf : Finite state machine synthesizer.

• boom : Boolean optimization of a logic level behavioral description (VHDL data flow).

• boog : Mapping of a behavioral descriptiononto a standard cell library.

• loon : Fanout optimizer, global optimizer and timing analyser of

• scapin : Scan Path insertion

• xsch : Graphical schematic viewer.

If you run a c-like shell, like csh or tcsh, try to run the following command :

˜alp/addaccu %-) source /alliance/etc/alc_env.csh

Otherwise, if you run a sh-like shell, try to run the following command :

˜alp/addaccu %-) source /alliance/alc_env.sh

Before we proceed to the tutorial, you must make sure that the Alliance tools are readilly avail-
able when invoking them at the prompt. The prompt in represented in the following text by the
symbol :

˜alp/addaccu %-)

In this system, alp is the user, addaccu is the current directory, and %-) is supposed to give us
courage!

3 Execution environment set up

Later, before you will start examining alliance tools, you will probably want to know the environ-
ment variables setup. To see it, please enter the following command :

˜alp/addaccu %-) env | grep MBK

2



˜alp/addaccu %-) env | grep MBK
MBK_OUT_PH=ap

MBK_CATAL_NAME=CATAL

MBK_SCALE_X=100
MBK_VSS=vss

MBK_CATA_LIB=.:/alliance/cells/sxlib:/alliance/cells/padlib

MBK_WORK_LIB=.
MBK_VDD=vdd

MBK_C4_LIB=./cellsC4

MBK_IN_LO=vst

MBK_IN_PH=ap
MBK_TARGET_LIB=/alliance/cells/sxlib

MBK_OUT_LO=vst

Figure 1: MBK environment variables.

All these variables are documented at least with a manual page. However, some variables are
documented in each tutorial.

4 File Formats

One of the interesting features of Alliance is that different file formats can be used for both netlist
and layout view. However, in the design methodology we wish to promote, some formats are
recommended. The vst, structural VHDL, is dedicated to netlist specification. The al format is
dedicated to extracted layout representation. The ap format is the usual layout format.

So, prior to generate a specification netlist, you shall type:

˜alp/addaccu %-) setenv MBK_OUT_LO vst

Otherwise, if you are running a sh-like shell:

˜alp/addaccu %-) MBK_OUT_LO=vst; export MBK_OUT_LO

But if you wish to extract a netlist from the layout then you’ll do:

˜alp/addaccu %-) setenv MBK_OUT_LO al

You are now ready to actually do all tutorials.

3


