
Alliance: A Complete CAD System for VLSI Design

Équipe Achitecture des Systèmes et Micro-Électronique
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
4, Place Jussieu 75252 Paris Cedex 05,

France
http://www-asim.lip6.fr/alliance/

ftp://ftp-asim.lip6.fr/pub/alliance/
mailto:alliance-users@asim.lip6.fr

Abstract

The Alliance package is a complete set of CAD tools for the specification, design and validation
of digital VLSI circuits. Beside the tools, Alliance includes also a set of cell libraries, from
standard cells for automatic place and route tools, to custom block generators to be used in high
performance circuits. This package is used in more than 250 universities worldwide.
Each Alliance tool can operate as a standalone program as well as a part of the complete design
framework. After introducing briefly the design methodology, we outline the functionnality of
the tools. Experimental results conclude the presentation.
Alliance runs on any Unix system and has been also ported to Windows using Cygwin envi-
ronment. It is freely available on ftp, and includes binaries, leaf cells libraries, on-line docu-
mentation, and tutorials.

1 Introduction

The Alliance package is the result of a ten years effort spent at the LIP6 Laboratory (formerly
MASI) of the Pierre et Marie Curie University (UPMC), in Paris. During these years, our major
goal was to provide our undergraduate and graduate students with a complete CAD framework,
designed to assist them in digital VLSI CMOS course. The Architecture team at LIP6 focuses its
activity on two key issues: computer architectures using high complexity ASICs, and innovative
CAD tools for VLSI design. Strong interaction exists between the people working on computer
architectures and the one working on CAD tools. The main CAD action aims at fulfilling both
the needs of experienced designers by providing practical answers to state-of-the-art problems
(logic synthesis, procedural generation, layout verification, test and interoperability), and novice
designers, by providing a simple and consistent set of tools. Our VLSI design flow is therefore
based on both advanced CAD tools that are not available within commercial CAD systems, such as
functional abstraction or static timing analysis, and standard design/validation tools.

Alliance VLSI CAD System is free software. Binaries, source code and cells libraries are freely
available under the GNU General Public Licence (GPL). You are welcome to use the software
package even for commercial designs whithout any fee. You are just required to mention : "De-
signed with Alliance c© LIP6/Université Pierre et Marie Curie". For any questions please mail to :
alliance-users@asim.lip6.fr.

1



1.1 Process independence

To be useful, a CAD system must provide a way to the silicon, therefore Alliance provides a large
set of cell libraries also available at the layout level. The target technologies of Alliance is CMOS.
The layout libraries rely on a symbolic layout approach that provides process independence in
order to allow the designers to easily port their designs from one silicon supplier to another. The
main point in this approach is that the pitch matching constraints in both x and y direction are kept
through technological retargetting. The translation, fully automated, relies on a technological file
suited to a given process.

These files can be generated directly from the process design rules. Also technological files for
several processes are available through the CMP and EuroPractice services, provided you signed a
NDA for the process.

1.2 Software portability

The Alliance package has been designed so to run on an heterogeneous network of workstations.
The only requirements are a C compiler and a Unix system. For the graphical applications, the
XWindow library is used. Several hardware platforms, from Intel 386 based computers to Sparc-
Stations and DEC Stations, are supported.

1.3 Modularity

According to the interoperability constraints, each Alliance tool can operate as a standalone pro-
gram as well as a part of the complete Alliance design framework. Each Alliance tool therefore
supports several standard VLSI description formats : SPICE, EDIF, VHDL, CIF, GDS2. In that
respect, the tools ouputs are fully usable under the Compass and Cadence Opus environnement,
provided these tools have the necessary configuration files. The Alliance tools support a zero-
default top-down design methodology with not only construction tools — layout editor, automatic
place & route — but also validation tools, from design rule checker to functional abstraction and
formal proof.

1.4 Compactness

Unlike commercially available CAD systems, the Alliance CAD Framework suits the limited ressources
of low-cost workstations. For small educational projects — 5000 gates —, a Unix system with 8 to
20 Mbytes of memory, appropriate disk storage (30 Mbytes per user), and graphic capabilities (X-
Window) is sufficient.

1.5 Easiness

All tools and the proposed design flow are simple to teach and to learn. In any situation, easiness
and simplicity have been prefered to sophisticated approaches.

To each tool correspond a unique behavior and utility. Each step of the design methodology corre-
sponds to the use of one or a few tools, for which the usage is well identified.

From a pratical point of view, both on-line documentation (Unix man) and paper are available with
each tool of the Alliance package.

2



2 Alliance design flow

We refer to the term "design flow" as a sequenced set of operations performed when realizing a
VLSI circuit. In the design flow, we rely on a strict definition of all the objects and design functions
found in the process of designing a VLSI chip. The design flow is based on the Mead-Conway
model and is characterized by its top-down aspect. Below we introduce the major steps of the basic
design methodology. It emphasizes the top-down aspect of the design flow, and points out that our
methodology is breaked up into 5 distinct parts, the latter being not available yet within Alliance:

• capture and simulation of the behavioral view,

• capture and validation of the structural view,

• physical implementation of the design,

• layout verification,

• test and coverage evaluation.

The design flow also includes miscellaneous tools like layout editor for the design of the cell li-
braries, and a PostScript plotter for documentation.

2.1 Capture and simulation of the behavioral view

Like we just saw, the capture of the behavioral view is the very first step of our design flow. Within
Alliance, any VLSI design begins with a timing independent description of the circuit with a subset
of VHDL behavior primitives. This subset of VHDL, called vbe, is fairly restricted: it is the data-
flow subset of this language. It is not very easy to modelize an architecture using this subset, but
it has the great advantage of allowing simulation, logic synthesis and bit level formal proof on the
same files.

A VHDL analyzer called vasy can be used to automatically convert most common VHDL descrip-
tions (using for example IEEE 1164 packages) to the restricted Alliance subsets (vbe and vst).

Patterns, VHDL simulation stimuli, are described in a specific formalism that can be captured
using a dedicated language genpat. Once a VHDL behavioral description written and a set of test
vectors have been determined, a functional simulation is ran. The behavioral VHDL simulator is
called asimut. It validates the input behavior, according to the input/output vectors.

2.2 Capture and validation of the structural view

The structural view can be captured once the data flow description is validated. The actual capture
of the netlist relies either on specific description languages, genlib for standard cells or dpgen for
data-path, or on direct synthesis from the data flow using the boom tool for optimization and the
boog tool to map on a cell library. Genlib and dpgen are netlist-oriented libraries of C functions.
In the design methodology, it is essential for the students to get acquainted with the C language
basics. The advantage of such an approach is that designers do not have to learn several language
with specific syntax and semantics.

Usually, the main behavior is partitionned in several sub-behaviors. Some are described recursively
using the genlib language and the other ones can be directly synthesized from a VHDL descrip-
tion of the corresponding sub-behaviors. The boog tool takes an RTL description and generates
a netlist of standard cell gates. An other subset of VHDL allows to capture finite state machines.

3



This subset, called fsm, can be translated into a RTL description using the tool syf, and then the
resulting description optimized using boom and finally syntesized as a netlist using once more
boog.

Since asimut can operate on both RTL and structural views, the structural description is checked
against the behavioral description by using the same set of patterns that has been used for behav-
ioral validation.

2.3 Physical design

Once the circuit netlist has been captured and validated, each leaf of the hierarchy has to be phys-
ically implemented. A netlist issued from boog is usually placed and routed using the over cell
router nero. If the netlist has been captured using genlib and if it has a high degree of regularity,
it can be placed manually for optimisation using other genlib functions.

The different parts can be placed and assembled together using ocp and routed using overcell
router called nero, and this generates what we call a core. The circuit core is now ready to be con-
nected to external pads. The core-to-pads router, ring, aims at doing this operation automatically,
provided the user has given an appropriate netlist and some indications on pad placement.

The last stage of the physical implementation is the translation of the symbolic layout to a foundry
compliant layout using the s2r tool. After that, the tape containing the circuit can be processed by
the silicon supplier.

2.4 Verification

In our VLSI class, we intend to show that VLSI verification is at least as important as VLSI physical
design. For that reason, we have introduced in the design flow powerful tools to perform behavior,
netlist and layout verifications.

The correctness of the design rules is checked using the design rule checker druc.

An extracted netlist can be obtained from the resulting layout. Cougar, the layout extractor op-
erates on both hierarchical and flattened layout and can output both flattened netlists (transistor
netlist) and hierarchical netlists. The transistor netlist can be the input of a spice simulator.

When extracted hierarchically, the resulting netlist can be compared with the original netlist by
using the lvx tool. lvx, that stands for Logical Versus Extracted, is a netlist comparator that
matches every design object found in both netlists.

The critical path of the circuit is evaluated using a commercial static timming analyzer, as Alliance
doesn’t provided one.

2.5 Test and coverage evaluation

For now, the fault coverage provided by the functional patterns is evaluated using a commercial
fault simulator, as Alliance doesn’t provide one yet.

3 Tools and layout libraries of the Alliance package

Every Alliance tool has been designed to simply interface with each other, in order to support
the proposed design flow. Nevertheless, each tool can also be used independently, thanks to the
multiple standard formats used for input and output files.

4



  loon

Physical
view

syf

Behavioral
viewproof

asimut

graaldreal

s2r

druc

Structural
viewlvx

boog
boom

genlib

ring

ocp
nero

genpat

cougar

Figure 1: How the tools are linked on the data structures.

One of the most important characteristics of the Alliance system is that it provides a common
internal data structure to represent the three basic views of a chip:

• the behavioral view,

• the structural view,

• the physical view.

Figure 1 details how all the Alliance tools are linked together around the basic behavioral, struc-
tural and physical data structures.

The process independence goal is achieved with a thin fixed-grid symbolic layout approach. All
the library of the system use this approach successfully. Layouts have been targetted to ES2 2µm,
1.5µm, 1.2µm, 1.0µm and 0.7µm technologies, the AMS 1.2µm technology and SGS-Thomson 0.5µm,
0.35µm technologies. Chips have been fabricated successfully through the CMP services on these
technologies.

3.1 Tools

• vasy is a VHDL analyzer and convertor. The supported VHDL subset is closed to commer-
cial synthesizer tools such as Synopsys. It converts automatically VHDL descriptions to the
restricted VHDL subsets of Alliance tools.

• asimut is a VHDL logic simulator. The supported VHDL subset allows both structural
and behavioral data-flow description (without timing information). Complex systems and

5



microprocessors, including INTEL 8086 and MIPS R3000 have been successfully simulated
with asimut. Asimut is based on an event-driven algorithm and powerful representation of
boolean functions using binary decision diagrams.

• genpat is a language interpreter dedicated to efficient descriptions of simulation stimuli. It
generates an ASCII file that can act as an input of asimut. A genpat file format to MSA
translator allows the generation of appropriate simulation patterns for the Tektronix LV500
tester. This allows to perform functional tests when the circuits comes back from the foundry.

• loon is a gate level netlist optimizer. If the output of the logic synthesis takes into account the
internal delays of the cells during the mapping phase, it doesn’t take into account the fan-out
problems. Netoptim work is to ensure that the drive capabilities of all cells are correct, and
to try to minimize the delays on the critical pathes in inserting buffers where appropriate.

• genlib is a procedural language for netlist capture and placement description (there is no
schematic editor in the Alliance system). Genlib provides a consistent set of C primitives,
giving the designers the ability to describe VLSI circuit netlists in terms of terminals, signals
and instances, or circuit topologies in terms of placement of abutment boxes. Genlib is
mainly used to build parameterized netlist and layout generators.

• dpgen is a language that has moreorless the same functionalities as genlib, but it is ded-
icated to datapath description. Its primary difference with genlib is that it allows to ma-
nipulate vectors of cells, like 32 two inputs nand gates or a 32 bits adder. It contains many
primitives that greatly simplify the description of operative parts, in an optimized manner.
dpgen has been recently merged with genlib.

• boom is a logic optimizer and logic synthesis tool. The input file is a behavioral description
of the circuit using the same VHDL subset as the logic simulator. The boolean equations
described in VHDL are optimized so to minimize the number of boolean operators. The
output is a new, optimized, data flow description.

• boog is a logic synthesis tool. The output is a netlist of gates. boog can map a data-flow
description on any standard-cell library, as long as a VHDL data-flow description is provided
with each cell.

• syf is a finite state machine synthesizer. More precisely, syf assigns values to the symbolic
states used for the automaton description, and aims at minimizing the resulting logic for both
state transistion and output generation. The input is a fsm description, using a dedicated
subset of VHDL that includes process description. The output is a behavioral description of
the circuit using the same VHDL subset as the logic simulator. The output of syf is to be
synthesized into a netlsit of gates using boog.

• ocp is a placer for standard-cells. The placement system is based on simulated annealing.

• nero is an over cell router. The input is a netlist of gates and a placement file. The output is
an hierarchical chip core layout without external pads. A specialized router is used for core
to pad routing.

• Ring is a specific router dedicated to the final routing of chip core and input/output pads.
Ring takes into account the various problems of pad placement optimization, power and
ground distribution. A set of symbolic pads is included in the package.

• S2r is the ultimate tool used in our design flow to perform process mapping. S2r stands for
"symbolic to real", and translates the hierarchical symbolic layout description into physical
layout required by a given silicon supplier. The translation process involves complex oper-
ations such as denotching, oversizing, gap-filling and layer adaptation. Output formats are
either CIF or GDSII. S2r requires a parameter file for each technology aimed at. This file
is shared with druc, lynx, graal, dreal and genview. From an implementation point of
view, these tools use a bin-based data-structure that has very good performances.

6



Figure 2: Editing some custom layout using graal.

• druc is a design rule checker. The input file is a - possibly hierarchical - symbolic layout.
It checks that a layout is correct regarding the set of symbolic design rules. This correct-
ness must be ensured in order for s2r to produce a layout compatible with the target silicon
foundry.

• Cougar is a layout extractor. The input is a - possibly hierarchical - layout. The layout can be
either symbolic or real. The output is an extracted netlist with parasitic capacitances and op-
tionally resistors. The resulting netlist can either be hierarchical or flattened (up to transistor
level netlist).

• Lvx is a logical versus extracted net-compare tool. The result of a run indicates if the two
netlist match together, or if there are different. Note that lvx doesn’t work at the transistor
level.

• proof performs a formal comparison between two data flow VHDL descriptions that share
the same register set. Proof supports the same subset of VHDL as asimut, boom, boog.

• graal is an hierarchical symbolic layout editor. It requires a X-Window graphical environ-
ment and the Motif libraries. Graal is used for cell layout design or hierarchical block con-
struction. It provides an on-line DRC and automatic display of equipotential nets. Editing a
cell under graal is shown figure 2.

• dreal is a real layout editor (rectangles in micron) . It requires a X-Window graphical envi-
ronment and the Motif libraries.

• there are many other tools not described here.

3.2 Cell libraries

The Alliance package provide a wide range of libraries, either static, ie. fixed cells, or dynamic, as
the block is produced by running a parameterized generator. These libraries are compatible with
any two metals/one polysilicon technology.

Each object in the library has, for static ones, or produces, for dynamics ones, three views at least :

• the symbolic layout, that describes the cell topology.

• the netlist, in terms of transistor interconnections.

• the behavior, specified in VHDL data flow form.

7



3.2.1 Standard cell library

The sxlib library contains boolean functions, buffers, mux, latches, flip-flops, . . . (around 100
cells). All cells have the same heightare and N times the width, where N is the number of pitches.
That is the only physical information given in the cell list below. Power supplies are in horizon-
tal ALU1 and have the same width. Connectors are inside the cells, placed on a 5x5 grid. Half
layout design rules are a warranty for any layer on any face, except for the power supply and
NWELL.Cells can be abutted in all directions whenever the supply is well connected and connec-
tors are always placed on the 5x5 grid. They are supposed to be used with a usual standard cells
place and route tools, such as Alliance’s ocp and nero, Compass or Cadence. These cells are to be
used primary for glue logic, since optimized operators can be obtained using dedicated generators,
as stated paragraph 3.2.2. The logic tool can map a behaviral VHDL onto this library.

3.2.2 Datapath libraries: (This part of the document is not up to date !)

There are two kinds of datapath libraries:

• dp_sxlib is a cell library dedicated to high density data-paths. It must be used in conjunc-
tion with the data-path tool dpgen. The cells in dp_sxlib have the same functionnalities as
the ones in sxlib, but have a topology that is usable only within a datapath. Boog can also
map a behavior onto the dp_sxlib library.

• fplib is a set of above 30 regular functions that are useful in the design of a datapath. These
functions range from a n inputs nand gate to a n times m register file.

Here the cells share the power and ground lines in metal2. A powerful dedicated over the cell
router can route custom blocks and logic glue in the same structure. Among the fplib function-
nalities, four optimized blocks generators should be presented in more details, as they reflect the
quality of this library. All the generators are build with a tiler using a dedicated leaf cell library.
Their output is a symbolic layout, a VHDL behavior, a set of pattern for test purpose, a netlist, an
icon, and a datasheet indicating size and timing estimation for a given technology. The structural
parameters varies according to their functionalities.

• optimized generators for datapath operators:

rsa, a fast adder generator, with propagation time in log nb and size in nb log nb, where nb
is the number of bits. Its has 2 or 3 input buses, and if needed a carry input. It may be
used as a substractor or adder/substractor.

Params Meaning Range
nb number of bits 3 to 128
cin carry in true or false
csa three inputs adder true or false
ovr overflow flag true or false

rfg, a static register file generator. It has one write address , and one or two read address. It
may be operated as a set of level-sensitive latches or edge triggered flip-flops.

Params Meaning Range
nb number of bits 2 to 64
nw number of words 2 to 256
bus number of read bus 1 or 2
op mode of operation latch or flip-

flop
low
power

reduce power consumption true or false

8



bsg, a barrel shifter generator. Possible operations are :

– logical right shift
– arithmetical right shift
– logical left shift
– arithmetical left shift
– right rotation
– left rotation

Params Meaning Range
nb number of bits 3 to 64

amg, an integer modified booth algorithm array multiplier. the x and y inputs are indepen-
dent, and pipeline stages can be inserted in the circuit.

Params Meaning Range
nx number of bits of the x operand 8 to 64
ny number of bits of the y operand 8 to 64
ps number of pipeline stages to be inserted in the

circuit
0 to min(nx

2
,

ny

2
)-1

3.2.3 Custom libraries

Two full-custom parameterized generators are also available. They produce stand-alone blocks,
that are to be routed only at the floorplan level with other blocks, using either bbr or better
xcheops.

• ROM and RAM generators:

grog, a generic ROM generator. The interface is an address bus, a clock and an output enable
signal, and a data out bus. The coding format to specify the ROM contents is a limited
subset of VHDL.

Params Meaning Range
nb number of bits 1 to 64
nw number of words 64, 128, 256,

n 512, 1 ≤ n ≤ 8
hz tri-state output true or false

rage, a RAM generator. The interface has a read/write address, a write signal indicating if
a read or a write is to be performed, and a clock.

Params Meaning Range
nb number of bits 2 to 128
nw number of words 128 to 4096
aspect aspect ratio narrow,

medium or
large

ud unidirectional, ie share the same bus for data in
and out

true or false

All these generators have been designed using the Alliance CAD tools, for both design and verifi-
cation phases.

9



3.2.4 Pad library

Alliance provides also a padlib library. This library also uses a symbolic layout approach, and
therefore a whole chip can be targeted on several technology without even the core to pad routing.
A very robust approach has been enforced, as the pads are subject to electrostatic discharge, and
also more sensible to latch-up than the other parts of the circuit due to the amount of current that
flows through them.

Chips using these pads have been fabricated on ES2 1.0µm, AMS 1.2µm and SGS-Thomson 0.5µm
technology and work as expected.

4 Supported exchange formats

The Alliance CAD system handles many file formats. They are summarized here. A file can be
either read, using a parser, or written, using a driver.

• Behavioral view:

– dataflow VHDL parser and driver.

• Structural view:

– VHDL parser and driver.

– EDIF parser and driver.
– Spice parser and driver.

– Compass parser and driver.

– Alliance parser and driver.

– Hilo driver

• Physical view:

– Alliance parser and driver, for symbolic layout.

– Compass parser and driver, for symbolic layout.

– Modgen parser and driver, for symbolic layout.

– CIF parser and driver, for real layout.
– GDSII parser and driver, for real layout.

Being able to understand and write many file formats is a must. First, in a development environ-
ment, as it allows to check the validity of tools on other CAD systems. Second, because some tools
are not available or desirable within Alliance, but may be useful however: it is possible to feed an
other software with a design in that situation.

The experience showa that many of these formats are used daily. For example, the design that we
fabricate through the CMP services are transmitted using the GDSII format. The final DRC on
these files are performed using Cadence pdverify.

An other example: Alliance does not have a fault simulator yet. However this kind of tool is very
useful to evaluate the fault coverage of a set of vectors and must be introduced in a VLSI class.
This is hopefully easilly done using the Hilo output of Alliance that feed the hifault simulator.

10



5 Alliance internal organization

The complete Alliance CAD system contains about 600 000 lines of C code, and over 600 leaf cells.
It compiles and runs on most Unix system, and requires the basic X-Window library X11 plus Motif.
The distribution tape shows that there are three kinds of files:

• common data structures and manipulation primitives.

• parsers/drivers to read and write external file formats.

• actual tools.

Alliance as been developed in order to simplify cooperative work between the CAD tool designers.
The existence of a common data structure framework releaves the developer of many burdens:
reading and writing many file format, conceptualizing the VLSI objects, writing classical high level
and nevertheless complex functions, ... All the Alliance tools share these data structures and their
related functions. So each tool communicates with the other ones smoothly, by construction.

6 Use of Alliance inside our laboratory

Alliance is used for both educational and research purposes. We relate our experience below.

Educational aspects

The Alliance System has been extensively used during the past fifteen academic years (1989-2004)
as a practical support of two undergraduate courses: one on CMOS VLSI design, the other one
on advanced computer architecture. These initiation courses lasts 13 weeks with a 2 hours lecture
and 4 hours spent using the Alliance system per week, and involves 60 students and 3 teachers.

The ‘VLSI design’ course is for students that have no previous knowledge on VLSI design and
mainly come from two distinct channels: "computer science" and "electrical engineering" masters
of sciences. During this course, students are required to design and implement an AMD2901 com-
patible processor, starting from a commercial data-sheet. The chip, with a complexity of about 2000
transistors, is designed by groups of 2 or 3 students. The main interest in this course is to teach the
design methodology. Most of the Alliance tools are used during this class.

The ‘architecture’ course focuses on the way processor architecture, from the system point of view
and not from an implementation one. Typical CISC and RISC processors are studied, and part of
them modelized using our VHDL subset. In that class, only the asimut simulator is used.

Alliance is also used in an intensive graduate course, for the design of the 32 bits microprocessor
MIPS RISC processor – 30000 transistors –. This course lasts two months, and aims only at the
implementation : the high level behavioral model of the processor is given to the students. During
that period of time, all the Alliance tools are used.

Research projects

These projects range from medium complexity ASICs developed in 6 months by a couple of de-
signers Data-safe, TNT, Smal, Rf264,etc... to high complexity circuits (FRISC, Multick, StaCS,
Rapid2, Rcube) developed by a team of PhD students.

11



Project transistors Functionality
Smal 17 000 one bit processor for SIMD architectures

Data-safe 35 000 dynamic data encryption chips
TNT 60 000 switch-router for T800 transputerss

FRISC 200 000 floating-point RISC microprocessor
StaCS 875 000 Very Long Instruction Word processor

Rapid2 650 000 SIMD systolic and associative processor
Rcube 350 000 Message router for parallel machines

Figure 3: Various chips designed with Alliance.

Figure 4: The 875 000 VLIW StaCS processor.

The three largest circuits described in table 3 use not only standard-cells but also parameterized
generators for regular blocks like RAMs, data-paths, or floating-point operators. The FRISC and
TNT projects successfully used the Cadence and Compass place and route tools, and therefore
prove the interoperability of the Alliance system.

A picture of the StaCS processor is shown figure 4.

7 Conclusion

We are very satisfied to use a set of tools of our own for teaching CMOS VLSI design for two good
reasons. First, we simply can’t afford 50 high end workstations to run commercial CAD systems
like Synopsys, Mentor Graphics or Cadence. Second, both the Synopsys and Cadence system
have been used in research project at LIP6. They are powerful and sophisticated environments but
are much too complex for novice undergraduate students. The great advantage of the Alliance
CAD system is that we have done our best to stick to the basic yet powerful concepts of VLSI de-
sign. To each tool correspond a unique functionnality, that cannot be changed or worked around by
parameter files. At last, we experienced that the technology migration and process independence
are key issues. Hence, it is crucial to rely on a portable library at the symbolic layout level.

The Alliance package is now in use all over the world, and more than 250 sites have registered
today. It is available through anonymous ftp at ftp://ftp-asim.lip6.fr/pub/alliance/
distribution/, or through a Web browser at http://www-asim.lip6.fr/pub/alliance/
distribution/.

There is an Alliance mailing list, where users can share their views and problems, and our team
is always ready to answer questions. The address of this mailing list is alliance-users@asim.
lip6.fr.

12


