
ALLIANCE TUTORIAL
Pierre & Marie Curie University

2001 - 2004

PART 2
Logic synthesis

Ak Frederic Lam Kai-shing
Modified by LJ

PART 2 Logic synthesis

The purpose of this tutorial is to provide a quick turn of some AL-
LIANCE tools, developed at the LIP6 laboratory of Pierre and Marie
Curie University.

The tutorial is composed of 3 main parts independent from each other:

� VHDL modeling and simulation
� Logic synthesis
� Place and route

Before going further you must ensure that all the environment vari-
ables are properly set (source alcenv.sh or alcenv.csh file) and that the
Alliance tools are available when invoking them at the shell prompt.

All tools used in this tutorial are documented at least with a manual
page.

ALLIANCE TUTORIAL 2

PART 2 Logic synthesis

Contents

1 Introduction
2 Finite states machine Synthesis

2.1 Introduction
2.2 MOORE and MEALY automatons
2.3 SYF and VHDL
2.4 Example
2.5 Step to follow

3 Automat for digicode
3.1 Step to follow

4 Logic synthesis and structural optimization
4.1 Introduction

4.1.1 Logic synthesis
4.1.2 Solve fan-out problems
4.1.3 Long path visualization
4.1.4 Netlist Checking
4.1.5 Scan-path insertion

4.2 Step to follow
4.2.1 Mapping on predefined cells
4.2.2 Netlist visualization
4.2.3 Boolean network optimization
4.2.4 Netlist optimization
4.2.5 Netlist checking
4.2.6 Scan-path insertion in the netlist

5 AMD 2901
5.1 exercise
5.2 step to follow
5.3 error found

6 AMD2901 structure
7 Part controls design

7.1 genlib description example
7.2 provided files checking
7.3 Part controls description

8 Data-path design
8.1 Example of description with genlib macro-functions

ALLIANCE TUTORIAL 3

PART 2 Logic synthesis

8.2 Data-path description
9 The Makefile or how to manage tasks dependency

9.1.1 Rules
9.1.2 models Rules
9.1.3 Variables definitions
9.1.4 Predefined variables

10 Appendix: Diagrams as an indication but not-in conformity with
the behavioral

ALLIANCE TUTORIAL 4

PART 2 Logic synthesis

PART 2 :
Logic Synthesis

All the files used in this part are located under
/tutorial/synthesis/src directory.
This directory contents four subdirectories and one Makefile :

� Makefile
� amdbug

– Makefile
– amdfindbug.pat : tests file
– several files amd.vbe : behavioral description

� counter

– Makefile
– cpt5.fsm : description in fsm
– cpt5.pat : tests file

� digicode

– Makefile
– digicode.fsm : description in fsm
– paramfile.lax : use to modify the fan-out
– digicode.pat : tests file
– scan.path : make it possible to observe registers contents

� amd2901

– Makefile
– amd2901_ctl.vbe : behavioral description of control part
– amd2901_dpt.vbe : behavioral description of data-path
– amd2901_ctl.c : file .c of control part
– amd2901_dpt.c : file .c of data-path
– amd2901_core.c : file .c of heart
– amd2901_chip.c : file .c of the circuit with their pads
– pattern.pat : tests file

ALLIANCE TUTORIAL 5

PART 2 Logic synthesis

1 Introduction

The goal of this section is to present some ALLIANCE tools which are:

� Logic synthesis tools SYF, BOOM, BOOG, LOON, SCAPIN ;
� Data-path generation toolGENLIB ;
� netlist graphical viewer XSCH ;
� formal proof Tools FLATBEH, PROOF;
� The simulator ASIMUT ;

The first two sections will relate to the netlist generation and vali-
dation methods of predefined cells. Indeed, even if it is acquired that
the tools for ALLIANCE generation function correctly, the validation of
each generated view is essential . It makes it possible to limit the cost
and the time of the design.
The two other sections will be reserved for the data-path generation
and the control part of AMD2901.

2 Finite states machine Synthesis

2.1 Introduction

A pure combinatorial circuit has no internal registers. So its outputs de-
pend only on its primary inputs. On the contrary a synchronous sequen-
tial circuit having internal registers sees its outputs changing according
to its inputs but also memorized values in its registers. As consequence,
the circuit state at the moment t+1 also depends on its state at the mo-
ment t. This type of circuit can be formally modelized as a finite states
machine.

ALLIANCE TUTORIAL 6

PART 2 Logic synthesis

reset and day

E0

reset
reset

E1

 reset

E2

alarm=0

alarm=0

alarm=1
day and reset

door=0

door=0

reset or day

day and reset

door=1

Figure 1: Automat

2.2 MOORE and MEALY automaton

The MOORE automaton sees the state of its outputs changing only on
clock-edges. The inputs can thus move between two clock-edges with-
out modifying the outputs. But in the case of MEALY automaton, the
variation of the inputs can modify at any time the value of the outputs.
It will be essential to separate the generation function from the transition
function (Moore automaton). Two distinct processes will then modelize
the next state computation and the current state register update.

ck

ck

ckck

generation

o

transition

o o

ii i

states registerstates register

function
transition

function

generation
function

generation
function

Moore Automat Mealy Automat

transition
function

states register

function

Moore Automat optimized
on propagation time of o

Figure 2: Automats

ALLIANCE TUTORIAL 7

PART 2 Logic synthesis

2.3 SYF and VHDL

In order to describe the automatons, we use a particular VHDL style
description that defines architecture "FSM" (Finite-State Machine).

The corresponding file also has the extension fsm . From this file, the
tool SYF makes the automaton synthesis and after state encoding, it
transforms this abstracted automaton into a Boolean network and a state
register. SYF then generates a VHDL file using the vbe subset. Like
most of all tools used in alliance, it is necessary to set some variables
before using SYF . You can refer to the man page of syf for more
details.

2.4 Example

In order to take in hand the particular syntax of a fsm file, an example
of three successive "1" counter is presented. Its vocation is to detect
for example on a connection series, a sequence of three successive "1"
counter. The state graph is represented on the figure 3.
The fsm format is detailed in the man page fsm(5) .

ALLIANCE TUTORIAL 8

PART 2 Logic synthesis

entity circuit is
port (

ck, i, reset, vdd, vss : in bit;
o : out bit

);
end circuit;
architecture MOORE of circuit is

type ETAT _TYPE is (E0, E1, E2, E3);
signal EF, EP : ETAT _TYPE;

- - pragma CURRENT _STATE EP
- - pragma NEXT _STATE EF
- - pragma CLOCK CK

begin
process (EP, i, reset)
begin

if (reset=’1’) then
EF<=E0;

else
case EP is

when E0 =
if (i=’1’) then

EF <= E1;
else

EF <= E0;
end if;

when E1 =
if (i=’1’) then

EF <= E2;
else

EF <= E0;
end if;

when E2 =
if (i=’1’) then

EF <= E3;
else

EF <= E0;
end if;

when E3 =
if (i=’1’) then

EF <= E3;
else

EF <= E0;
end if;

when others = assert (’1’)
report "etat illegal";

end case;
end if;
case EP is

when E0 =
o <= ’0’ ;

when E1 =
o <= ’0’ ;

when E2 =
o <= ’0’ ;

when E3 =
o <= ’1’ ;

when others = assert (’1’)
report "etat illegal";

end case;
end process;
process(ck)
begin

if (ck=’1’ and not ck’stable) then
EP <= EF;

end if;
end process;

end MOORE;

ALLIANCE TUTORIAL 9

PART 2 Logic synthesis

E0

E1

E2

E3

o=0

o=1

0

0

0

0 1

11

1

reset

reset

reset

o=0

o=0

Figure 3: states graph of three successive "1" counter

2.5 Step to follow

Now you can use this example to write the description of a five succes-
sive "1" counter in aMoore automaton.

� position the environment variables .
� launch SYF with the coding options -a, -J, -m, -O, -R and by using

the options -CEV .

-a Uses "Asp" as encoding algorithm.

-j Uses "Jedi" as encoding algorithm.

-m Uses "Mustang" as encoding algorithm.

-o Uses the one hot encoding algorithm.

-r Uses distinct random numbers for state encoding.

> syf -CEV -a <fsm_source>

� visualize the files enc . Those files contains one state name followed
by its hexadecimal code value.

� write stimuli (test vectors) and simulate with ASIMUT .

ALLIANCE TUTORIAL 10

PART 2 Logic synthesis

3 Automaton for digicode

We want to design a digicode circuit whose keyboard is represented on
the figure 4. The specifications are as follows:

0

1 2 3

4 5 6

7 8 9

A B

O

Figure 4: Clavier

� The numbers from 0 to 9 are coded in natural binary on 4 bits. A
and B are coded in the following way:

– A: 1010
– B: 1011

� The digicode works in two modes:

– Day Mode: The door opens while pressing on "O" or if entering
the good code

– Night Mode: The door opens only if the code is correct.

To distinguish the two cases an external "timer" calculates the sig-
nal day which is equal to ’ 1 ’ between 8h00 and 20h00 and ’ 0 ’
otherwise.

� The digicode order an alarm as soon as one of the entered numbers
is not the good.

� The digicode automaton returns in idle state if nothing returned
to the keyboard at the end of 5 seconds or if alarm sounded during
2mn - signal reset -. For that it receives a signal from reset external
timer.

ALLIANCE TUTORIAL 11

PART 2 Logic synthesis

� The chip works at 10MHz.
� Any pressure of a key of the keyboard is then followed by the signal

press_kbd . This one announces to the chip that the output data of
the keyboard is valid. This signal is set to 1 during a clock-edge.

The code is 53A17 (but you can take the code who agrees to you).
The interface of this automaton is as follows:

� in ck
� in reset
� in day
� in i[3:0]
� in O
� in press_kbd
� out door
� out alarm

reset et press_kbd

reset

reset ou press_kbd

i=0101 et O

reset et press_kbd

reset et press_kbd

i=0011 et O

reset et press_kbd

reset et press_kbd

ou (O and day)

ou (O and day)

ou (O and day)

ou (O and day)

i=0111
ou (O and day)

i=0101

E5

E0
Ea

E1

E2

E3

E4

i=0011

reset

reset
reset

reset

reset

reset

i=1010

i=0001

i=1010 et O

i=0001 et O

door=0
alarm=0

door=0
alarm=1

door=0
alarm=0

door=0
alarm=0

door=0
alarm=0

door=0
alarm=0

door=1
alarm=0

day and O

(day and O)

ou (i=0111 et O)

day and O

day and O

day and O

Figure 5: Digicode states graph

3.1 Step to follow
� draw the states graph.
� describe it in the fsm format .

ALLIANCE TUTORIAL 12

PART 2 Logic synthesis

� synthesize your description with SYF using different state encod-
ing algorithms -a, -j, -m, -o, -r and by using the options -CEV.

> syf -CEV -a <fsm_source>

� write stimuli (test vectors).
� simulate with ASIMUT all the resulting vbe descriptions.

ALLIANCE TUTORIAL 13

PART 2 Logic synthesis

4 Logic synthesis and structural optimization

4.1 Introduction

4.1.1 Logic synthesis

The logic synthesis permits to obtain a netlist of gates given a Boolean
network (format vbe). Several tools are available:

� The tool BOOM allows the Boolean network optimization before
mapping with BOOG .

� The tool BOOG synthesizes a netlist by using a library with pre-
defined cells such as SXLIB . The netlist can be either with the
format vst or with the format al . Check the environment variable
MBK_OUT_LO=vst.

4.1.2 Solve fan-out problems

Generated netlists may contain internal signals that drive a significant
number of gates (large FAN-OUT). In order to solve this problem, the
tool LOON replaces the cells having a too large fan-out by more pow-
erful cells and/or insert buffers.

4.1.3 Long path visualization

At any moment, the netlists can be graphically displayed using XSCH.
This tool permits also to highlight the longest path on the schematic
thanks to the files xsc and vst generated by BOOG and LOON
.

ALLIANCE TUTORIAL 14

PART 2 Logic synthesis

T

RC

T+RC

propagation time

R
i0C

T: intrinsic time

R: equivalent resistor of AND

C: equivalent capacity of NOR

Figure 6: Simplified timing diagram

Equivalent resistor R of the figure 6 is calculated on the totality of
the transistors of the AND belonging to the active way. In the same
way, the capacity C is calculated on the busy transistors of the NOR
corresponding to the way between i0 and the output of the cell.

4.1.4 Netlist Checking

The netlist must be validated. For that, you have ASIMUT , but also the
tool PROOF which proceeds to a formal comparison of two behavioral
descriptions (vbe). The tool FLATBEH is usefull to obtain a new
behavioral file starting from a netlist (given a vbe file for each leave
cells of the hierarchy).

4.1.5 Scan-path insertion

With SCAPIN we can insert a scan-path into the netlist. The scan-
path allow the designer to observe in test mode the value of all registers
of your circuit. The path is created by changing each registers into a
mux_register (or by inserting a multiplexer in front of all registers).

ALLIANCE TUTORIAL 15

PART 2 Logic synthesis

4.2 Step to follow

4.2.1 Mapping on predefined cells

For each Boolean network obtained previously:
� set properly environment variables;
� synthesize the structural view:

> boog <vbe_source>

� launch BOOG on different netlists to observe SYF options influ-
ence (different state encoding technics).

� validate the work of BOOG with ASIMUT , the netlists obtained
with stimuli which were used to validate the initial Boolean net-
work.

4.2.2 Netlist visualization

� The longest path (critical path) is described in the xsc file produced
by boog . The XSCH tool will use it to highlight this path on the
schematic. To launch the graphical schematic viewer:

>xsch -I vst -l <vst_source>

� The red color indicates the critical path.
� you can use the option ’ -slide ’ followed by netlist names to display

one by one a set of schematics. The keys ’ + ’ and ’ - ’ can then be
used to display respectively next and previous netlist.

4.2.3 Boolean network optimization

To analyze Boolean optimization effect :
� launch Boolean optimization with the tool BOOM by asking an

optimization in surface then in delay ;

>boom -V <vbe_source> <vbe_destination>

� test BOOM with the various algorithms - S, - J, - B, - G, - p...,
the options specifie which algorithm has to be used for the boolean
optimization.

ALLIANCE TUTORIAL 16

PART 2 Logic synthesis

� compare the literal number after factorization.
� remake the Boolean networks synthesis with the tool BOOG and

compare the results.

4.2.4 Netlist optimization

For all the structural view obtained previously:
� launch LOON with the command:

>loon <vst_source> <vst_destination> <lax_param>

� carry out an fanout optimization by modifying the fanout factor in
the option file .lax .The optimization mode and level are able to be
change in this file.

� impose capacities values on the outputs.

4.2.5 Netlist checking

to carry out on the best of your netlists:
� validate the work of LOON by running ASIMUT on the different

netlists obtained, using the stimuli that were defined to validate the
initial behavioral view.

� Make a formal comparison of your netlist with the original behav-
ioral file resulting from SYF :

>flatbeh <vst_source> <vbe_dest>

>proof -d <vbe_origin> <vbe_dest>

Checks if the files are formally identicals.

4.2.6 Scan-path insertion in the netlist

to carry out on the best of your netlists:
� insert a scan-path connecting all the digicode registers.

>scapin -VRB <vst_source> <path_file> <vst_dest>

ALLIANCE TUTORIAL 17

PART 2 Logic synthesis

Example of .path file

BEGIN_PATH_REG

cs_0
cs_1
cs_2
END_PATH_REG

BEGIN_CONNECTOR

SCAN_IN scin
SCAN_OUT scout
SCAN_TEST test
END_CONNECTOR

� build ten patterns to test the scan-path and simulate with ASIMUT
.

ALLIANCE TUTORIAL 18

PART 2 Logic synthesis

5 AMD 2901

5.1 exercise

First of all, here is an exercise to understand the AMD2901 chip function-
ality. The goal is to design it using Alliance, as described in the following
parts of this tutorial.

To explore all functionalities, you will have to validate the behavioral
view that will be provided. All needed informations will be find in ap-
pendix.

The validation will have to be done using stimuli generated by gen-
pat. The vectors must be carefully written to enable you to detect BUG
in your behavioral file .vbe . Approximately 500 patterns will be enough
for debugging your AMD 2901.

5.2 step to follow

It is necessary to generate stimuli that tests all the parts and all functions
of the AMD following the specifications described in the documentation.

� filling and reading the 16 boxes memories of the RAM .
� test the RAM shifter
� filling and reading of the accumulator.
� test the accumulator shifter .
� test the arithmetic and logic operations (addition, subtraction, over-

flow, carry, propagation, etc...) .
� exhaustive test of the inputs conditioned by I[2:0].
� data-path test vectors

5.3 error found

You can notice that for the RAM shifter values "101" and "111" of i[8:6],
the AMD causes a shift of the accumulator that should not take place.

for the values "000" and "001" of i[8:6], the circuit writes the ALU out-
put in RAM .

The AMD carries out the operation R xor S for I[5:3]=111 instead of
carrying out the operation for I[5:3]=110.

It carries out the operation /(R Xor S) for I[5:3]=110 instead of I[5:3]=111.

ALLIANCE TUTORIAL 19

PART 2 Logic synthesis

6 AMD2901 structure

We break up Amd2901 into 2 blocks:

CHIP

CORE

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

plot

OPERATIVE
part

CONTROL
part

Figure 7: Amd2901 Organization

� The data-path contains the Amd2901 regular parts , the registers
and the arithmetic logic unit.

� The control part contains irregular logic, the instructions decoding
and the flags computation.

ALLIANCE TUTORIAL 20

PART 2 Logic synthesis

We will use the following hierarchical description:

amd2901_core

amd2901_chip

amd2901_dptamd2901_ctl

Pads

Figure 8: Hierarchy

The provided files are as follows:

� amd2901_ctl.vbe, behavioral description of the part controls
� amd2901_dpt.vbe, behavioral description of the part data-path
� amd2901_ctl.c, file C of the part controls
� amd2901_dpt.c, file C of the part of data path
� amd2901_core.c, file C of the heart
� amd2901_chip.c, file C of the circuit containing the pads
� pattern.pat, tests file
� CATAL, file listing the behavioral files, to be modify
� Makefile, to automate the generation

ALLIANCE TUTORIAL 21

PART 2 Logic synthesis

7 Part controls design

This part of irregular logic will be carried out with the cells of the library
SXLIB.

Description in VHDL netlist (i.e .vst) of the various gates hazardous
when the circuit contain several thousands of them. there exists a tool
for procedural signals lists generation , genlib . It is then enough to
describe in C using macro-functions the signals list in gates of the block.
The library of macro-functions C is called genlib . The genlib exe-
cution produces a description VHDL with the format .VST . For more
details, consult the manual (man) on genlib .

7.1 genlib description example

here a simple circuit:

a
sb

c

d

e

f1 h1

i1g1

The equivalent genlib file is as follows:

ALLIANCE TUTORIAL 22

PART 2 Logic synthesis

#include <genlib.h>
main()
{
GENLIB_DEF_LOFIG("circuit");

/* Connectors declaration */
GENLIB_LOCON("a",IN,"a1");
GENLIB_LOCON("b",IN,"b1");
GENLIB_LOCON("c",IN,"c1");
GENLIB_LOCON("d",IN,"d1");
GENLIB_LOCON("e",IN,"e1");
GENLIB_LOCON("s",OUT,"s1");

GENLIB_LOCON("vdd",IN,"vdd");
GENLIB_LOCON("vss",IN,"vss");

/* Combinatorial gates instanciation */
GENLIB_LOINS("na2_x1","nand2","a1","c1","f1","vdd","vss",0);
GENLIB_LOINS("no2_x1","nor2","b1","e1","g1","vdd","vss",0);
GENLIB_LOINS("o2_x2","or2","d1","f1","h1","vdd","vss",0);
GENLIB_LOINS("inv_x1","inv","g1","i1","vdd","vss",0);
GENLIB_LOINS("a2_x2","and2","h1","i1","s1","vdd","vss",0);

/* Save of the figure */
GENLIB_SAVE_LOFIG();
exit(0);

}

Save it under the name “ circuit.c ” then compile the file with the
command :
> genlib circuit

You obtain the file “ circuit.vst ”. (if is not it, it may be due to envi-
ronment variables that are not properly set for genlib).

7.2 provided files checking

Create the file CATAL in your simulation directory . It must contain
the following lines:

amd2901_ctl C
amd2901_dpt C

It makes the simulator use the behavioral files (.vbe) of “ amd2901_ctl
” and of “ amd2901_dpt ’ ’.

> asimut amd2901_chip pattern result

ALLIANCE TUTORIAL 23

PART 2 Logic synthesis

You can verify the resulting patterns by using xpat on the file “ result
”.

7.3 Part controls description

The diagrams corresponding to the signals list to design are provided to
you. compile it by using the steps below.

Generate the signals list vst starting from the file c by the command:
> genlib amd2901_ctl

Then validate the structural view obtained by simulating the com-
plete circuit with the tests vectors which are provided to you. Replace
the behavioral view of the part controls by his structural view by remov-
ing the name amd2901_ctl of CATAL file.
> asimut -zerodelay amd2901_chip vecteurs result

Note that one carries out a simulation “ without delay ” of the netlist.
In the event of problem, do not hesitate to use xpat .
> asimut amd2901_chip pattern result

After having validated the functional behavior of the netlist, simulate
it using propagation delays. Modify time values between the patterns.
Indeed, asimut is able to evaluate the propagation times for each cell
of the netlist (taken into account the "after" clauses specify in vbe files).

ALLIANCE TUTORIAL 24

PART 2 Logic synthesis

8 Data-path design

The data path is formed by the regular logic of the circuit. In order to
benefit from this regularity, we generates the signals list in the vectorial
operators form (or columns) via the macro-functions of the tool genlib
. That makes it possible to save place by using several times the same
material . For example, the NOT of a mux of N bits is instanciate only
once for these N bits...

8.1 Example of description with genlib macro-functions

Let us consider the following circuit:

a[3:0]

b[3:0]
s[3:0]

v cmd cout

c[3:0]

d[3:0]
e[3:0]

Here the corresponding data-path structure :

a[3]
b[3]

a[2]

a[1]

a[0]

c[3]

b[2]
c[2]

b[1]
c[1]

b[0]
c[0]

s[3]

s[0]

s[1]

s[2]

coutv cmd

Each gate occupies a column, a column making it possible to treat a
whole of bits for the same operator. The first line represents bit 3, the
last bit 0 .

ALLIANCE TUTORIAL 25

PART 2 Logic synthesis

The file genlib correspondent is as follows:

#include <genlib.h>
main()
{
GENLIB_DEF_LOFIG("data_path");

/* connectors declaration */
GENLIB_LOCON("a[3:0]",IN,"a[3:0]");
GENLIB_LOCON("b[3:0]",IN,"b[3:0]");
GENLIB_LOCON("c[3:0]",IN,"c[3:0]");
GENLIB_LOCON("v",IN,"w");
GENLIB_LOCON("cout",OUT,"ct");
GENLIB_LOCON("s[3:0]",OUT,"s[3:0]");
GENLIB_LOCON("cmd",IN,"cmd");
GENLIB_LOCON("vdd",IN,"vdd");
GENLIB_LOCON("vss",IN,"vss");

/* operators creation */
GENLIB_MACRO(GEN_NAND2, "model_nand2_4bits", F_PLACE, 4, 1);
GENLIB_MACRO(GEN_OR2, "model_or2_4bits", F_PLACE, 4);
GENLIB_MACRO(GEN_ADSB2F, "model_add2_4bits", F_PLACE, 4);

/* operators Instanciation */
GENLIB_LOINS("model_nand2_4bits", "model_nand2_4bits",

"v", "v", "v", "v",
"a[3:0]",
"d_aux[3:0]",
vdd, vss, NULL);

GENLIB_LOINS("model_or2_4bits", "model_or2_4bits",
"d_aux[3:0]",
"b[3:0]",
"e_aux[3:0]",
vdd, vss, NULL);

GENLIB_LOINS("model_add2_4bits", "model_add2_4bits",
"cmd",
"cout",
"ovr",
"e_aux[3:0]",
"c[3:0]",
"s[3:0]",
vdd, vss, NULL);

/* Save of figure */
GENLIB_SAVE_LOFIG();
exit(0);

}

Save it under the name “ data_path.c ”, then compile the file with the
command:
> genlib data_path

You obtain the file “ data_path.vst ” (in the contrary case, it may be
that your environment is badly configured for genlib).In this case, pass
to the section “ Data path description”.

ALLIANCE TUTORIAL 26

PART 2 Logic synthesis

Note: genlib can also create the physical placement (the drawing)
of a structural description .

8.2 Data-path description

The diagrams corresponding to the signals list to design are given. Com-
pile it following the steps below .

Generate the signals list vst starting from the c file, using the com-
mand:

> genlib amd2901_dpt

Validate the netlist in the same way as it has been done for the control
part. Remove CATAL file and simulate the circuit with asimut .
> asimut -zerodelay amd2901_chip pattern result

ALLIANCE TUTORIAL 27

PART 2 Logic synthesis

9 The Makefile or how to manage tasks dependencies

The synthesis under Alliance breaks up into several tools being carried
out chronologically on a data flow. Each tool has its own options giving
the results more or less adapted according to the use of the circuit.

fsm vbe vbe vst vst vstSYF BOOM BOOG LOON SCAPIN

synthesys optimisation synthesys optimisation scan−path

automat behavioral netlist netlist netlistbehavioral

Figure 9: the synthesis

The data dependency in the flow are materialized in reality by file
dependency. The file Makefile carried out using the command make
makes it possible to manage these dependencies.

9.0.1 Rules

A Makefile is a file containing one or more rules translating the depen-
dency between the actions and the files.

example :

target1 : dependence1 dependence2
#Rq: each command must be preceded by a tabulation
command_X
command_Y

.

.

.

The dependencies and targets represent files in general.
Only the first rule (except the models cf 9.0.2) of the Makefile is exam-
ined. The following rules are ignored if they are not implied by the first.
So some dependencies of a rule X are themselves of the rules in the
Makefile then these last will be examined before the appealing rule X .
For each rule X examined, so at least one of its dependencies is more
recent than its target then the commands of the rule X will be carried

ALLIANCE TUTORIAL 28

PART 2 Logic synthesis

out. Note:: the commands are generally used to produce the target (i.e
a new file).
A target should not represent a file. In this case, the commands of this
rule will be always carried out.

9.0.2 models Rules

These rules are more general-purpose because you can specify more
complex dependency rules. A model rule be similar to a normal rule,
except a symbol (%) appears in the target name. The dependencies also
employ (%) to indicate the relation between the dependency name and
the target name. The following model rule specifies how all the files vst
are formed starting from the vbe .

#example of rule for the synthesis
%.vst : %.vbe

boog $*

9.0.3 Variables definitions

You can define variables in any place of the file Makefile , but for legi-
bility we will define them at the beginning of file.

#variables definitions
MY_COPY = cp -r
MY_NUM = 42
MY_STRING ="hello"

They are usable in any place of the Makefile . They must be preceded
by the character $

#use a variable in a rule

copy:
${MY_COPY} digicode.vbe tmp/

ALLIANCE TUTORIAL 29

PART 2 Logic synthesis

9.0.4 Predefined variables

� $@ Complete target name.
� $* Name of the targets file without the extension.
� $< Name of the first dependent file.
� $+ Names of all the dependent files with double dependencies

indexed in their order of appearance.
� $^ Names of all the dependent files. The doubles are remote.
� $? Names of all the dependent files more recent than the target.
� $% Name of member for targets which are archives (language C).

If, for example, the target is libDisp.a(image.o) , $% is image.o and
$@ is libDisp.a .

ALLIANCE TUTORIAL 30

PART 2 Logic synthesis

10 Appendix: Diagrams as an indication but not-in con-
formity with the behavioral

opr_mx(1) = ((not i(2) and i(1)) or (i(2) and (not i(1)) and (not i(0))

i
(
1
)

i
(
2
)

i
(
0
)

ops_mx(0)

ops_mx(1)

ops_mx(2)

opr_mx(0)

opr_mx(1)

ops_mx(0) = (not i(2)) and i(0)
ops_mx(1) = i(2) and (not i(1))

ops_mx(2) = i(2) and i(1) and i(0)

opr_mx(0) = i(2) or i(1)

Decoding of the multiplexers R and S.

ALLIANCE TUTORIAL 31

PART 2 Logic synthesis

i
(
5
)

i
(
4
)

i
(
3
)

alu_k(4)

alu_k(3)

alu_k(2)

alu_k(1)

alu_k(0)

alu_k(0) = i(5) xor i(3)

alu_k(2) = i(5) and (not i(4))
alu_k(1) = i(5) xor i(4)

alu_k(3) = (not i(5)) and i(4) and i(3)
alu_k(4) = (i(5) or i(4)) and i(3)

alu_np(2)
alu_np(3)

alu_np(1)
alu_np(0)

alu_np(1)

alu_ng(0)

alu_np(3)

alu_np(2)

alu_ng(1)

alu_ng(3)
alu_np(3)

alu_ng(2)

core_g

core_p

alu_over
core_nover

alu_cout core_ncout

alu_f(2)
alu_f(1)
alu_f(0)

core_nzero

core_nsignalu_f(3)

T
o

th
e

pl
ot

s
(i

nv
er

so
rs

)

ALU flags calcul.

V
er

s
le

 c
he

m
in

 d
e

do
nn

ee
s.

ALU commands decoding.

ALLIANCE TUTORIAL 32

PART 2 Logic synthesis

acc_scout core_acc_o_nup

i
(
8
)

i
(
7
)

i
(
6
)

ram_sh(0)

ram_sh(1)

shifters control
Write in RAM and ACCU.

acc_wen

fonc_modecore_fonc

core_test

out_mx

ram_nwri

acc_i_up

acc_i_down

core_acc_o_ndown

core_acc_i_nup

core_acc_i_ndown

ram_i_up

ram_i_down

acc_q_down

alu_f(3)

alu_f(2)

RAM and ACCU inputs/outputs shifters.

T
o

tr
is

ta
te

s
pl

ot
s(

in
ve

rs
or

s)
.

T
o

da
ta

 p
at

h.

core_ram_i_ndown

core_ram_i_nup

core_ram_o_ndown

core_ram_o_nup

core_sh_nright

core_sh_nleft

ALLIANCE TUTORIAL 33

PART 2 Logic synthesis

DPGEN_SFF

(i.e acc_q[3:0])

(registers group)

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

acc_i_up & acc_scout & acc_q[2:1]
acc_q[2:1] & acc_q_down & acc_i_down

ram_sh[1]

ram_sh[0]

o
p
r
_
d

r
a
m
_
r
a

r
a
m
_
r
b

DPGEN_MUX2

out_mx

acc_ck

acc_scin
acc_test

acc_q_down

acc_wen

alu_cin

opr_mx[1]

ops_mx[2]

ram_ck[15:0]

DPGEN_MUX2

DPGEN_MUX2

DPGEN_NAND2MASK

DPGEN_NAND2MASK

ops_mx[1]

ops_mx[0]

opr_mx[0]

acc_sh[0]

acc_sh[1]

DPGEN_MUX2

alu_f[3:0]

alu_cout
alu_over

alu_ng[3:0]
alu_np[3:0]

alu_k[4:0]

a
l
u
_
n
s

ALU

RAM

ACCU

a
l
u
_
n
r

a
l
u
_
f

acc_scout & acc_q[2:1] & acc_q_down

A
M

D
2901 data path.

o
u
t
_
x

ram_i_up & alu_f[3:1]

alu_f[2:0] & ram_i_down

a[15:0]
b[15:0]
b_w[15:0]

acc_scout /*acc_q_up*/DPGEN_SFFT

ALLIANCE TUTORIAL 34

PART 2 Logic synthesis

alu_f (2)

al
u_

np
 (

2)

al
u_

ng
 (

2)

alu_ns (2)

alu_k (1)

alu_k (0)

alu_nr (2)

alu_carry (3)
(i.e alu_over)

ALU slice 2 representation

alu_k (2)

alu_k (4)

alu_carry (2)

alu_k (3)

a[0]

a[1]

a[2]

a[3]

BLOCK RAM on port A

deca[7]

Decoding of the reading command of register 7

ALLIANCE TUTORIAL 35

PART 2 Logic synthesis

b[2]

b[0]

b[1]

b[3]

decbw[7]

ram_wri

write decoding command in register 7 of BLOCK RAM

4
decb[7]

deca[7]

ram_ra[4:0]

ram_rb[4:0]

not registreQg[4:0]

ram_ck[7]
register_file_scin[7]

d[4:0]

4

Slice 7 of BLOCK RAM

re
gi

st
re

 7

b_w[7]

ALLIANCE TUTORIAL 36

