
ALLIANCE TUTORIAL
Pierre & Marie Curie University

2001 - 2004

PART 3
place and route

Frederic AK Kai-shing LAM
Modified by LJ

PART 3 Place and route

Contents

1 Introduction
2 Inverter and buffer drawing using GRAAL

2.1 Introduction
2.1.1 Technological environment
2.1.2 GRAAL
2.1.3 COUGAR
2.1.5 PROOF

2.2 inverter Diagram
2.3 Buffer diagram
2.4 sxlib gauge
2.5 steps to follow

2.5.1 Create an inverter
2.5.2 Create a buffer

3 Place and Route
3.1 Amd2901 architecture
3.2 Tools used
3.3 Technological environment
3.4 Beware of naming the files
3.5 Data-path predefined placement
3.6 heart Placement
3.7 Route the heart
3.8 pads placement

4 Annexes

ALLIANCE TUTORIAL 2

PART 3 Place and route

PART 3 : Place and route

All the files used in this part are located under
/tutorial/place_and_route/srcdirectory.
This directory contents three subdirectories and one Makefile :

� Makefile
� inv

– Makefile
– inv.vbe : behavioral description
– inv_x1.ap : inverter cell design using GRAAL

� buffer

– Makefile
– buffer.vbe : behavioral description
– buf_x2.ap : buffer cell design using GRAAL

� amd2901

– Makefile
– amd2901_ctl.vbe : behavioral description of control part
– amd2901_dpt.vbe : behavioral description of data-path
– amd2901_ctl.c : file .c of control part
– amd2901_dpt.c : file .c of data-path
– amd2901_core.c : file .c of heart
– amd2901_chip.c : file .c of the circuit with their pads
– pattern.pat : tests file

ALLIANCE TUTORIAL 3

PART 3 Place and route

1 Introduction

The goal of this tutorial is to present some ALLIANCE tools :

� GRAAL Graphic layout editor ;
� DRUC Design rule checker ;
� COUGAR Symbolic layout extractor ;
� PROOF Formal proof between two behavioral descriptions ;
� OCP, OCR, NERO, RING place and route tools .

The beginning of this tutorial will relate to the drawing under GRAAL of a in-
verter cell and a buffer. The predefined cells concepts, model and hierarchy will be
introduced .
Then this tutorial contain the methodology used in Alliance to produce the amd2901
physical layout that you conceived in Alliance Tutorial PART 2 "Synthesis" (All the
documents used will be provided to you).

ALLIANCE TUTORIAL 4

PART 3 Place and route

2 Inverter and buffer drawing under GRAAL

2.1 Introduction

The library can be enriched by new cells with GRAAL editor .
GRAAL is an editor of symbolic layout integrating the drawing rules checker DRUC
and also a net extractor. The first part here aims to draw an inverter cell inv_x1 in the
shape of a predefined cell of sxlib complyiant with provided drawing rules.

2.1.1 Technological environment

Some tools of Alliance use a particular technological environment. It is indicated by the
environment variable RDS_TECHNO_NAME which must be set to /alliance/etc/cmos.rds

2.1.2 GRAAL

The layout editor handles six different objects types which we can create with the menu
CREATE :

� The ”instance” (physical cells importation)
� The abutment boxes which define the cell limits
� Segments: DiffN, DiffP, Poly, Alu1, Alu2... CAluX is used to specify a possible

rectangle area for the connectors.
� VIAs or contacts: ContDiffN, ContDiffP, ContPoly and ViaMetal1/Metal2.
� Big VIAs
� Transistors: NMOS or PMOS

GRAAL uses the environment variable GRAAL_TECHNO_NAME. It must be set
to /alliance/etc/cmos.graal.

Steps to follow to create a sxlib cell by respecting the sxlib gauge : (cf 2.4 Sxlib
gauge)

� place the supply Vdd and Vss using the menu CREATE->Segment
� place the VIAs using the menu CREATE->VIA
� place the transistors PMOS and NMOS using the menu CREATE->Transistor
� place the NWell body using the menu CREATE->Segment
� place the input/output connectors using the menu CREATE->VIA
� link the transistor P and the transistor N with the Poly segment using the menu

CREATE->Segment

ALLIANCE TUTORIAL 5

PART 3 Place and route

� supply each transistor by linking them with Ndiff and Pdiff segments and VIAs
contacts
� define the cell limit with an abutment box using the menu CREATE->Abutment

Box

2.1.3 COUGAR

The tool COUGAR is able to extract the netlist from a circuit to the format al or spi
given a layout description with the format ap . To extract a netlist at transistor level,
use the following command :

> cougar -t file1 file2

COUGAR uses the environment variables MBK_IN_PH and MBK_OUT_LO
according to the input and output formats. For example to generate a SPICE netlist
(with the format .spi) starting from a layout description .ap it is necessary to set the
following environment variables:

> MBK_IN_PH = ap

> export MBK_IN_PH

> MBK_OUT_LO = spi

> export MBK_OUT_LO

> cougar -t circuit circuit

The resulting spice netlist can be then simulated using a SPICE simulator and a
given model card for a dedicated technology.

The schematic of the transistor neltlist can also be displayed using XSCH :

> xsch -I spi -l circuit

2.2 inverter Diagram

The theoretical inverter diagram is presented at the following figure:

ALLIANCE TUTORIAL 6

PART 3 Place and route

Vdd

Vss

OutIn

Figure 1: transistors diagram of a C-MOS inverter

2.3 Buffer diagram

The theoretical buffer diagram is presented at the following figure:

Vdd

Vss

Vdd

Vss

In Out

Figure 2: transistors diagram of a C-mos buffer

It uses two inverter according to the hierarchy:

ALLIANCE TUTORIAL 7

PART 3 Place and route

inv_x1 inv_x1

buff_x1

inv_x1inv_x1

buff_x1

Figure 3: C-mos buffer hierarchy
‘

2.4 sxlib gauge
� The sxlib cells have whole 50 lambdas height and a multiple of 5 lambdas width.
� The supply Vdd and Vss are carried out in Calu1; they have 6 lambdas width and

are horizontally placed in top and bottom of the cell.
� The transistors P are placed close to the Vdd while transistors N are placed close

to the Vss.
� Box N must have 24 lambdas height .
� The special segments CAluX (CAlu1, Calu2, CAlu3...) form the cell interface

(PORT_MAP) and play the role of ”flat” connectors. They must be placed on a
5x5 grid and can be anywhere in the cell.
� The special segments TAlux (TAlu1, TAlu2...) are used to indicate the obstacles

for the router. When you want to protect AluX segment, it is necessary to cover
them or surround them by corresponding TAlux (same layer). TAluX are placed
on a grid with 5 lambdas steps (figure 5).
� The minimal width of CAlu1 is 2 lambda, plus 1 lambda for the extension (figure

6).
� The boxes N and P must be polarized. It should be respectively connected to

Vdd and Vss .

You will find a summary of these constraints on the diagram 4:

ALLIANCE TUTORIAL 8

PART 3 Place and route

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

6

6

50

5*n

24

Vdd

Vss

CAlu 1

N−WELL

Figure 4: a cell model of the sxlib library

����������������������

�����������	�	�	�	�	�	

TAlu2

Talu2

Alu2

5 Lambdas

5 Lambdas

Figure 5: Use the layer TAluX like protection

ALLIANCE TUTORIAL 9

PART 3 Place and route

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������

2 Lambdas

1 Lambdas

routage grid

Figure 6: Low size of CAlu1

2.5 steps to follow

2.5.1 Create an inverter

� describe the cell inverter behavior in a file .vbe .
� draw the inverter "stick-diagram" inv_x1 whose transistors diagram is repre-

sented on the figure 1.

ALLIANCE TUTORIAL 10

PART 3 Place and route

i nq

Figure 7: stick diagram

� draw the cell under GRAAL by respecting the gauge specified on the figure 4.
� validate the symbolic drawing rules by launching DRUC under GRAAL.
� extract the netlist from the inverter to the format al with COUGAR.

2.5.2 Create a buffer

The buffer is produced under GRAAL starting from the instanciated of two inverters.
The hierarchy thus created is represented on the figure 3. The transistors diagram is
represented on the figure 2.

� describe the cell buffer behavior in a file .vbe .
� draw the cell under GRAAL by respecting the gauge specified on the figure 4.

You will use for that the instanciated function of GRAAL . The cell with instan-
ciate is of course the inverter, which you will connect (will routing) manually.

ALLIANCE TUTORIAL 11

PART 3 Place and route

� validate the symbolic drawing rules by launching DRUC under GRAAL.
� extract the netlist from the buffer to the format al with COUGAR.

Do not forget that man pages exist... We provide you the cells behaviour descrip-
tion inv.vbe and buffer.vbe; and the cells inverter and buffer drawn under GRAAL
.

3 Place and Route

3.1 Amd2901 architecture

Am2901 breaks up into 2 blocks: the part controls which gathers the logic “ glu ”
(random logic) and the operative part (data-path).

part
Control

(sc)

(dp)
part

Operative

Figure 8: Amd decomposition in functional units

� The data-path contains the regular parts of Amd2901, the registers and the arith-
metic logic unit.
� The control part contains irregular logic, the instructions decoding and the “ flags

” computation.

The Hierarchy of descriptions is as follows:

ALLIANCE TUTORIAL 12

PART 3 Place and route

amd2901_core

amd2901_chip

amd2901_dptamd2901_ctl

Pads

Figure 9: Hierarchy used

3.2 Tools used

You will use place and route tools ocp and nero , thus all tools for checking seen in
the first part of this Tutorial .
ocp is the placer, nero allows routing over the cell. The data-path and the control part
will be placed and routed together and not separately.
You will use also lvx, the netlists comparator. When the system is too complex it is diffi-
cult to use proof, the formal comparator (calculations too long). A netlists comparison
then is used. Test the two methods (proof and lvx).

3.3 Technological environment

ALLIANCE TUTORIAL 13

PART 3 Place and route

> VH_MAXERR = 10

> export VH_MAXERR

> MBK_WORK_LIB = .

> export MBK_WORK_LIB

> MBK_CATA_LIB = $ALLIANCE_TOP/cells/sxlib

> export MBK_CATA_LIB

> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/dp_sxlib

> export MBK_CATA_LIB

> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/padlib

> export MBK_CATA_LIB

> MBK_CATA_LIB $MBK_CATA_LIB:.

> export MBK_CATA_LIB

> MBK_CATAL_NAME = CATAL

> export MBK_CATAL_NAME

> MBK_IN_LO = vst

> export MBK_IN_LO

> MBK_OUT_LO = vst

> export MBK_OUT_LO

> MBK_IN_PH = ap

> export MBK_IN_PH

> MBK_OUT_PH = ap

> export MBK_OUT_PH

3.4 Beware of file naming

Generally, the file describing a netlist must have the same name as the one describ-
ing its physical layout (but of course the file extention is not the same). The file
amd2901_dpt.vst (LOFIG) must correspond to the file amd2901_dpt.ap (PHFIG). The
same applies to the file amd2901_core. Be carefull not to overwrite a file by mistake !

3.5 Data-path predefined placement

For the moment, your file amd2901_dpt.c describes only the netlist. eg you have a C
file that contains the following lines:

GENLIB_DEF_LOFIG()
...
GENLIB_SAVE_LOFIG()

This permits to generate a structural description in a VST file. At the same time,
genlib will generate physical descriptions of each column in AP files. It is up to you
to place these columns explicitly.
Edit again the file amd2901_dpt.c and include the lines :

ALLIANCE TUTORIAL 14

PART 3 Place and route

GENLIB_DEF_PHFIG()
/* add here you placement directives !! */
GENLIB_SAVE_PHFIG()

For this placement task, you have the following GENLIB functions :

� GENLIB_PLACE()
� GENLIB_PLACE_RIGHT()
� GENLIB_PLACE_TOP()
� GENLIB_PLACE_LEFT()
� GENLIB_PLACE_BOTTOM()
� GENLIB_PLACE_ON()
� GENLIB_DEF_AB()
� ...

Use GENLIB manual. The placement of the data-path columns should not be done
randomly. The routing feasibility and the quality of the resulting layout depends on it !

Use genlib to generate all:

>genlib amd2901_dpt

The figure 10 summarizes the followed process:

ALLIANCE TUTORIAL 15

PART 3 Place and route

...

GENLIG_SAVE_PHFIG()

+

...

GENLIB_DEF_LOFIG()

GENLIB_DEF_PHFIG()

GENLIB_SAVE_LOFIG()

amd2901_dpt.c

amd2901_dpt.ap

+

.VST

amd2901_dpt.vst

cells group

predefined columns

Logical description

Physical predefined placement

genlib

Figure 10: predefined placement

Figure 11: predefined Columns before placement of the part controls

ALLIANCE TUTORIAL 16

PART 3 Place and route

Do not forget to include a abutment box!

3.6 heart Placement

In the same manner, edit agin the file amd2901_core.c and insert data-path explicitly.
You should not place the part controls. This one exists only in the form of a structural
description. It is the placer ocp that will undertake some (during the placement of
the heart ocp detects which are the cells not placed and supplements the placement).
Nevertheless you should reserve enough space for the cells placement to the top of
the data-path.

Include the lines:
GENLIB_DEF_PHFIG()
/* add here placement directives for your data-path */
GENLIB_SAVE_PHFIG()

Space necessary to the placer to place the cells of the control part will be deter-
mined by successive approximations. You will have to adjust dimensions of the heart
abutment box (GENLIB_DEF_AB()). Use the command:

> genlib amd2901_core

and
> ocp -partial amd2901_core -ioc amd2901_core amd2901_core amd2901_core_p

The option – partial indicates that you give a partial placement of the data-path.
The option – ioc permits to specify a placement for external connectors described in
a .ioc file. This file, amd2901_core.ioc is provided to you (Modify it according to your
predefined placement. The connectors must be in the north and in the south of your
circuit).

The third argument is the netlist heart filename, the fourth is the name of the .ap
resulting file.

The figure 12 summarize the followed process:

ALLIANCE TUTORIAL 17

PART 3 Place and route

amd2901_core.c

GENLIB_SAVE_LOFIG()

...
GENLIB_DEF_LOFIG()

GENLIB_DEF_PHFIG()

...

GENLIG_SAVE_PHFIG()

+

amd2901_core.vst

.vst

+
amd2901_core_place.ap

amd2901_core_p.ap

.apOCP

Logical description

Physical predefined placement

genlib

free space

Figure 12: Placement

3.7 Route the heart

Routing the heart by using NERO in the following way:

> nero -v -3 -p amd2901_core_p amd2901_core amd2901_core

3.8 pads placement

The core of the AMD2001 is completed. We focus now on the chip with pads descrip-
tion, placement and routing. Those pads allow the connection of the inputs/outputs
of the core with the external nets of the chip.

The tool ring instanciates pads that has been specified in a vst netlist, place them
using a file .rin that specified a relative placement of those pads. It then routes those
pads with the core according to the input netlist.

This syntax of the .rin file:

ALLIANCE TUTORIAL 18

PART 3 Place and route

> east (pi1 pi0)

> west (pck pi4)

> north (pvdd pvss)

> south (pvdde pvsse)

Where pi1, pi0... are the name of instance pads. Name it “ amd2902_chip.rin ” and
apply the command

> ring amd2901_chip amd2901_chip

We will validate the work of ring with the tools druc , lynx and lvx .

Validate the physical design rules:

> druc amd2901_chip

Extract the netlist up to leave cells:

> MBK_OUT_LO = al

> export MBK_OUT_LO

> cougar -f amd2901_chip

Compare two netlists :

> lvx vst al amd2901_chip amd2901_chip -f

> MBK_OUT_LO = vst

> export MBK_OUT_LO

Simulated the extracted netlist with asimut . Pay attention to the file CATAL !
To know the number of transistors, we carry out an extraction of the circuit on the level
transistor:

> cougar -t amd2901_chip amd2901_chip

ALLIANCE TUTORIAL 19

PART 3 Place and route

If you want to see the amd2901 control part :

> make view_ctl_logic

If you want to see the data-path physical layout:

> make view_dpt_physic

note: you can see in red the critical path.
If you want to see the chip physical layout:

> make view_chip_physic

If you want to see the different propagation times:

> make view_chip_simulation

ALLIANCE TUTORIAL 20

PART 3 Place and route

4 Annexes

DPGEN_SFF

(i.e acc_q[3:0])

(registers group)

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

DPGEN_MUX2

acc_i_up & acc_scout & acc_q[2:1]
acc_q[2:1] & acc_q_down & acc_i_down

ram_sh[1]

ram_sh[0]

o
p
r
_
d

r
a
m
_
r
a

r
a
m
_
r
b

DPGEN_MUX2

out_mx

acc_ck

acc_scin
acc_test

acc_q_down

acc_wen

alu_cin

opr_mx[1]

ops_mx[2]

ram_ck[15:0]

DPGEN_MUX2

DPGEN_MUX2

DPGEN_NAND2MASK

DPGEN_NAND2MASK

ops_mx[1]

ops_mx[0]

opr_mx[0]

acc_sh[0]

acc_sh[1]

DPGEN_MUX2

alu_f[3:0]

alu_cout
alu_over

alu_ng[3:0]
alu_np[3:0]

alu_k[4:0]

a
l
u
_
n
s

ALU

RAM

ACCU

a
l
u
_
n
r

a
l
u
_
f

acc_scout & acc_q[2:1] & acc_q_down
A

M
D

2901 data path.

o
u
t
_
x

ram_i_up & alu_f[3:1]

alu_f[2:0] & ram_i_down

a[15:0]
b[15:0]
b_w[15:0]

acc_scout /*acc_q_up*/DPGEN_SFFT

Figure 13: data-path general view

ALLIANCE TUTORIAL 21

