SWI Prolog

Reference Manual
Updated for version 8.4.3, June 2022

SWI-Prolog developers
https://www.swi-prolog.org

SWI-Prolog is a comprehensive and portable implementation of the Prolog programming
language. SWI-Prolog aims to be a robust and scalable implementation supporting a wide
range of applications. In particular, it ships with a wide range of interface libraries, pro-
viding interfaces to other languages, databases, graphics and networking. It provides ex-
tensive support for managing HTML/SGML/XML, JSON, YAML and RDF documents.
The system is particularly suited for server applications due to robust support for multi-
threading and HTTP server libraries.

SWI-Prolog extends Prolog with tabling (SGL resolution). Tabling provides better ter-
mination properties and avoids repetitive recomputation. Following XSB, SWI-Prolog’s
tabling supports sound negation using the Well Founded Semantics. Incremental tabling
supports usage as a Deductive database.

SWI-Prolog is designed in the ‘Edinburgh tradition’. In addition to the ISO Prolog stan-
dard it is largely compatible to Quintus, SICStus and YAP Prolog. SWI-Prolog provides
a compatibility framework developed in cooperation with YAP and instantiated for YAP,
SICStus, IF/Prolog and XSB.

SWI-Prolog aims at providing a rich development environment, including extensive ed-
itor support, graphical source-level debugger, autoloading, a ‘make’ facility to reload
edited files and much more. GNU-Emacs, SWI-Prolog editor for Windows, the PDT plu-
gin for Eclipse or a Visual Studio Code plugin provide alternative environments. SWISH
provides a web based environment.

This document gives an overview of the features, system limits and built-in predicates.

https://www.swi-prolog.org
https://swish.swi-prolog.org

\ \
\ \

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction
Positioning SWI-Prolog
Status and releases

1.1
1.2
1.3
1.4
1.5
1.6

Support the SWI-Prolog project
Implementation history
Acknowledgements

2 Overview

2.1

2.2
2.3
2.4

2.5

2.6
2.7

2.8
2.9
2.10

Getting started quickly

2.1.1
2.1.2
2.1.3
2.14
2.1.5

Starting SWI-Prolog

Adding rules from the console
Executingaquery
Examining and modifying your program
Stopping Prolog

The user’s initialisation file
Initialisation files and goals

Command line options

2.4.1 Informational command line options
2.4.2 Command line options for running Prolog
2.4.3 Controlling the stack sizes

2.4.4 Running goals from the command line
2.4.5 Compilation options

2.4.6 Maintenance options

UI Themes

2.5.1 Status of theme support

GNU Emacs Interface
Online Help
library(help): Text based manual
library(explain): Describe Prolog Terms
Command line history

2.7.1
2772

Reuse of top-level bindings
Overview of the Debugger

2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7

The Byrd Box Model And Ports
Trace Mode Example
Trace Mode Options: 1eash/1 and visible/1
Trace Mode Commands When Paused
Trace Mode vs. Trace Point

Spy Points and Debug Mode
Breakpoints L.

SWI-Prolog 8.4 Reference Manual

2.10.8 Command Line Debugger Summary 45

211 Compilation o o e e e e e e e e e 45
2.11.1 During program development 45
2.11.2 Forrunningtheresult. oo 46

2.12 Environment Control (Prolog flags) 49
2.13 Anoverview of hook predicates oo 68
2.14 Automatic loading of libraries oL oL o 69
2.15 Packs: community add-ons 71
2.16 The SWI-Prolog syntax i i v i ittt e e e e e e 72
2.16.1 ISO Syntax Support e e e 72

2.17 Rational trees (cyclicterms) e e 79
2.18 Just-in-time clause indexing 79
2.18.1 Deepindexing e 81
2.18.2 Future directions e 81
2.18.3 Indexingforbodycode 82
2.18.4 Indexing and portability L o 82

2.19 Wide character support e 83
2.19.1 Wide character encodings on streamso .0 ... 83

220 System limits e e e e e 84
2.20.1 Limits on MEMOIy areas v v v v v v v v et e e 84
2.20.2 Other Limits oo e 85
2203 Reserved Names o 87

2.21 SWI-Prolog and 64-bitmachines L. 87
2.21.1 Supported platforms 87
2.21.2 Comparing 32- and 64-bits Prolog L. 87
2.21.3 Choosing between 32- and 64-bitProlog 87

2.22 Binary compatibilityo 88
3 Initialising and Managing a Prolog Project 90
3.1 Theprojectsourcefiles 90
3.1.1 File Names and Locations 90

3.1.2 ProjectSpecial Files 91

3.1.3 International source fileso 92

32 Usingmodules e e e e 92
3.3 Thetest-edit-reloadcycle 93
3.3.1 Locating thingstoedit 93

3.3.2 Editing and incremental compilation oL 94

3.4 Using the PceEmacs built-ineditor 94
34.1 ActivatingPceEmacs oL o 94

3.4.2 Bluffing through PceEmacs 95

343 PrologMode e e 97

3.5 The Graphical Debugger 99
3.5.1 Invoking the window-based debugger 99

3.6 The Prolog Navigator i i i e e e e e e e 100
37 Cross-referencer. o oo e e e e e e e 100
3.8 Accessing the IDE from your program L. 102
39 SummaryoftheIDE 103

SWI-Prolog 8.4 Reference Manual

Contents

4 Built-in Predicates

4.1

4.2
4.3

4.4

4.5
4.6

4.7
4.8
4.9
4.10

4.11

4.12

4.13
4.14

4.15
4.16
4.17

4.18
4.19

Notation of Predicate Descriptions
4.1.1 The argument mode indicator
4.1.2 Predicate indicators

Character representation
Loading Prolog source files
4.3.1 Conditional compilation and program transformation
4.3.2 Reloading files, active code and threads
4.3.3 Quick load files
Editor Interface
4.4.1 Customizing the editor interface
Verify Type of a Term
Comparison and Unification of Terms
4.6.1 Standard Order of Terms
4.6.2 Special unification and comparison predicates
Control Predicates

Meta-Call Predicates

Delimited continuations

Exception handling

4.10.1 Urgency of exceptions
4.10.2 Debugging and exceptions
4.10.3 The exception term
Printing messages
4.11.1 Printing from libraries
Handling signals
4.12.1 Notes on signal handling

DCG Grammar rules

Database
4.14.1 Managing (dynamic) predicates
4.14.2 The recorded database
4143 Flags
4144 Tries oo,

4.14.5 Update view

4.14.6 Indexing databases
Declaring predicate properties
Examining the program
Inputandoutput
4.17.1 Predefined stream aliases
4.17.2 1ISO Input and Output Streams
4.17.3 Edinburgh-style /O
4.17.4 Switching between Edinburgh and ISO 1/0
4.17.5 Adding IRI schemas
4.17.6 Write onto atoms, code-lists, etc
4.17.7 Fast binary term I/O
Status of streams
Primitive character I/O

SWI-Prolog 8.4 Reference Manual

420 Termreading and Writing o v i vt e e e e e e e e e 202
4.21 Analysing and Constructing Terms oo, 211
4.21.1 Non-logical operations onterms v v v v v vt . 215
4.22 Analysing and Constructing Atoms oo 217
4.23 Localization (locale) support e e 221
4.24 Character properties v« v v v v v e e e e e e e e e e e e e e 222
4.24.1 CaseCoNVerSiON v v v v v v i e e e e e e e e e 224
4.24.2 White space normalization Lo oL 225
4.24.3 Language-specific comparison e e e 225
425 OPerators . . . v v v vt e e e e e e e e e e e e e e e e e e e 225
4.26 Character CONVerSION v v v v vt ettt e e e e e e 227
427 Arithmetic o e e e e e 228
4.27.1 Special purpose integer arithmetic 228
4.27.2 General purpose arithmetic oo 229
4.28 Misc arithmetic support predicates oo 242
4.29 Built-in listoperations e e e e e e e 243
4.30 Finding all SolutionstoaGoal 246
431 Forall e 248
432 Formatted Write o e e e 248
4321 Writef . . . o L e e 249
4322 Format e e e e 250
4.32.3 Programming Format, 253
433 Global variables 254
4.33.1 Compatibility of SWI-Prolog Global Variables 255
4.34 Terminal Control e 256
4.35 Operating System Interaction o 256
4.35.1 Windows-specific Operating System Interaction 258
4.35.2 Apple specific Operating System Interaction 260
4.35.3 Dealing withtimeanddate 260
4.35.4 Controlling the swipl-win.exe console window 266
4.36 File System Interaction e 267
4.37 User Top-level Manipulation, 272
4.38 Creating a Protocol of the User Interaction 274
4.39 Debugging and Tracing Programs 274
4.40 Debugging and declaring determinism Lo, 277
4.41 Obtaining Runtime Statisticso i 279
4.42 Execution profiling L e 279
4.42.1 Profilingpredicates e 279
4.42.2 Visualizing profilingdata Lo o 282
4.42.3 Information gathering 283
4.43 Memory Management oL e 284
4.43.1 Garbagecollection 284
4.43.2 Heapmemory (malloc) L 286
4.44 Windows DDE interface 288
4.44.1 DDEclientinterface oL 289
4442 DDEservermode oo 289
445 Miscellaneous oL e e e e e 291

SWI-Prolog 8.4 Reference Manual

Contents 5

5 SWI-Prolog extensions 292
5.1 Listsarespecial e e e e 292
5.1.1 Motivating ‘[|]”and [] forlists 293

5.2 The string type and its double quoted syntax 293
5.2.1 Representing text: strings, atoms and code lists 294

5.2.2 Predicates that operate on Strings oL 295

5.2.3 Why has the representation of double quoted text changed? 299

5.2.4 Adapting code for double quoted strings 300

5.2.5 Predicates to support adapting code for double quoted strings 301

5.3 Syntax changes since SWI-Prolog 7 302
5.3.1 Operators and quoted atomso 302

5.3.2 Compound terms with zero arguments 302

5.3.3 Blockoperators 303

5.4 Dicts: structures with named argumentso 304
54.1 Functionsondicts L 305

5.4.2 Predicates for managing dicts L oL 308

543 Whentousedicts? 311

5.4.4 A motivation for dicts as primary citizens 312

5.4.5 Implementation notes aboutdicts 313

5.5 Integration of strings and dicts in the libraries 0. 313
5.5.1 Dicts and option processing it e e e e e . 313

5.5.2 Dictsincore data Structurest u e it e 313

5.53 Dicts,stringsand XML oL oo 314

5.54 Dicts, stringsand JSON e 314

5.5.5 Dicts,stringsand HTTP 314

5.6 Single Sided Unificationrules oo 314
5.6.1 Single Sided Unification Guards 318

5.6.2 Consequenses of => single sided unificationrules 318

5.6.3 SSU: Future considerationso 319

5.7 Remainingissues L e e 319
6 Modules 320
6.1 Why UseModules? e 320
6.2 DefiningaModule e 320
6.3 Importing Predicates intoaModule 321
6.4 Controlled autoloading formodules 323
6.5 Defining ameta-predicate e e e 324
6.6 Overruling Module Boundaries 326
6.6.1 Explicit manipulation of the calling context 327

6.7 Interacting with modules from the toplevel 327
6.8 Composing modules from othermodules 327
6.9 Operatorsand modules e 328
6.10 Dynamic importing using import modules 329
6.11 Reserved Modules and using the ‘user’ module 330
6.12 An alternative import/export interface L oo 330
6.13 DynamicModules e 331
6.14 Transparent predicates: definition and context module 331

SWI-Prolog 8.4 Reference Manual

6.15 Module properties e e e e e e e e e e e e 333
6.16 Compatibility of the Module System 334
7 Tabled execution (SLG resolution) 336
7.1 Example 1: using tabling for memoizing oL 336
7.2 Example 2: avoiding non-terminationo Lo e e 338
7.3 Answer subsumption or mode directed tabling oo 339
7.4 Tabling for impure programso e e 340
7.5 Variant and subsumptive tabling oo oo o 341
7.6 Well Founded Semantics e 342
7.6.1 Well founded semantics and the toplevel 344

7.7 Incremental tabling 345
7.8 Monotonic tabling 345
7.8.1 Eager and lazy monotonic tabling oL, 346

7.8.2 Tracking new answers to monotonic tables 347

7.8.3 Monotonic tabling with external data 348

7.9 Sharedtabling e e e 349
7.9.1 Abolishing shared tables 349
7.9.2 Status and future of shared tabling 350

7.10 Tabling restraints: bounded rationality and tripwires 350
7.10.1 Restraint subgoalsize 351
7.10.2 Restraint ansSwer SizZ€« . v vttt e e e e e 352
7.10.3 Restraint answer Count o vt vt oo e e 352

7.11 Tabling predicate reference L L 353
7.12 About the tabling implementation oL oL 356
8 Constraint Logic Programming 358
8.1 Attributed variables L. Lo 359
8.1.1 Attribute manipulation predicates 361

8.1.2 Attributed variable hooks o o oo 361

8.1.3 Operations on terms with attributed variables 363

8.1.4 Special purpose predicates for attributeso 363

8.2 Coroutining v v i e e e e e e e e e e 364
9 CHR: Constraint Handling Rules 366
9.1 Introductionto CHR 366
9.2 CHR Syntax and Semantics i v v it e e e e 367
9.2.1 Syntaxof CHRrules 367

922 Semanticsof CHR o 368

9.3 CHR in SWI-Prolog Programs 369
9.3.1 Embedding CHR in Prolog Programs 369

9.3.2 CHR Constraint declaration 370

933 CHRCompilation 373

9.4 Debugging CHR programs e 373
9.4.1 CHRdebugports i e 374

942 TracingCHR programs 374

9.4.3 CHR Debugging Predicates 375

SWI-Prolog 8.4 Reference Manual

Contents 7

9.5 CHRExamples @ e e e e e e e 376
9.6 CHR compatibility 377
9.6.1 The OId SICStus CHR implementation 377

9.6.2 The Old ECLiPSe CHR implementation 378

9.7 CHR Programming Tipsand Tricks 378
9.8 CHR Compiler Errors and Warnings 379
9.8.1 CHR Compiler Errors o 379

10 Multithreaded applications 381
10.1 Creating and destroying Prolog threads 381
10.2 Monitoring threads L 385
10.3 Thread communication o 387
10.3.1 MesSage qUEULS . . v v v v v v e e e e e e e e e e e e e e e e 387
10.3.2 Waitingforevents oL e 392
10.3.3 Signalling threads L o 393
10.3.4 Threads and dynamic predicates 394

10.4 Thread synchronisation 395
10.5 Thread support library(threadutil) 397
10.5.1 Debuggingthreads 397
10.5.2 Profilingthreads L 398

10.6 Multithreaded mixed C and Prolog applications 398
10.6.1 A Prolog thread for each native thread (one-to-one) 399
10.6.2 Pooling Prolog engines (many-to-many) v . v v v oo ... 400

10.7 Multithreading and the XPCE graphics system 401
11 Coroutining using Prolog engines 403
11.1 Examples using engines« . v v i it e e e e e e e e e 403
11.1.1 Aggregation using engines« c v v v vt v i e 403
11.1.2 State accumulation using engineso 405
11.1.3 Scalable many-agent applications 407

11.2 Engine resource USAZE . . « . v v v v v v v v e e e e e e e e e e e e e e e 407
11.3 Engine predicate reference Lo e 407
12 Foreign Language Interface 410
12.1 Overview of the Interface 410
12.2 Linking Foreign Modules 410
12.2.1 What linking is provided? L. 411
12.2.2 What kind of loading should I be using? 411
12.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects) 411
12.2.4 Low-level operations on shared libraries 413
12.2.5 StaticLinking 414

12.3 Interface Data Types o o i e e e e e e 414
12.3.1 Type term_t: areference toaPrologterm 414
12.3.2 Other foreign interface types o 417

12.4 The Foreign Include File 418
12.4.1 Argument Passingand Control 418
1242 Atomsand functors Lo 421

SWI-Prolog 8.4 Reference Manual

12.4.3 Analysing Terms via the Foreign Interface 422
12.4.4 Constructing Terms 0 i e e 430
12.4.5 Unifyingdata 434
12.4.6 Convenient functions to generate Prolog exceptions 440
12.4.7 Serializing and deserializing Prologterms 443
12.4.8 BLOBS: Using atoms to store arbitrary binary data 443
12.49 Exchanging GMPnumbers L. 445
12.4.10 Calling Prolog from C, 447
12.4.11 Discarding Data 449
12.4.12 String buffering 450
12.4.13 Foreign Code and Modules 451
12.4.14 Prolog exceptions in foreigncode 452
12.4.15 Catching Signals (Software Interrupts) 454
12.4.16 Miscellaneous oL L e e e e 455
12.4.17 Errors and warnings e e e 460
12.4.18 Environment Control from ForeignCode 461
12.4.19 Querying Prolog L 462
12.4.20 Registering Foreign Predicates 462
12.4.21 Foreign Code Hooks 465
12.4.22 Storing foreigndata. oL L 466
12.4.23 Embedding SWI-Prolog in other applications 470

12.5 Linking embedded applications using swipl-1d 474
12.5.1 Asimpleexample e 476

12.6 The Prolog ‘home’ directory e 478
12.7 Example of Using the Foreign Interface 478
12.8 Notes on Using ForeignCode 481
12.8.1 Foreign debugging functions Lo 481
12.8.2 Memory Allocation e e e e 482
12.8.3 Compatibility between Prolog versions 483
12.8.4 Foreignhashtables 483
12.8.5 Debugging and profiling foreign code (valgrind) 484
12.8.6 Name ConflictsinCmodules 484
12.8.7 Compatibility of the Foreign Interface 485

12.9 Foreign access to Prolog IO streams 485
129.1 GetlOstreamhandles 485
129.2 CreatinganIOstream 486
12.9.3 Interacting with foreign streams L. 490
12.9.4 Foreign stream error handling L. 494
12.9.5 Foreignstreamencoding L o 495
12.9.6 Foreignstream lineendings 496
12.9.7 Foreign stream position information 496

13 Deploying applications 497
13.1 Deployment options oo e e e e e 497
13.2 Understanding saved states 497
13.2.1 Creatingasavedstate o L vt i e e 498
13.2.2 Limitations of gsave_programot e 501

SWI-Prolog 8.4 Reference Manual

Contents 9
13.2.3 Runtimes and ForeignCode 502

13.3 Stateinitialization L. e 502
13.4 UsSing program réSOUICES v v o v v v v e e et e e e et e e e e e 503
13.4.1 Resourcesasfiles L 503
13.4.2 Access resources Using OPEN_reSOUICe o « v v v v v v v v v v v v o 504
13.4.3 Declaring reSOUIrCes v v v v v v v v it e e e e e e e 504
13.4.4 Managingresource files L Lo 505

13.5 Debugging and updating deployed systems 505
13.6 Protectingyourcode i e e 505
13.6.1 Obfuscating code insaved states 506

13.7 Finding Applicationfiles e 506
A The SWI-Prolog library 507
A.1 library(aggregate): Aggregation operators on backtrackable predicates 507
A.2 library(ansi_term): Print decorated text to ANSIconsoles 510
A.3 library(apply): Apply predicatesonalist., 512
A4 library(assoc): Associationlists L L L Lo 514
A4l Introduction L 514
A.4.2 Creating association lists L oo 515
A4.3 Querying association lists L. Lo 515
A.4.4 Modifying association lists 516
A.4.5 Conversion predicateS e e e 516
A.4.6 Reasoning about association lists and their elements 516

A.5 library(broadcast): Broadcast and receive event notifications 517
A.6 library(charsio): I/0O on Lists of Character Codes 519
A.7 library(check): Consistency checking 520
A.8 library(clpb): CLP(B): Constraint Logic Programming over Boolean Variables 522
A8.1 Introduction. e 522
A.8.2 Boolean expressionsol c e e 523
A.8.3 Interface predicateso 524
A84 Examples e e e 525
A85 Obtaining BDDs L 525
A.8.6 Enabling monotonicCLP(B) 526
A.8.7 Example: Pigeons 526
A.8.8 Example: Booleancircuit 527
A.89 Acknowledgments e 528
A.8.10 CLP(B) predicate index, 528

A.9 library(clpfd): CLP(FD): Constraint Logic Programming over Finite Domains 529
A9.1 Introduction. e e 529
A.9.2 Arithmetic constraints Lo e 530
A.9.3 Declarative integer arithmetic 531
A.94 Example: Factorial relation. 533
A.9.5 Combinatorial constraints 534
A9.6 Domains 534
A9.7 Example: Sudoku. 534
A98 Residualgoals 535
A99 Corerelationsandsearch L oo 536

SWI-Prolog 8.4 Reference Manual

10

A.9.10 Example: Eightqueenspuzzle 537
A9.11 Optimisation ot e e e e 539
A.9.12 Reification 539
A.9.13 Enabling monotonicCLP(FD) 539
A.9.14 Custom cOnStraints v v v vttt e 540
A9.15 Applications 541
A.9.16 Acknowledgments 541
A9.17 CLP(FD) predicate index oo v v vt e e 541
A.9.18 Closing and opening words about CLP(FD) 556
A.10 library(clpgr): Constraint Logic Programming over Rationals and Reals 556
A.10.1 Solverpredicates i i e e e 557
A.10.2 Syntax of the predicate arguments 558
A.10.3 Useofunification L e 559
A.10.4 Non-linear constraints e 559
A.10.5 Status and known problems oL oo 559
A.11 library(csv): Process CSV (Comma-Separated Values)data 560
A.12 library(dcg/basics): Various general DCG utilities 562
A.13 library(dcg/high_order): High order grammar operations 564
A.14 library(debug): Print debug messages and test assertions 566
A.15 library(dicts): Dictutilities e 568
A.16 library(error): Error generating support. 569
A.17 library(gensym): Generate unique identifiers 573
A.18 library(increval): Incremental dynamic predicate modification 573
A.19 library(intercept): Intercept and signal interface 574
A.20 library(iostream): Utilities to deal with streams 576
A.21 library(listing): List programs and pretty printclauses 578
A.22 library(lists): List Manipulation 580
A.23 library(main): Provide entry point forscripts 585
A.24 library(nb_set): Non-backtrackableset 589
A.25 library(www_browser): Activating your Web-browser 590
A.26 library(occurs): Finding and counting sub-terms 590
A.27 library(option): Option list processing 591
A.28 library(optparse): command line parsing oL 593
A28.1 Notesand tips« o v v v i i e e e e e e 597
A.29 library(ordsets): Ordered set manipulation 599
A.30 library(pairs): Operations on key-value lists 601
A.31 library(persistency): Provide persistent dynamic predicates 602
A.32 library(pio): Pure /O 605
A.32.1 library(pure_input): Pure Input from files and streams 606
A.33 library(portray_text): Portray text 607
A.34 library(predicate_options): Declare option-processing of predicates 609
A.34.1 The strength and weakness of predicate options 609
A.34.2 Options as arguments or environment? 610
A.34.3 Improving on the current situation 610
A.35 library(prolog_debug): User level debuggingtools 613
A.36 library(prolog_jiti): Just In Time Indexing (JITI) utilities 614
A.37 library(prolog_pack): A package manager for Prolog 615

SWI-Prolog 8.4 Reference Manual

Contents 11
A.38 library(prolog_xref): Prolog cross-referencer data collection 618
A.39 library(quasi_quotations): Define Quasi Quotation syntax 623
A.40 library(random): Randomnumbers 625
A .41 library(readutil): Read utilities L oo 627
A.42 library(record): Access named fieldsinaterm 629
A.43 library(registry): Manipulating the Windows registry 630
A.44 library(settings): Setting management oot e e 631
A.45 library(strings): String utilities Lo Lo 634
A.46 library(simplex): Solve linear programming problems 636

A.46.1 Introduction e e 636
A.46.2 Delayed column generation oL 637
A.46.3 Solving LPs with special structure 638
A46.4 Examples oL e e 638
A.47 library(solution_sequences): Modify solution sequences 640
A.48 library(tables): XSB interfacetotables L. 642
A.49 library(terms): Term manipulation 644
A.50 library(thread): High level thread primitives 646
A.51 library(thread_pool): Resource bounded thread management 649
A.52 library(ugraphs): Graph manipulation library 651
A.53 library(url): Analysing and constructing URL 655
A.54 library(varnumbers): Utilities for numberedterms 657
A.55 library(yall): Lambda expressions oo 658

B Hackers corner 662
B.1 Examining the Environment Stack 662
B.2 Ancestralcuts e e e 664
B.3 Intercepting the Tracer 664
B.4 Breakpoint and watchpoint handling 666
B.5 Adding context to errors: prolog_exception.hook oL L. 668
B.6 Hooks using the exception predicate 668
B.7 Prologevents e e e e e 669
B.8 Hooks for integrating libraries L oo 671
B.9 Hooks forloading files 672

C Compatibility with other Prolog dialects 674
C.1 Some considerations for writing portablecode 675
C.2 Notesonspecificdialects L e 677

C.2.1 Notesonspecificdialects., 677
C.2.2 The XSB import directive e 678

D Glossary of Terms 679

E SWI-Prolog License Conditions and Tools 685
E.1 Contributing to the SWI-Prolog project 686
E.2 Software support to keep track of license conditions 686
E.3 License conditions inherited fromusedcode, 687

E.3.1 Cryptographicroutines v v v v vt 687

SWI-Prolog 8.4 Reference Manual

12

F Summary 688
F1 Predicates e e 688
F2 Library predicates i e e e e e e e e e 706

F2.1 library(aggregate) e 706
F2.2 library(ansiterm) e e e e e 706
F2.3 library(apply) o e 706
F2.4 library(assoc) i i e e e e e 706
F2.5 library(broadcast) 707
F2.6 library(charsio) e 707
F2.7 library(check) 707
F2.8 library(clpb) e 708
F2.9 library(clpfd) e 708
F2.10 library(clpgr) o o o o o e 710
F2.11 library(csv) o e e e e e e e e 710
F.2.12 library(degbasics) 710
F2.13 library(dcghighorder) 711
F2.14 library(debug) 711
F2.15 library(dicts) e e e 711
F2.16 library(error) e e 712
F2.17 library(explain) e e e 712
F2.18 library(help) e 712
F2.19 library(increval) e 712
F2.20 library(summaries.d/increval.tex) 712
F2.21 library(intercept) o . o v i i i e 712
F.2.22 library(summaries.d/intercept.teX)o 712
F2.23 library(iostream) o o i it e e e e e 712
F.2.24 library(summaries.d/iostream.teX) v v v v vt . 712
F2.25 library(listing) o o o e e e 712
F2.26 library(lists) o e e e e e 713
F2.27 library(main) e e 714
F2.28 library(occurs) i e e e 714
F2.29 library(option) e e 714
F2.30 library(optparse) o v v v v i e e e e e e e 714
F2.31 library(ordsets) o 0 i e e e e e e e 714
F.2.32 library(persistency)« .« o o v v it e e e 715
F2.33 library(portraytext) v v v i e e e e e e e e 715
F.2.34 library(predicate_options) e 715
F.2.35 library(prologdebug) 716
F.2.36 library(prologjiti) e 716
F2.37 library(prologpack) 716
F2.38 library(prologxref) 716
F2.39 library(pairs) o o i e e e e 717
F2.40 library(pio)« o o e e 717
F2.41 library(random) e e 717
F2.42 library(readutil) e 718
F2.43 library(record) e 718
F2.44 library(registry) o v v i e e e e e e e e e 718

SWI-Prolog 8.4 Reference Manual

Contents 13
F.2.45 library(settings) v o v i i e e e e e e e e e 718
F2.46 library(simplex). o o . L e 718
F2.47 library(terms) o o e e e e e e e e e e e 719
F2.48 library(ugraphs). e 719
F2.49 library(url) e 719
F2.50 library(www_browser) e 719
F.2.51 library(solution_sequences) v v v v v v v v vt 719
F2.52 library(thread) 720
F.2.53 library(thread pool) 720
F2.54 library(varnumbers) e e e e e e 720
F2.55 library(yall) e 720

F.3 Arithmetic Functions e 722
F4 Operators i e e e e e e 724

SWI-Prolog 8.4 Reference Manual

Introduction

This document is a reference manual. That means that it documents the system, but it does not
explain the basics of the Prolog language and it leaves many details of the syntax, semantics and built-
in primitives undefined where SWI-Prolog follows the standards. This manual is intended for people
that are familiar with Prolog. For those not familiar with Prolog, we recommend to start with a Prolog
textbook such as [1,1 Jor|[]. For more
advanced Prolog usage we recommend [1.

1.1 Positioning SWI-Prolog

Most implementations of the Prolog language are designed to serve a limited set of use cases. SWI-
Prolog is no exception to this rule. SWI-Prolog positions itself primarily as a Prolog environment for
‘programming in the large’ and use cases where it plays a central role in an application, i.e., where
it acts as ‘glue’ between components. At the same time, SWI-Prolog aims at providing a productive
rapid prototyping environment. Its orientation towards programming in the large is backed up by scal-
ability, compiler speed, program structuring (modules), support for multithreading to accommodate
servers, Unicode and interfaces to a large number of document formats, protocols and programming
languages. Prototyping is facilitated by good development tools, both for command line usage and for
usage with graphical development tools. Demand loading of predicates from the library and a ‘make’
facility avoids the requirement for using declarations and reduces typing.

SWI-Prolog is traditionally strong in education because it is free and portable, but also because of
its compatibility with textbooks and its easy-to-use environment.

Note that these positions do not imply that the system cannot be used with other scenarios. SWI-
Prolog is used as an embedded language where it serves as a small rule subsystem in a large ap-
plication. It is also used as a deductive database. In some cases, this is the right choice because
SWI-Prolog has features that are required in the application, such as threading or Unicode support.
In general though, for example: GNU-Prolog is more suited for embedding because it is small and
can compile to native code; XSB is better for deductive databases because it provides a mature im-
plementation of tabling including support for incremental updates and Well Founded Semantics'; and
ECLiPSe is better at constraint handling.

The syntax and set of built-in predicates is based on the ISO standard []. Most
extensions follow the ‘Edinburgh tradition’ (DEC10 Prolog and C-Prolog) and Quintus Prolog
[]. The infrastructure for constraint programming is based on hProlog [].

Some libraries are copied from the YAP? system. Together with YAP, we developed a portability
framework (see section C). This framework has been filled for SICStus Prolog, YAP, IF/Prolog and

'Sponsored by Kyndi and with help from the XSB developers Theresa Swift and David S. Warren, SWI-Prolog now
supports many of the XSB features.
http://www.dcc.fc.up.pt/~{}vsc/Yap/

SWI-Prolog 8.4 Reference Manual

http://www.dcc.fc.up.pt/~{}vsc/Yap/

1.2. STATUS AND RELEASES 15

Ciao. SWI-Prolog version 7 introduces various extensions to the Prolog language (see section 5). The
string data type and its supporting set of built-in predicates is compatible with ECLiPSe.

1.2 Status and releases

This manual describes version 8.4 of SWI-Prolog. SWI-Prolog is widely considered to be a robust
and scalable implementation of the Prolog language. It is widely used in education and research.
In addition, it is in use for 24 X 7 mission critical commercial server processes. The site http:
//www.swi-prolog.org is hosted using the SWI-Prolog HTTP server infrastructure. It receives
approximately 2.3 million hits and serves approximately 300 Gbytes on manual data and downloads
each month. SWI-Prolog applications range from student assignments to commercial applications
that count more than one million lines of Prolog code.

SWI-Prolog has two development tracks. Stable releases have an even minor version number
(e.g., 6.2.1) and are released as a branch from the development version when the development version
is considered stable and there is sufficient new functionality to justify a stable release. Stable releases
often get a few patch updates to deal with installation issues or major flaws. A new Development
version is typically released every couple of weeks as a snapshot of the public git repository. ‘Extra
editions’ of the development version may be released after problems that severely hindered the user
in their progress have been fixed.

Known bugs that are not likely to be fixed soon are described as footnotes in this manual.

1.3 Should I be using SWI-Prolog?

There are a number of reasons why it might be better to choose a commercial, or another free, Prolog
system:

» SWI-Prolog comes with no warranties
Although the developers or the community often provide a work-around or a fix for a bug, there
is no place you can go to for guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on all major platforms.
Users requiring more support should ensure access to knowledgeable developers.

* Performance is your first concern
Various free and commercial systems have better performance. But, ‘standard’ Prolog bench-
marks disregard many factors that are often critical to the performance of large applications.
SWI-Prolog is not good at fast calling of simple predicates, but it is fast with dynamic code,
meta-calling and predicates that contain large numbers of clauses or require more advanced
clauses indexing. Many of SWI-Prolog’s built-in predicates are written in C and have excellent
performance.

On the other hand, SWI-Prolog offers some facilities that are widely appreciated by users:

» Comprehensive support of Prolog extensions
Many modern Prolog implementations extend the standard SLD resolution mechanism with
which Prolog started and that is described in the ISO standard. SWI-Prolog offers most popular
extensions.

SWI-Prolog 8.4 Reference Manual

http://www.swi-prolog.org
http://www.swi-prolog.org

16 CHAPTER 1. INTRODUCTION

Attributed variables provide Constraint Logic Programming and delayed execution based on
instantiation (coroutining). Tabling or SGL resolution provides characteristics normally associ-
ated with bottom up evaluation: better termination, better predictable performance by avoiding
recomputation and Well Founded Semantics for negation. Delimited continuations can be used
to implement high level new control structures and Engines can be used to control multiple
Prolog goals, achieving different control structures such as massive numbers of cooperating
agents.

* Nice environment
SWI-Prolog provides a good command line environment, including ‘Do What I Mean’, auto-
completion, history and a tracer that operates on single key strokes. The system automatically
recompiles modified parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and line based on its source database.
It ships with various graphical tools and can be combined with the SWI-Prolog editor, PDT
(Eclipse plugin for Prolog), VScode or GNU-Emacs.

» Fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is the Quick Load Format. See gcompile/1 and gsave_program/2.

 Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not, and the performance of debugged code is close to that of normal operation.

* Source level debugger
The source level debugger provides a good overview of your current location in the search tree,
variable bindings, your source code and open choice points. Choice point inspection provides
meaningful insight to both novices and experienced users. Avoiding unintended choice points
often provides a huge increase in performance and a huge saving in memory usage.

* Profiling
SWI-Prolog offers an execution profiler with either textual output or graphical output. Finding
and improving hotspots in a Prolog program may result in huge speedups.

* Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 12). It can also be embedded in external programs (see
section 12.5). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

* Threads

Robust support for multiple threads may improve performance and is a key enabling factor for
deploying Prolog in server applications. Threads also facilitates debugging and maintenance of
long running processes and embedded Prolog engines. The native IDE tools run in a separate
thread The prolog_server library provides telnet access and the pack 1ibssh provides
SSH login. With some restrictions regarding the compatibility of old and new code, code can
be replaced while it is being executed in another thread. This allows for injecting debug/ 3
statements as well as fixing bugs without downtime.

SWI-Prolog 8.4 Reference Manual

1.4. SUPPORT THE SWI-PROLOG PROJECT 17

* Interfaces
SWI-Prolog ships with many extension packages that provide robust interfaces to processes,
encryption, TCP/IP, TIPC, ODBC, SGML/XML/HTML, RDF, JSON, YAML, HTTP, graphics
and much more.

1.4 Support the SWI-Prolog project

You can support the SWI-Prolog project in several ways. Academics are invited to cite one of the
publications® on SWI-Prolog. Users can help by identifying and/or fixing problems with the code or
its documentation*. Users can contribute new features or, more lightweight, contribute packs’. Com-
mercial users may consider contacting the developers® to sponsor the development of new features or
seek for opportunities to cooperate with the developers or other commercial users.

1.5 Implementation history

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. In those days, Prolog
systems were not very aware of their environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focusing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a simple Prolog virtual machine called ZIP [,

] which defines only 7 instructions. Prolog can easily be compiled into this lan-
guage, and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the virtual machine, there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself, this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required, and the system only runs slightly slower in
debug mode compared to normal execution. The price we have to pay is some performance degra-
dation (taking out the debugger from the VM interpreter improves performance by about 20%) and
somewhat additional memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [] to improve
performance. While extending this set, care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (; /2, | /2),
if-then (->/2) and negation-by-failure (\+/1).

SWI-Prolog implements attributed variables (constraints) and delimited continuations following
the design in hProlog by Bart Demoen. The engine implementation follows the design proposed by
Paul Tarau. Tabling was implemented by Benoit Desouter based on delimited continuations. Tabling
has been extended with answer subsumption by Fabrizio Riguzzi. The implementation of well founded
semantics and incremental tabling follows XSB and has been sponsored by Kyndi and mode possible
by technical support from notably Theresa Swift and David S. Warren.

*https://www.swi-prolog.org/Publications.html
4https ://www.swi-prolog.org/howto/SubmitPatch.html
Shttps://www.swi-prolog.org/pack/list
®mailto:info@ swi-prolog.org

SWI-Prolog 8.4 Reference Manual

https://www.swi-prolog.org/Publications.html
https://www.swi-prolog.org/howto/SubmitPatch.html
https://www.swi-prolog.org/pack/list
mailto:info@swi-prolog.org

18 CHAPTER 1. INTRODUCTION

1.6 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef /2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute_file_name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

Our special thanks go to those who had the fate of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual. Horst von Brand has been so kind to fix many
typos in the 2.7.14 manual. Thanks! Randy Sharp fixed many issues in the 6.0.x version of the manual.

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska contributed the current
clp(fd) implementation as well as the clp(b) implementation.

Tom Schrijvers and Bart Demoen initiated the implementation of delimited continuations (sec-
tion 4.9), which was used by Benoit Desouter and Tom Schrijvers to implement fabling (section 7) as
a library. Fabrizio Riguzzi added a first implementation for mode directed tabling (section 7.3).

The SWI-Prolog 7 extensions (section 5) are the result of a long heated discussion on the mail-
inglist. Nicos Angelopoulos’ wish for a smooth integration with the R language triggered the overall
intend of these extensions to enable a smoother integration of Prolog with other languages. Michael
Hendrix suggested and helped shaping SWI-Prolog quasi quotations.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www . sss.co.nz has sponsored the development of
the SSL library, unbounded integer and rational number arithmetic and many enhancements to the
memory management of the system.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.

Jeff Rosenwald contributed the TIPC networking library and Google’s protocol buffer handling.

Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-
Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

Kyndi (https://kyndi.com/) sponsored the development of the engines interface (chap-
ter 11). The final API was established after discussion with the founding father of engines, Paul Tarau
and Paulo Moura. Kyndi also sponsored JIT indexing on multiple arguments as well as deep index-
ing. Kyndi currently supports the implementation of XSB compatible tabling, including well founded
semantics and incremental tabling. Theresa Swift, David S. Warren and Fabrizio Riguzzi provided
input to realise advanced tabling.

SWI-Prolog 8.4 Reference Manual

www.sss.co.nz
https://kyndi.com/

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘swipl’. The command line arguments of SWI-Prolog itself
and its utility programs are documented using standard Unix man pages. SWI-Prolog is normally
operated as an interactive application simply by starting the program:

$ swipl
Welcome to SWI-Prolog

After starting Prolog, one normally loads a program into it using consult /1, which may be abbre-
viated by putting the name of the program file between square brackets. The following goal loads the
file likes.pl containing clauses for the predicates 1ikes/2:

' ?2- [likes]. |
‘true. ‘
| |
i 1

Alternatively, the source file may be given as command line arguments:

$ swipl likes.pl
Welcome to SWI-Prolog

Both the above assume 1ikes.pl is in your working directory. If you use the command
line version swipl the working directory is the same as the shell from which you started
SWI-Prolog. If you started the GUI version (swipl-win) this depends largely on the
OS. You can use pwd/0 and cd/ 0 to find and change the working directory. The utility
1s/0 lists the contents of the working directory.

SWI-Prolog 8.4 Reference Manual

https://raw.githubusercontent.com/SWI-Prolog/swipl-devel/master/demo/likes.pl

20 CHAPTER 2. OVERVIEW

?— pwd.

% /home/janw/src/swipl-devel/linux/
true.

?— cd (' " /tmp’) .

true.

?— pwd.
% /home/janw/tmp/
true.

The file 1ikes.pl is also installed in a subdirectory demo insides SWI-Prolog’s instal-
lation directory and may be loaded regardless of the working directory using the com-
mand below. See absolute_file name/3 and file_search _path/2 for details
on how SWI-Prolog specifies file locations.

?— [swi(demo/likes)].
true.

After this point, Unix and Windows users unite, so if you are using Unix please continue at
section 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

* A folder (called directory in the remainder of this document) called swipl containing the
executables, libraries, etc., of the system. No files are installed outside this directory.

* A program swipl-win.exe, providing a window for interaction with Prolog. The program
swipl.exe is a version of SWI-Prolog that runs in a console window.

* The file extension .pl is associated with the program swipl-win.exe. Opening a .pl
file will cause swipl-win.exe to start, change directory to the directory in which the file to
open resides, and load this file.

The normal way to start the 1ikes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Adding rules from the console

Although we strongly advice to put your program in a file, optionally edit it and use make /0 to reload
it (see section 2.1.4), it is possible to manage facts and rules from the terminal. The most convenient
way to add a few clauses is by consulting the pseudo file user. The input is ended using the system
end-of-file character.

SWI-Prolog 8.4 Reference Manual

2.1. GETTING STARTED QUICKLY 21

?— [user].

| : hello :- format (’Hello world™n’).
|+ "D

true.

?— hello.
Hello world
true.

The predicates assertz/1 and retract /1 are alternatives to add and remove rules and facts.

2.1.3 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = (value) if it can prove the goal for a certain X.
The user can type the semi-colon (;) or spacebar! if (s)he wants another solution. Use the RETURN key
if you do not want to see more answers. Prolog completes the output with a full stop (.) if the user uses
the RETURN key or Prolog knows there are no more answers. If Prolog cannot find (more) answers, it
writes false. Finally, Prolog answers using an error message to indicate the query or program contains
an error.

?— likes (sam, X).
X = dahl ;
X = tandoori ;

X

chips.

Note that the answer written by Prolog is a valid Prolog program that, when executed, produces the
same set of answers as the original program.’

2.1.4 Examining and modifying your program

If properly configured, the predicate edit /1 starts the built-in or user configured editor on the ar-
gument. The argument can be anything that can be linked to a location: a file name, predicate name,
module name, etc. If the argument resolves to only one location the editor is started on this location,
otherwise the user is presented a choice.

If a graphical user interface is available, the editor normally creates a new window and the system
prompts for the next command. The user may edit the source file, save it and run make/0 to update
any modified source file. If the editor cannot be opened in a window, it opens in the same console and
leaving the editor runs make /0 to reload any source files that have been modified.

On most installations, single-character commands are executed without waiting for the RETURN key.
2The SWI-Prolog top level differs in several ways from traditional Prolog top level. The current top level was designed
in cooperation with Ulrich Neumerkel.

SWI-Prolog 8.4 Reference Manual

22 CHAPTER 2. OVERVIEW

?— edit (likes).
true.
?— make.

% /home/jan/src/pl-devel/linux/likes compiled 0.00 sec, 0 clauses

?— likes (sam, X).

The program can also be decompiled using 1isting/1 as below. The argument of 1isting/1 is
just a predicate name, a predicate indicator of the form Name/Arity,e.g., 2— listing(mild/1) .
or a head, e.g., ?— listing(likes (sam, _)) ., listing all matching clauses. The predicate
listing/0, i.e., without arguments lists the entire program.’

?— listing(mild) .
mild(dahl) .

mild (tandoori) .
mild (kurma) .

true.

2.1.5 Stopping Prolog

The interactive toplevel can be stopped in two ways: enter the system end-of-file character (typically
Control-D) or by executing the halt /0 predicate:

?—- halt.
$

2.2 The user’s initialisation file

After the system initialisation, the system consults (see consult /1) the user’s init file. This file
is searched using absolute_file_name/3 using the path alias (see file_search_path/2)
app-config. This is a directory named swi-prolog below the OS default name for placing
application configuration data:

* On Windows, the CSIDL folder CSIDL_APPDATA, typically
C:\Documents and Settings\usernamel\Application Data.

* If the environment variable XDG_DATA_HOME is set, use this. This follows the free desktop
standard.

3This lists several hook predicates that are defined by default and is typically not very informative.

SWI-Prolog 8.4 Reference Manual

https://standards.freedesktop.org

2.3. INITTALISATION FILES AND GOALS 23

* The expansion of ~/.config.

The directory can be found using this call:

?— absolute_file_name (app_config(.), Dir, [file_type (directory)]).
Dir = '’ /home/jan/.config/swi-prolog’.

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘~f f£ile’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

The installation provides a file customize/init.pl with (commented) commands that are
often used to customize the behaviour of Prolog, such as interfacing to the editor, color selection or
history parameters. Many of the development tools provide menu entries for editing the startup file
and starting a fresh startup file from the system skeleton.

See also the —s (script) and —F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options
are -f fileor —s file to make Prolog load a file, —-g goal to define initialisation goals and
-t goal to define the fop-level goal. The following is a typical example for starting an application
directly from the command line.

machine% swipl -s load.pl -g go -t halt

It tells SWI-Prolog to load 1o0ad. pl, start the application using the entry point go/0 and —instead
of entering the interactive top level— exit after completing go/0.

The command line may have multiple —~g goal occurrences. The goals are executed in order.
Possible choice points of individual goals are pruned. If a goal fails execution stops with exit status
1. If a goal raises an exception, the exception is printed and the process stops with exit code 2.

The —g may be used to suppress all informational messages as well as the error message that is
normally printed if an initialisation goal fails.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command
line arguments. A typically seen alternative is to write a file run . p1 with content as illustrated below.
Double-clicking run . pl will start the application.

:— [load]. % load program
:— go. % run it
:— halt. % and exit

Section 2.11.2 discusses further scripting options, and chapter 13 discusses the generation of runtime
executables. Runtime executables are a means to deliver executables that do not require the Prolog
system.

SWI-Prolog 8.4 Reference Manual

24 CHAPTER 2. OVERVIEW

2.4 Command line options
SWI-Prolog can be executed in one of the following modes:

swipl —--help

swipl —--version
swipl —-—-arch
swipl —-—dump-runtime-variables

These options must appear as only option. They cause Prolog to print an informational message
and exit. See section 2.4.1.

swipl [option ...] script-file [arg ...]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [option ...] is executed. = Arguments after the script file
are made available in the Prolog flag argv.

swipl [option ...] prolog-file ... [[--] arg ...]
This is the normal way to start Prolog. The options are described in section 2.4.2, section 2.4.3
and section 2.4.4. The Prolog flag argv provides access to arg ... If the options are followed
by one or more Prolog file names (i.e., names with extension .p1l, .prolog or (on Windows)
the user preferred extension registered during installation), these files are loaded. The first file
is registered in the Prolog flag associated_file. In addition, pl-win[.exe] switches
to the directory in which this primary source file is located using working_directory/2.

swipl -0 output -c prolog-file ...
The —c option is used to compile a set of Prolog files into an executable. See section 2.4.5.

swipl -0 output -b bootfile prolog-file ...
Bootstrap compilation. See section 2.4.6.

2.4.1 Informational command line options

——arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also ——dump-runtime-variables.

——dump-runtime—-variables [=format]
When given as the only option, it prints a sequence of variable settings that can be used in
shell scripts to deal with Prolog parameters. This feature is also used by swipl-1d (see
section 12.5). Below is a typical example of using this feature.

eval ‘swipl ——dump-runtime-variables®
cc —-ISPLBASE/include -LS$SPLBASE/lib/S$PLARCH

The option can be followed by =sh to dump in POSIX shell format (default) or =cmd to dump
in MS-Windows cmd . exe compatible format.

—-help
When given as the only option, it summarises the most important options.

SWI-Prolog 8.4 Reference Manual

2.4. COMMAND LINE OPTIONS 25

—-version
When given as the only option, it summarises the version and the architecture identifier.

——abi-version
Print a key (string) that represents the binary compatibility on a number of aspects. See sec-
tion 2.22.

2.4.2 Command line options for running Prolog

Note that boolean options may be written as ——name (true), ——noname or ——no-name (false).
They are written as ——no—name below as the default is ‘true’.

——debug-on-interrupt
Enable debugging on an interrupt signal (Control-C, STGINT) immediately. Normally debug-
ging on interrupt is enabled when entering the interactive toplevel. This flag can be used to start
the debugger on an interrupt while executing goals from —~g or initialization/[1, 2].
See also the Prolog flag debug_on_interrupt.

——home=DIR
Use DIR as home directory. See section 12.6 for details.

——quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as —q.

——no—-debug
Disable debugging. See the current prolog_flag/2 flag generate_debug_info for
details.

—-no-signals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 12.4.23 for details.
Note that the handler to unblock system calls is still installed. This can be prevented using
-—sigalert=0 additionally. See ——sigalert.

——no-threads
Disable threading for the multi-threaded version at runtime. See also the flags threads and
gc_thread.

——no-packs
Do not attach extension packages (add-ons). See also attach_packs/0 and the Prolog flag
packs.

——no-pce
Enable/disable the xpce GUI subsystem. The default is to make it available as autoload com-
ponent if it is installed and the system can access the graphics. Using ——pce load the xpce
system in user space and ——no—-pce makes it unavailable in the session.

——on-error =style
How to handle on errors. See the Prolog flag on_error for details.

SWI-Prolog 8.4 Reference Manual

26 CHAPTER 2. OVERVIEW

——on—warning =style
How to handle on warnings. See the Prolog flag on_warning for details.

——pldoc [=port]
Start the PIDoc documentation system on a free network port and launch the user’s browser on
http://localhost :port. If port is specified, the server is started at the given port and the
browser is not launched.

—-sigalert=NUM
Use signal NUM (1...31) for alerting a thread. This is needed to make thread_signal/2,
and derived Prolog signal handling act immediately when the target thread is blocked on an
interruptible system call (e.g., sleep/1, read/write to most devices). The default is to use
SIGUSR2. If NUM is O (zero), this handler is not installed. See prolog_alert_signal/2
to query or modify this value at runtime.

——no-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get_single_char/1. By default, manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. See also tty_control.

—--win-app
This option is available only in swipl-win.exe and is used for the start-menu item. If
causes plwin to start in the folder ...\My Documents\Prolog or local equivalent

thereof (see win_folder/2). The Prolog subdirectory is created if it does not exist.

-0
Optimised compilation. See current _prolog_flag/2 flag opt imise for details.

-1 file
Load file. This flag provides compatibility with some other Prolog systems.* It is used in SWI-
Prolog to skip the program initialization specified using initialization/2 directives.
See also section 2.11.2, and initialize/O0.

-s file
Use file as a script file. The script file is loaded after the initialisation file specified with the
—-f fileoption. Unlike -f file, using —s does not stop Prolog from loading the personal
initialisation file.

-f£ file
Use file as initialisation file instead of the default init.pl. ‘~f none’ stops SWI-Prolog
from searching for a startup file. This option can be used as an alternative to —s file that
stops Prolog from loading the personal initialisation file. See also section 2.2.

=F script
Select a startup script from the SWI-Prolog home directory. The script file is named
(script) .rc. The default scripr name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program name. —-F none

4YAP, SICStus

SWI-Prolog 8.4 Reference Manual

2.4. COMMAND LINE OPTIONS 27

stops looking for a script. Intended for simple management of slightly different versions. One
could, for example, write a script iso.rc and then select ISO compatibility mode using
pl —-F iso or make alink from iso-pl topl.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A boot file is a file re-
sulting from a Prolog compilation using the —b or —c option or a program saved using
gsave_program/[1, 2].

—-p alias=pathl[:path2 ...]
Define a path alias for file_search_path. alias is the name of the alias, and argpathl ... is a
list of values for the alias. On Windows the list separator is ;. On other systems it is :. A
value is either a term of the form alias(value) or pathname. The computed aliases are added to
file_search path/2 using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file location mechanism.

——traditional
This flag disables the most important extensions of SWI-Prolog version 7 (see section 5) that
introduce incompatibilities with earlier versions. In particular, lists are represented in the
traditional way, double quoted text is represented by a list of character codes and the functional
notation on dicts is not supported. Dicts as a syntactic entity, and the predicates that act on
them, are still supported if this flag is present.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current_prolog_flag/2 using the flag argv for obtaining the command line
arguments.

2.4.3 Controlling the stack sizes

As of version 7.7.14 the stacks are no longer limited individually. Instead, only the combined size is
limited. Note that 32 bit systems still pose a 128Mb limit. See section 2.20.1. The combined limit is
by default 1Gb on 64 bit machines and 512Mb on 32 bit machines.

For example, to limit the stacks to 32Gb use the command below. Note that the stack limits
apply per thread. Individual threads may be controlled using the stack_limit(+Bytes) option of
thread_create. Any thread can call set_prolog_flag(stack_limit, Limif) (see stack_limit) to
adjust the stack limit. This limit is inherited by threads created from this thread.

$ swipl --stack-1limit=32g

——-stack-limit=size/bkmg]
Limit the combined size of the Prolog stacks to the indicated size. The suffix specifies the value
as bytes, Kbytes, Mbytes or Gbytes.

—--table-space=size/bkmg]
Limit for the table space. This is where tries holding memoized® answers for tabling are
stored. The default is 1Gb on 64 bit machines and 512Mb on 32 bit machines. See the Prolog
flag table_space.

5The letter M is used because the T was already in use. It is a memnonic for Memoizing.

SWI-Prolog 8.4 Reference Manual

28

CHAPTER 2. OVERVIEW

—-shared—-table—-space=size[/bkmg]

Limit for the table space for shared tables. See section 7.9.

2.4.4 Running goals from the command line

-g goal

Goual is executed just before entering the top level. This option may appear multiple times. See
section 2.3 for details. If no initialization goal is present the system calls version/0 to print
the welcome message. The welcome message can be suppressed with ——quiet, but also with
—-g true. goal can be a complex term. In this case quotes are normally needed to protect it
from being expanded by the shell. A safe way to run a goal non-interactively is below. If go/0
succeeds —g halt causes the process to stop with exit code 0. If it fails, the exit code is 1;
and if it raises an exception, the exit code is 2.

% swipl <options> -g go —-g halt

-t goal

24.5

Use goal as interactive top level instead of the default goal prolog/0. The goal can be a
complex term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed as an uncaught error and the
top level is restarted. This flag also determines the goal started by break /0 and abort /0.
If you want to prevent the user from entering interactive mode, start the application with
‘-g goal -t halt’.

Compilation options

—cfile...

Compile files into an ‘intermediate code file’. See section 2.11.

—o output

24.6

Used in combination with —c or —b to determine output file for compilation.

Maintenance options

The following options are for system maintenance. They are given for reference only.

=b initfile ... —c file ...

Boot compilation. initfile ... are compiled by the C-written bootstrap compiler, file ... by the
normal Prolog compiler. System maintenance only.

—d rokenl,token2,...

Print debug messages for DEBUG statements tagged with one of the indicated tokens. Only
has effect if the system is compiled with the —-DO_DEBUG flag. System maintenance only.

SWI-Prolog 8.4 Reference Manual

2.5. UI THEMES 29

2.5 UI Themes

UI (colour) themes play a role in two parts: when writing to the console and for the xpce-based
development tools such as PceEmacs or the graphical debugger. Coloured console output is based
on ansi_format/3. The central message infra structure based on print_message/2 labels
message (components) with a Prolog term that specifies the role. This is mapped to concrete colours
by means of the hook prolog:console_color/2. Theming the IDE uses xpce class variables
that are initialised from Prolog when xpce is loaded.

Themes are implemented as a Prolog file in the file search path library/theme. A theme can be
loaded using (for example) the directive below in the user’s initialization file (see section 2.2).

:— use_module (library (theme/dark)) .

The theme file 1ibrary (theme/auto) is provided to automatically choose a reasonable theme
based on the environment. The current version detects the background color on xterm compatible
terminal emulators (found on most Unix systems) and loads the dark theme if the background is
‘darkish’.

The following notes apply to the different platforms on which SWI-Prolog is supported:

Unix/Linux If an xterm compatible terminal emulator is used to run Prolog you may wish to load
either an explicit theme or 1ibrary (theme/auto).

Windows The swipl-win.exe graphical application can be themed by loading a theme file. The
theme file also sets the foreground and background colours for the console.

2.5.1 Status of theme support

Theme support was added in SWI-Prolog 8.1.11. Only part of the IDE tools are covered and the only
additional theme (dark) is not net well balanced. The interfaces between the theme file and notably
the IDE components is not very well established. Please contribute by improving the dark theme.
Once that is complete and properly functioning we can start adding new themes.

2.6 GNU Emacs Interface

Unfortunately the default Prolog mode of GNU Emacs is not very good. There are several alternatives
though:

* https://bruda.ca/emacs/prolog_mode_for_emacs

Prolog mode for Emacs and XEmacs maintained by Stefan Bruda.

* https://www.metalevel.at/pceprolog/
Recommended configuration options for editing Prolog code with Emacs.

e https://www.metalevel.at/ediprolog/
Interact with SWI-Prolog directly in Emacs buffers.

* https://www.metalevel.at/etrace/
Trace Prolog code with Emacs.

SWI-Prolog 8.4 Reference Manual

https://bruda.ca/emacs/prolog_mode_for_emacs
https://www.metalevel.at/pceprolog/
https://www.metalevel.at/ediprolog/
https://www.metalevel.at/etrace/

30 CHAPTER 2. OVERVIEW

e https://emacs-1lsp.github.io/dap—-mode/page/configuration/
fswi-prolog
Debug Adapter Protocol (DAP) for SWI-Prolog with Emacs using dap-mode and the
debug_adapter pack from https://github.com/eshelyaron/debug_adapter

2.7 Online Help

2.7.1 library(help): Text based manual

This module provides help/1 and apropos/1 that give help on a topic or searches the manual for
relevant topics.

By default the result of help/1 is sent through a pager such as 1less. This behaviour is con-
trolled by the following:

* The Prolog flag help_pager, which can be set to one of the following values:

false
Never use a pager.

default
Use default behaviour. This tries to determine whether Prolog is running interactively in
an environment that allows for a pager. If so it examines the environment variable PAGER
or otherwise tries to find the 1ess program.

Callable
A Callable term is interpreted as program_name (Arg, ...). For example,
less (' —r’) would be the default. Note that the program name can be an absolute path
if single quotes are used.

help [det]

help(+What) [det]
Show help for What. What is a term that describes the topics (s) to give help for. Notations
for What are:

Atom
This ambiguous form is most commonly used and shows all matching documents. For
example:

?— help (append) .

Name [/ Arity
Give help on predicates with matching Name/Arity. Arity may be unbound.

Name [/ Arity
Give help on the matching DCG rule (non-terminal)

f(Name/Arity)
Give help on the matching Prolog arithmetic functions.

SWI-Prolog 8.4 Reference Manual

https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://github.com/eshelyaron/debug_adapter

2.7. ONLINE HELP 31

c(Name)

Give help on the matching C interface function
section(Label)

Show the section from the manual with matching Label.

If an exact match fails this predicates attempts fuzzy matching and, when successful, display
the results headed by a warning that the matches are based on fuzzy matching.

If possible, the results are sent through a pager such as the 1ess program. This behaviour is
controlled by the Prolog flag help_pager. See section level documentation.

See also apropos/1 for searching the manual names and summaries.

show_html_hook(+HTML:string) [semidet,multifile]
Hook called to display the extracted HTML document. If this hook fails the HTML is rendered
to the console as plain text using html _text /2.

apropos(+Query) [det]
Print objects from the manual whose name or summary match with Query. Query takes one of
the following forms:

Type : Text
Find objects matching Text and filter the results by Type. Type matching is a case in-
tensitive prefix match. Defined types are section, cfunction, function,
iso_predicate, swi_builtin_predicate, library_predicate, dcg and
aliases chapter, arithmetic, c_function, predicate, nonterminal and
non_terminal. For example:

?— apropos (c:close).
?— apropos (f:min) .

Text
Text is broken into tokens. A topic matches if all tokens appear in the name or summary
of the topic. Matching is case insensitive. Results are ordered depending on the quality of
the match.

2.7.2 library(explain): Describe Prolog Terms

The library (explain) describes prolog-terms. The most useful functionality is its cross-
referencing function.

?— explain(subset (_,_)).
"subset (_, _)" is a compound term
from 2-th clause of lists:subset/2
Referenced from 46-th clause of prolog_xref:imported/3
Referenced from 68-th clause of prolog_xref:imported/3
lists:subset/2 is a predicate defined in
/staff/jan/1lib/pl-5.6.17/1library/lists.pl:307
Referenced from 2-th clause of lists:subset/2
Possibly referenced from 2-th clause of lists:subset/2

SWI-Prolog 8.4 Reference Manual

32 CHAPTER 2. OVERVIEW

(I Repeat last query

'nr. Repeat query numbered (nr)
!'str. | Repeat last query starting with (str)
h. Show history of commands

'h. Show this list

Table 2.1: History commands

Note that PceEmacs can jump to definitions and gxref /0 can be used for an overview of depen-
dencies.

explain(@ Term) [det]
Give an explanation on 7Term. The argument may be any Prolog data object. If the argument
is an atom, a term of the form Name /Arity or a term of the form Module :Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref /0.

explain(@ Term, -Explanation) [nondet]
True when Explanation is an explanation of Term.

2.8 Command line history

SWI-Prolog offers a query substitution mechanism similar to what is seen in Unix shells. The avail-
ability of this feature is controlled by set_prolog_flag/2, using the history Prolog flag. By
default, history is available if no interactive command line editor is available. To enable history,
remembering the last 50 commands, put the following into your startup file (see section 2.2):

‘:— set_prolog_flag(history, 50). ‘

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.9 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database if they
are not too large. These values may be reused in further top-level queries as $Var. If the same
variable name is used in a subsequent query the system associates the variable with the latest binding.
Example:

Note that variables may be set by executing =/2:

‘6 ?- X = statistics. ‘
‘X = statistics. ‘
|
|

72— $X.

SWI-Prolog 8.4 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 33

1 ?- maplist(plus(l), ‘hello', X).
X = [105,102,109,109,112].

2 ?- format (' "s™n’, [S$X]).
ifmmp
true.

Figure 2.1: Reusing top-level bindings

Started at Fri Aug 24 16:42:53 2018
0.118 seconds cpu time for 456,902 inferences
7,574 atoms, 4,058 functors, 2,912 predicates, 56 modules, 109,79

Limit Allocated In use

Local stack: - 20 Kb 1,888 Db
Global stack: - 60 Kb 36 Kb
Trail stack: - 30 Kb 4,112 b
Total: 1,024 Mb 110 Kb 42 Kb

3 garbage collections gained 178,400 bytes in 0.000 seconds.

2 clause garbage collections gained 134 clauses in 0.000 seconds.
Stack shifts: 2 local, 2 global, 2 trail in 0.000 seconds

2 threads, 0 finished threads used 0.000 seconds

true.

o0 o o o O O A A O O o o o o°

2.10 Overview of the Debugger

Imperative languages like C++, Python or JavaScript execute mostly linear code with some branching
and subroutine calls. Their debuggers support stepping through the code and pausing on each line,
or running the program until it hits a breakpoint and pauses. When paused, the user can inspect the
current program state or give the debugger commands.

Prolog has a logical execution model that involves attempting to prove logical predicates and needs
a different debugging approach. SWI-Prolog uses the traditional Prolog "Byrd Box Model” or "4 Port
Model” debugging approach described by [,] with a couple of
extensions to implement its command line debugger. There are two other debuggers available that
build on this infrastructure: a graphical debugger and remote debugging in the web interface provided
by SWISH.

Reference information to all predicates available for manipulating the debugger is in the debugger
section (section 4.39).

SWI-Prolog 8.4 Reference Manual

1 VM-codes

https://www.swi-prolog.org/gtrace.html
https://swish.swi-prolog.org/

34 CHAPTER 2. OVERVIEW

2.10.1 The Byrd Box Model And Ports

Standard Prolog debugging tools are built around the so-called "Byrd Box Model” or ”’4 Port Model”
which models each predicate in a Prolog program as a state machine ("box”) that transitions through
states (ports”) as a program is evaluated. The developer can ask the engine to pause for program
inspection when it reaches specific ports or predicates.

As we go through this overview, remember that a “port” is just another word for a “state” in the
state machine that each predicate transitions through during evaluation. The state machine is called a
”box” because it is drawn like this:

————————— > + descendant (X,Y) :- offspring(X,Y). + ————————

| descendant (X,Z2) :- |
<—mmmm— = + offspring(X,Y), descendant(Y,Z). + <-———————

The standard ports are: call, redo, exit and fail. SWI-Prolog extends this with two more:
unify and exception. Each trace happens at a particular phase of predicate resolution. Recall
that when resolving or proving” a predicate, the Prolog engine:

1. Collects all rules that might match by having a head with the same name and number of argu-
ments

* call is traced, once, if any rules might match.

* redo is also traced when the engine backtracks to find the next matching rule.
2. Finds the next matching rule whose head can be unified with the predicate

e unify is traced with the results of unification if one is found.

e fail is traced if no rule heads can be unified.

3. Applies variable assignments from unification to clauses in the rule body and continues at #1
with the updated clauses

4. After all of the body clauses of the matched rule have either succeeded, failed, or thrown an
exception:

e exit is traced if all of them succeeded (meaning this rule is true).
* fail is traced if any of them failed (meaning this rule is false).

* exception is traced if any of them threw an exception.

This means there can be a lot of traces between the initial call and the end of tracing for a
particular predicate.

SWI-Prolog 8.4 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 35

2.10.2 Trace Mode Example

The trace/0 predicate turns on “trace mode”, which, by default, produces a trace and pauses at
every port of every predicate to allow inspection of the state of the program. This is normally done
from the Prolog console window, but for embedded Prolog systems or when Prolog runs as a daemon
it can also be done by getting a prompt via the libssh package.

Note: If the native graphics plugin (XPCE) is available, the commands gt race/0 and
gspy/1 activate the graphical debugger while tdebug/0 and tspy/1 allow debug-
ging of arbitrary threads.

Each goal is printed using the Prolog predicate write_term/2. The style is defined by the
Prolog flag debugger_write_options and can be modified using this flag or using the w, p and
d commands of the tracer (section 2.10.4).

Here’s an example debugging session that shows the basic flow. The uni £y port is off by default
since it doesn’t add a lot of information in most cases for the command line debugger.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).

adjective (X, color, Value) :— color (X, Value).
?— trace.

true.

[trace] ?— noun (X, rock), adjective(X, color, red).
Call: (11) noun(_9774, rock) ? creep

The trace/0 predicate turned on trace mode, which is now indicated at ev-
ery prompt by [trace] ?-. The initial query provided by the user was
noun (X, rock), adjective (X, color, red) which is asking to find a “red rock”.
Finally: the first port triggered was a Call to the first predicate in the initial query, indicating the
engine is about to look for the first rule that matches noun (_9774, rock).

Pressing spacebar, c, or enter caused the tracer to print creep followed by the next trace.
There are many additional commands available that are described later in the overview.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :- color (X, Value).

[trace] ?— noun (X, rock), adjective (X, color, red).

SWI-Prolog 8.4 Reference Manual

https://www.swi-prolog.org/pack/list?p=libssh

36 CHAPTER 2. OVERVIEW

Call: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rockl, rock) ? creep
Exit: (11) noun(rockl, rock) ? creep

Next, the first clause of noun/2 gets a call trace since the engine is trying to find the next rule
that matches is_a (_9774, rock). Since there is a fact that can unify: is_a (rockl, rock),
the trace shows exit (i.e. succeeded) along with that value. Since that was the final predicate in

the body of noun/2, noun/2 also gets an exit trace that shows the unified value of its head:
noun (rockl, rock).

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :— color (X, Value).

[trace] ?—- noun (X, rock), adjective (X, color, red).

Call:

(11) adjective(rockl, color, red) ? creep
Call: (12) color(rockl, red) ? creep
Exit: (12) color(rockl, red) ? creep
Exit: (11) adjective(rockl, color, red) ? creep
X = rockl ;

Prolog then moved to the next predicate in the initial query: adjective/3 and solved it in
a similar way. Since that was the last predicate in the query, an answer was returned. Pressing ;
requested the next answer and began Prolog backtracking.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).
noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :— color (X, Value).
[trace] ?— noun (X, rock), adjective (X, color, red).
Redo: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep

SWI-Prolog 8.4 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 37

Fail: (11) adjective(rock2, color, red) ? creep
false.

The only choice point to redo (i.e. backtrack over) was the is_a/2 clause of noun/2 since
there was one potential match left to attempt to unify: is_a (rock2, rock). This succeeds with
an exit trace since it does unify with the redo predicate and causes noun (rock2, rock) to
also succeed with exit just as above.

As the traces continue, you can see the fail port get activated for color (rock2, red) since
there is no way to prove that predicate and thus the whole query returns false.

Tracing will continue for every query you pose until you enter not race . to turn off trace mode.

2.10.3 Trace Mode Options: 1eash/1 and visible/1

When you enable trace mode with trace/ 0, the tracer will, by default, pause and wait for a com-
mand at every port it hits on every predicate. The 1leash/1 predicate can be used to modify the
ports to pause at. This is a global setting, so changes will remain until they are changed again or
SWI-Prolog is restarted. Disabling the tracer via not race/0 doesn’t affect which ports are leashed.

The leash/1 argument must start with + to add, or — to remove, followed by the name of a port
such as call, exit, etc. There are special terms like a1l which can be used instead of manually
adding or removing every port.

To stop only at the fail port, use leash/1 like this:

?— leash(-all).
true.

?— leash (+fail).
true.

?— trace.
true.

[trace] ?— noun (X, rock), adjective (X, color, red).

Call: (11) noun(_3794, rock)

Call: (12) is_a(_3794, rock)

Exit: (12) is_a(rockl, rock)

Exit: (11) noun(rockl, rock)

Call: (11) adjective(rockl, color, red)
Call: (12) color(rockl, red)

Exit: (12) color(rockl, red)

Exit: (11) adjective(rockl, color, red)

X = rockl ;

Redo: (12) is_a(_3794, rock)

Exit: (12) is_a(rock2, rock)

Exit: (11) noun (rock2, rock)

Call: (11) adjective(rock2, color, red)
Call: (12) color(rock2, red)

Fail: (12) color(rock2, red) ? creep

SWI-Prolog 8.4 Reference Manual

38 CHAPTER 2. OVERVIEW

Fail: (11) adjective(rock2, color, red) ? creep
false.

Now, only the lines that start with ”Fail:” have “creep” after them because that was the only time
the tracer paused for a command. To never pause and just see all the traces, use leash (-all) and
don’t turn any ports back on.

The default ports are still printed out because a different setting, visible/1, controls which
ports are printed. visible/1 takes the same form of argument as 1eash/1. To only stop and
show the fail port, use leash/1 and visible/1 like this:

?— leash(-all).
true.

?—- leash (+fail).
true.

?— visible (-all).

true.

?— visible (+fail) .
true.

?— trace.

true.
[trace] ?- noun (X, rock), adjective (X, color, red).
X = rockl ;

Fail: (12) color(rock2, red) ? creep

Fail: (11) adjective(rock2, color, red) ? creep
false.

2.10.4 Trace Mode Commands When Paused

You can do way more than just press spacebar when the tracer is paused at a port. All actions are
single-character commands which are executed without waiting for a return (unless the command line
option ——no-tty is active). Pressing ? or h when paused will print out a list of these commands as
well.

SWI-Prolog 8.4 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 39

Control Flow Commands

Abort a | Abort Prolog execution (see abort /0)

Break b | Enter a Prolog break environment (see break/0)

Creep ¢ | Continue execution, stop at next port. (Also return, space)

Exit e | Terminate Prolog (see halt/0)

Fail f | Force failure of the current goal

Find /| Search for a port (see below for the description of this command
(section 2.10.4))

Ignore i | Ignore the current goal, pretending it succeeded

Leap 1 | Continue execution, stop at next spy point

No debug n | Continue execution in 'no debug’ mode

Repeat find | . | Repeat the last find command (see 'Find’ (section 2.10.4))

Retry r | Undo all actions (except for database and I/O actions) back to the
call port of the current goal and resume execution at the call
port

Skip s | Continue execution, stop at the next port of this goal (thus skipping
all calls to children of this goal)

Spy + | Set a spy point (see spy/1) on the current predicate. Spy points are
described later in the overview (section 2.10.6).

No spy - | Remove the spy point (see nospy /1) from the current predicate.
Spy points are described later in the overview (section 2.10.6).

Up u | Continue execution, stop at the next port of the parent goal (thus
skipping this goal and all calls to children of this goal). This option
is useful to stop tracing a failure driven loop.

Find (/) Description and Examples The Find (/) command continues execution until a port match-
ing a find pattern is found. After the /, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should unify
with the goal run by the port. If no term is specified it is taken as a variable, searching for any port of
the specified type. If an atom is given, any goal whose functor has a name equal to that atom matches.
Examples:

If Search for any fail port

/fe solve Search fora fail or exit port of any goal with name solve

/c solve(a, _) Search for a call to solve/2 whose first argument is a variable
or the atom a

/famember (_, _) | Search for any port on member/2. This is equivalent to setting
a spy point on member/2.

Informational Commands

Alternatives | A | Show all goals that have alternatives

Goals g | Show the list of parent goals (the execution stack). Note that due to
tail recursion optimization a number of parent goals might not exist
any more.

Help h | Show available options (also ?)

Listing L | List the current predicate with 1isting/1

SWI-Prolog 8.4 Reference Manual

40 CHAPTER 2. OVERVIEW

Formatting Commands

Context | C | Toggle *’Show Context’. If on, the context module of the goal is
displayed between square brackets (see modules section (section 0)).
Defaultis of £.

Display | d | Setthe max_depth (Depth) option of debugger_write_options
(section 2.12), limiting the depth to which terms are printed. See also
the w and p options.

Print p | Setthe Prolog flag debugger_write_options to

This is the default.

Write w | Set the Prolog flag debugger_ write_options to

[quoted (true), attributes (write), priority(699)1],
bypassing portray/1, etc.

2.10.5 Trace Mode vs. Trace Point

A slight detour is useful to describe some related predicates that can be confusing: To only trace a sin-
gle or select set of predicates, the trace/1 or trace/2 predicates can be used to set a trace point.
Even though they use the same base predicate name trace, these predicates ignore the leash/1
and visible/1 global settings and don’t pause when they trace a port. They really are a different
feature that also happens to do tracing.

A trace point is set on a particular predicate and traces the ports of that predicate whether or not
you are in t race/0 trace mode. Each trace point can trace different ports if the t race/2 variant
is used.

?— trace(is_a/2).
% is_a/2: [all]
true.

?— noun (X, rock), adjective (X, color, red).
T Call: is_a(_25702, rock)
T Exit: is_a(rockl, rock)
X = rockl ;
T Redo: is_a(rockl, rock)
T Exit: is_a(rock2, rock)
false.

Notice that trace mode did not have to be turned on using t race /0 and that this only traced out
the ports hit while executing is_a/2 and that the program was not ever paused.

In fact, if trace mode is turned on while using a trace point, things get very confusing because the
trace point infrastructure itself will be traced!

?— trace(is_a/2).
% is_a/2: [all]
true.

SWI-Prolog 8.4 Reference Manual

[quoted (true), portray(true), max_depth(10), prigrity(699)].

2.10. OVERVIEW OF THE DEBUGGER 41

?— trace.

true.

[trace] ?— noun (X, rock), adjective (X, color, red).
Call: (11) noun(_29318, rock) ? creep
Call: (12) is_a(_29318, rock) ? creep
Call: (13) print_message (debug, frame (user:is_a(_29318, rock), t
Call: (18) push_msg(frame (user:is_a(_29318, rock), trace(call)))
Call: (21) exception(undefined_global_variable, ’S$inprint_messag
Fail: (21) exception(undefined_global_variable, ’S$inprint_messag
Exit: (18) push_msg(frame(user:is_a(_29318, rock), trace(call)))
Call: (19) prolog:message (frame (user:is_a(_29318, rock), trace(c
Fail: (19) prolog:message (frame(user:is_a(_29318, rock), trace(c
Call: (19) message_property (debug, stream(_30192)) ? creep
Fail: (19) message_property (debug, stream(_30192)) ? creep
Call: (20) message_property (debug, prefix(_30200)) ? creep
Fail: (20) message_property (debug, prefix(_30200)) ? creep

T Call: is_a(_29318, rock)
Call: (17) pop_msg ? creep
Exit: (17) pop_msg ? creep
...Lots more after this...

So, trace points are a confusingly named and separate feature from trace mode.

2.10.6 Spy Points and Debug Mode

Back to trace mode features: Because the tracing output of a Prolog program can often be quite large,
sometimes it is useful to start trace mode at a particular point deep in the program. This is what a spy
point is for. It specifies a predicate that should turn on trace mode.

A spy point is enabled like this: spy (mypredicate/2). After that command, the first time
mypredicate/2 is encountered, trace mode will turn on and work just like it does normally. This
includes paying attention to the global 1eash/1 and visible/1 settings. The spy point can be
removed using nospy/1 or nospyall/0

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).
adjective (X, color, Value) :— color (X, Value).

?- spy(is_a/2).
% Spy point on is_a/2

[debug] ?— noun (X, rock), adjective (X, color, red).

SWI-Prolog 8.4 Reference Manual

race (call)))

-

? creep
e’, _30046)
e’”, _30090) ?
? creep
all)), _30140,
all)), _30140,

42 CHAPTER 2. OVERVIEW

* Call: (12) is_a(_ 1858, rock) ? creep
* Exit: (12) is_a(rockl, rock) ? creep
Exit: (11) noun(rockl, rock) ? creep
Call: (11) adjective(rockl, color, red) ? creep
Call: (12) color(rockl, red) ? creep
Exit: (12) color(rockl, red) ? creep
Exit: (11) adjective(rockl, color, red) ? creep
X = rockl ;
* Redo: (12) is_a(_1858, rock) ? creep
* Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep
false.

After the spy point is hit, the output above is identical to the traces generated by running t race/0
with the initial query, but is obviously missing all of the traces before the spy point.
Note that after spy /1 is called, there is a new tag in front of ?—, the [debug] tag:

?— spy(is_a/2).
% Spy point on is_a/?2

This means the system is in “debug mode”. Debug mode does two things: it tells the system to
watch for spy points and it turns off some optimizations that would make the traces confusing. The
ideal 4-port model ([1) as described in many Prolog books ([Dis
not visible in many Prolog implementations because code optimisation removes part of the choice
and exit points. Backtrack points are not shown if either the goal succeeded deterministically or
its alternatives were removed using the cut. When running in debug mode, choice points are only
destroyed when removed by the cut and last call optimisation is switched off. [Note: This implies
the system can run out of stack in debug mode, while no problems arise when running in non-debug
mode.]

Debug mode can be turned off again using nodebug/0, but then the spy point will be ignored
(but remembered). Turning debug mode back on via debug/0 will hit the spy point again.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).
adjective (X, color, Value) :- color (X, Value).

SWI-Prolog 8.4 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 43

?- spyl(is_a/2).
% Spy point on is_a/?2
true.

[debug] ?— nodebug.
true.

?— noun (X, rock).
X = rockl ;

X = rock2.
?— debug.
true.

[debug] ?—- noun (X, rock).
* Call: (11) is_a(_47826, rock) ? creep
+ Exit: (11) is_a(rockl, rock) ? creep
Exit: (10) noun(rockl, rock) ? creep
X = rockl ;
* Redo: (11) is_a(_47826, rock) ? creep

* Exit: (11) is_a(rock2, rock) ? creep
Exit: (10) noun(rock2, rock) ? creep
X = rock2.

So, debug mode allows Prolog to watch for spy points and enable trace mode when it hits one.
The tracing/0 and debugging/0 predicates will report if the system is in either of those modes.

2.10.7 Breakpoints

Sometimes even spy points aren’t enough. There may be a predicate that is used in many different
places and it would be helpful to turn on tracing mode only when one particular call to it is made.
Breakpoints allow for turning on trace mode when a specific source file, line number, and character
in that line are hit. The predicates used are set breakpoint/4 and set breakpoint/5. Many
breakpoints can be active at a time.

Note that the interface provided by these predicates is not intended for end-users. The built-in
PceEmacs editor that is also embedded in the graphical debugger allow setting break points based on
the cursor position.

Example.pl has now been modified to have multiple calls to noun/2:

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :- color (X, Value).

SWI-Prolog 8.4 Reference Manual

44 CHAPTER 2. OVERVIEW

test_nounl (X, Type) :— noun(X, Type).
test_noun2 (X, Type) :— noun (X, Type).

To enable tracing just when noun/ 2 is called from test _noun2/2, set _breakpoint/4 can
be used like this:

?—- set_breakpoint (’/...path.../Example.pl’, 8, 24, ID).
% Breakpoint 1 in 1l-st clause of test_noun2/2 at Example.pl:8
ID = 1.

?— debug.

true.

[debug] ?—- noun (X, rock).

X = rockl

[debug] ?—- test_nounl (X, rock).
X = rockl

[debug] ?—- test_noun2 (X, rock).

Call: (11) noun(_44982, rock) ? creep
Call: (12) is_a(_44982, rock) ? creep
Exit: (12) is_a(rockl, rock) ? creep
Exit: (11) noun(rockl, rock) ? creep
Exit: (10) test_noun2(rockl, rock) ? creep
X = rockl
[trace] ?— notrace.
true.
[debug] ?-

The call to set breakpoint /4 had to specify the source file ("Example.pl”), the line num-
ber (8), and the character within that line (24) to precisely specify what clause should turn on trace
mode (this is much easier using the graphical debugger because it shows source code).

The breakpoint won’t get triggered if the system isn’t in debug mode but, unlike setting a spy
point, set breakpoint/4 does not do this automatically. So, it was turned on manually using
debug/0.

The output shows that only the call to test_noun2/2 (where the breakpoint was set) actually
turned on trace mode. Note that the [Trace] ?- at the end shows that trace mode is left on after
being triggered. It can be turned off again via notrace/0, which will leave the system in debug
mode. All debugging modes can be shut off at once by calling nodebug/ 0 since shutting off debug
mode automatically turns off trace mode.

SWI-Prolog 8.4 Reference Manual

2.11. COMPILATION 45

2.10.8 Command Line Debugger Summary

In summary, there are really two distinct “tracing” features: trace mode and trace points. Both write
traces to the console using the "Byrd Box Model” but that’s where similarity ends.

Trace Mode

Trace mode is the main Prolog command line debugger that allows for tracing the transitions through
the resolution states of predicates represented by ports in the "Byrd Box Model” and optionally paus-
ing for a command when certain ports are hit.

It can be turned on manually via t race/ 0, or (when put into debug mode using debug/0) when
a specific predicate is encountered via spy/1, or when a specific call to a predicate is encountered
via set _breakpoint/4 or set _breakpoint/5.

When in trace mode, visible/1 controls which ports are written to the console, and 1eash/1
controls which ports cause execution to pause to allow program inspection.

When execution is paused, there are many commands that can be used to inspect the state of the
program, cause goals to fail or succeed, etc.

Trace mode is turned off via notrace/0 and debug mode is turned off via nodebug/0.

Trace Points

Trace points are a separate feature from trace mode that allow writing specified ports to the console
when a predicate is being evaluated. It does not ever pause program execution and does not need to
be in trace or debug mode to work.

They are turned on via trace/1 and trace/2.

They don’t pay attention to visible/1 (because the ports shown are set in trace/2) or
leash/1 (because they don’t pause execution).

They can be turned off via t race/2.

2.11 Compilation

2.11.1 During program development

During program development, programs are normally loaded using the list abbreviation (?-

[load].). It is common practice to organise a project as a collection of source files and a load
file, a Prolog file containing only use_module/[1,2] or ensure_loaded/1 directives, possi-
bly with a definition of the entry point of the program, the predicate that is normally used to start the
program. This file is often called 1oad.pl. If the entry point is called go, a typical session starts as:

% swipl
<banner>

1 ?- [load].
<compilation messages>
true.

2 ?- go.
<program interaction>

SWI-Prolog 8.4 Reference Manual

46 CHAPTER 2. OVERVIEW

When using Windows, the user may open load.pl from the Windows explorer, which will cause
swipl-win.exe to be started in the directory holding 1oad.pl. Prolog loads 1oad.pl before
entering the top level. If Prolog is started from an interactive shell, one may choose the type swipl
-s load.pl.

2.11.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program, and the operating system (Unix vs. Windows).

Using PrologScript

A Prolog source file can be used directly as a Unix program using the Unix #! magic start. The
Unix #! magic is allowed because if the first letter of a Prolog file is #, the first line is treated as
a comment.® To create a Prolog script, use one of the two alternatives below as first line. The first
can be used to bind a script to a specific Prolog installation, while the latter uses the default prolog
installed in SPATH.

#!/path/to/swipl
#!/usr/bin/env swipl

The interpretation of arguments to the executable in the HashBang line differs between Unix-derived
systems. For portability, the # ! must be followed immediately with an absolute path to the executable
and should have none or one argument. Neither the executable path, nor the argument shall use quotes
or spaces. When started this way, the Prolog flag argv contains the command line arguments that
follow the script invocation.

Starting with version 7.5.8, initialization/2 support the When options program and
main, allowing for the following definition of a Prolog script that evaluates an arithmetic expres-
sion on the command line. Note that main/0 is defined lib the library main. It calls main/1 with
the command line arguments after disabling signal handling.

#!/usr/bin/env swipl
:— dinitialization(main, main).

main (Argv) :-—
concat_atom(Argv, ’ ', SingleArq),
term_to_atom(Term, SingleArg),
Val is Term,
format (" "w™n’, [Val]).

And here are two example runs:

SThe #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header comment.

SWI-Prolog 8.4 Reference Manual

2.11. COMPILATION 47

% ./eval 1+2

w

% ./eval foo
ERROR: 1s/2: Arithmetic: ‘foo/0’ 1s not a function

Prolog script may be launched for debugging or inspection purposes using the —1 or —t. For example,
-1 merely loads the script, ignoring main and program initialization.

swipl -1 eval 1+1
<banner>

?— main.
2
true.

We can also force the program to enter the interactive toplevel after the application is completed using
-t prolog:

swipl -t prolog eval 1+1
2

?_

The Windows version simply ignores the # ! line.’

Creating a shell script

With the introduction of PrologScript (see section 2.11.2), using shell scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell script that simply loads
your application and calls the entry point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=swipl

exec $PL -g -f "$base/load" --

"Older versions extracted command line arguments from the HashBang line. As of version 5.9 all relevant setup can
be achieved using directives. Due to the compatibility issues around HashBang line processing, we decided to remove it
completely.

SWI-Prolog 8.4 Reference Manual

48 CHAPTER 2. OVERVIEW

:— initialization go.
go :-—
current_prolog_flag(argv, Arguments),

go (Arguments) .

go (Args) :-—

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a . bat file.

Creating a saved state

For larger programs, as well as for programs that are required to run on systems that do not have
the SWI-Prolog development system installed, creating a saved state is the best solution. A saved
state is created using gsave_program/[1,2] or the —c command line option. A saved state
is a file containing machine-independent® intermediate code in a format dedicated for fast loading.
Optionally, the emulator may be integrated in the saved state, creating a single file, but machine-
dependent, executable. This process is described in chapter 13.

Compilation using the -c command line option

This mechanism loads a series of Prolog source files and then creates a saved state as
gsave_program/2 does. The command syntax is:

[o)

% swipl [option ...] [-o output] -c file.pl

The options argument are options to gsave_program/2 written in the format below. The option
names and their values are described with gsave_program/2.

——option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through 1oad.pl, use the command

o

% swipl —--goal=main --stand_alone=true -0 myprog -c load.pl

This performs exactly the same as executing

Q

% swipl
<banner>

?— [load].

8The saved state does not depend on the CPU instruction set or endianness. Saved states for 32- and 64-bits are not
compatible. Typically, saved states only run on the same version of Prolog on which they have been created.

SWI-Prolog 8.4 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 49

?— gsave_program (myprog,
[goal (main),
stand_alone (true)
1) .
?— halt.

2.12 Environment Control (Prolog flags)

The predicates current _prolog_flag/2 and set_prolog_flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign code environment, command line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current_prolog_flag(?Key, -Value) [ISO]
The predicate current prolog_flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With Key instantiated, it unifies Value with the value of the Prolog flag or
fails if the Key is not a Prolog flag.

Flags marked changeable can be modified by the user using set _prolog_-flag/2. Flag
values are typed. Flags marked as bool can have the values t rue or false. The predicate
create_prolog_flag/3 may be used to create flags that describe or control behaviour of li-
braries and applications. The library sett ings provides an alternative interface for managing
notably application parameters.

Some Prolog flags are not defined in all versions, which is normally indicated in the documen-
tation below as “if present and true”. A boolean Prolog flag is true iff the Prolog flag is present
and the Value is the atom t rue. Tests for such flags should be written as below:

(current_prolog_flag(windows, true)
—-> <Do MS-Windows things>
; <Do normal things>

)

Some Prolog flags are scoped to a source file. This implies that if they are set using a direc-
tive inside a file, the flag value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags are scoped to the source file:
generate_debug_info and optimise.

A new thread (see section 10) copies all flags from the thread that created the new thread (its
parent).” As a consequence, modifying a flag inside a thread does not affect other threads.

abi_version (dict)
The flag value is a dict with keys that describe the version of the various Application
Binary Interface (ABI) components. See section 2.22 for details.

°This is implemented using the copy-on-write technique.

SWI-Prolog 8.4 Reference Manual

50

CHAPTER 2. OVERVIEW

access_level (atom, changeable)
This flag defines a normal ‘user’ view (user, default) or a ‘system’ view. In system view
all system code is fully accessible as if it was normal user code. In user view, certain
operations are not permitted and some details are kept invisible. We leave the exact
consequences undefined, but, for example, system code can be traced using system access
and system predicates can be redefined.

address_bits (integer)
Address size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc_margin (integer, changeable)
If this amount of atoms possible garbage atoms exist perform atom garbage collection at
the first opportunity. Initial value is 10,000. May be changed. A value of O (zero) disables
atom garbage collection. See also PL_register_atom()."’

allow_dot_in_atom (bool, changeable)
If true (default false), dots may be embedded into atoms that are not quoted and
start with a letter. The embedded dot must be followed by an identifier continuation
character (i.e., letter, digit or underscore). The dot is allowed in identifiers in many
languages, which can make this a useful flag for defining DSLs. Note that this conflicts
with cascading functional notation. For example, Post .meta.author is read as
. (Post, ’'meta.author’ if this flag is set to t rue.

allow_variable_name_as_functor (bool, changeable)

If true (default is false), Functor (arg) is read as if it were written
"Functor’ (arg). Some applications use the Prolog read/1 predicate for
reading an application-defined script language. In these cases, it is often difficult to
explain to non-Prolog users of the application that constants and functions can only start
with a lowercase letter. Variables can be turned into atoms starting with an uppercase
atom by calling read_term/2 using the option variable _names and binding the
variables to their name. Using this feature, F(x) can be turned into valid syntax for such
script languages. Suggested by Robert van Engelen. SWI-Prolog specific.

android (bool)
If present and true, it indicates we are running on the Android OS. The flag is not present
in other operating systems.

android _api (integer)
If running on Android, it indicates the compile-time API Level defined by the C macro
__ANDROID_API_ . Itis not defined if running on other operating systems. The API
level may or may not match the API level of the running device, since it is the API level
at compile time.

answer_write_options (term, changeable)
This argument is given as option-list to write_term/2 for printing results of
queries. Default is [quoted (true), portray(true), max_depth(10),
attributes (portray)].

apple (bool)
If present and t rue, the operating system is MacOSX. Defined if the C compiler used

9Given that SWI-Prolog has no limit on the length of atoms, 10,000 atoms may still occupy a lot of memory. Applications
using extremely large atoms may wish to call garbage_collect_atoms/0 explicitly or lower the margin.

SWI-Prolog 8.4 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 51

to compile this version of SWI-Prolog defines _ APPLE__. Note that the unix is also
defined for MacOSX.

apple_universal_binaryboolr If present and t rue, SWI-Prolog has been build as
a universal binary. Universal binaries contain native executable code for multiple archi-
tectures. Currently the supported architectures are x86_64 and arm64. The archirecture
prefix for components is fat —darwin while the arch depends on the actual CPU type.

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used
to select foreign files for the right architecture. See also section 12.2.3 and
file_search_path/2. For Apple, see also apple_universal _binary.

argyv (list, changeable)
List is a list of atoms representing the application command line arguments. Application
command line arguments are those that have not been processed by Prolog during its
initialization. Note that Prolog’s argument processing stops at —— or the first non-option
argument. See also os_argv.'

associated_file (atom)
Set if Prolog was started with a prolog file as argument. Used by e.g., edit /0 to edit the
initial file.

autoload (atom, changeable)
This flag controls autoloading predicates based on autoload/1 and autoload/2 as
well as predicates from autoload libraries. It has the following values:

false
Predicates are never auto-loaded. If predicates have been imported be-
fore using autoload/[1,2], load the referenced files immediately using
usemodule/[1,2]. Note that most of the development utilities such as
listing/1 have to be explicitly imported before they can be used at the toplevel.
explicit
Do not autoload from autoload libraries, but do use lazy loading for predicates
imported using autoload/ [1,2].
user
As false, but to autoload library predicates into the global user module. This
makes the development tools and library implicitly available to the toplevel, but not
to modules.
user_or_explicit
Combines explicit with user, providing lazy loading of predicates imported
using autoload/ [1, 2] and implicit access to the whole library for the toplevel.
true
Provide full autoloading everywhere. This is the default.

back_quotes (codes,chars,string,symbol_char, changeable)
Defines the term-representation for back-quoted material. The default is codes. If
-—traditional is given, the default is symbol_char, which allows using ‘ in
operators composed of symbols.'” See also section 5.2.

"Prior to version 6.5.2, argv was defined as os_argv is now. The change was made for compatibility reasons and
because the current definition is more practical.
20lder versions had a boolean flag backquoted_strings, which toggled between st ring and symbol_char

SWI-Prolog 8.4 Reference Manual

52

CHAPTER 2. OVERVIEW

backtrace (bool, changeable)
If t rue (default), print a backtrace on an uncaught exception.

backtrace_depth (integer, changeable)
If backtraces on errors are enabled, this flag defines the maximum number of frames that
is printed (default 20).

backtrace_goal_depth (integer, changeable)
The frame of a backtrace is printed after making a shallow copy of the goal. This flag
determines the depth to which the goal term is copied. Default is ‘3°.

backtrace_show _lines (bool, changeable)
If t rue (default), try to reconstruct the line number at which the exception happened.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min_integer and
max_integer. If false integers can be arbitrarily large and the min_integer and
max_integer are not present. See section 4.27.2.

break level (integer)
Current break-level. The initial top level (started with —t) has value 0. See break/0.
This flag is absent from threads that are not running a top-level loop.

c_cc (atom, changeable)
Name of the C compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 12.5.

c_cflags (atom, changeable)
CFLAGS used to compile SWI-Prolog. See section 12.5.

c_ldflags (atom, changeable)
LDFLAGS used to link SWI-Prolog. See section 12.5.

c libplso (atom, changeable)
Libraries needed to link extensions (shared object, DLL) to SWI-Prolog. Typically empty
on ELF systems and ~1swipl on COFF-based systems. See section 12.5.

c_libs (atom, changeable)
Libraries needed to link executables that embed SWI-Prolog. Typically —1swipl if the
SWI-Prolog kernel is a shared (DLL). If the SWI-Prolog kernel is in a static library, this
flag also contains the dependencies.

char_conversion (bool, changeable)
Determines whether character conversion takes place while reading terms. See also
char_conversion/2.

character_escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed. See
section 2.16.1.

character_escapes_unicode (bool, changeable)
If true (default), write/1 and friends write escaped characters using the \uXxXXX or
\UXXXXXXXX syntax rather than the ISO Prolog \x<hex>\ syntax. SWI-Prolog reads
both.

cmake _build _type (atom)
Provides the cmake build type used to build this version of SWI-Prolog.

SWI-Prolog 8.4 Reference Manual

https://cmake.org/

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 53

colon_sets_calling_context (bool)
Using the construct (module):(goal) sets the calling context for executing (goal). This
flag is defined by ISO/IEC 13211-2 (Prolog modules standard). See section 6.

color_term (bool, changeable)
This flag is managed by library ansi_term, which is loaded at startup if the two con-
ditions below are both true. Note that this implies that setting this flag to false from
the system or personal initialization file (see section 2.2 disables colored output. The
predicate message_property/2 can be used to control the actual color scheme
depending in the message type passed to print _message/2.

* stream_property (current_output, tty(true))

* \+ current_prolog_flag(color_term, false)

compile_meta_arguments (atom, changeable)
This flag controls compilation of arguments passed to meta-calls marked ‘0’ or **’ (see
meta_predicate/1). Supported values are:

false
(default). Meta-arguments are passed verbatim. If the argument is a control structure
((A,B), (A;B), (A-;B;C), etc.) it is compile to an temporary clause allocated on the
environment stack when the meta-predicate is called.

control
Compile meta-arguments that contain control structures to an auxiliary predicate.
This generally improves performance as well as the debugging experience.

always
Always create an intermediate clause, even for system predicates.'?

compiled_at (atom)
Describes when the system has been compiled. Only available if the C compiler used to
compile SWI-Prolog provides the __DATE__ and __TIME__ macros.

console_menu (bool)
Setto true in swipl-win.exe to indicate that the console supports menus. See also
section 4.35.4.

cpu_count (integer, changeable)
Number of physical CPUs or cores in the system. The flag is marked read-
write both to allow pretending the system has more or less processors. See also
thread_setconcurrency/2 and the library thread. This flag is not available on
systems where we do not know how to get the number of CPUs. This flag is not included
in a saved state (see gsave_program/1).

dde (bool)
Set to t rue if this instance of Prolog supports DDE as described in section 4.44.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy points (see spy/1) and break points. In addition, last-call optimisation is disabled
and the system is more conservative in destroying choice points to simplify debugging.

13This may be used in the future for replacing the normal head of the generated predicate with a special reference (similar
to database references as used by, e.g., assert/2) that provides direct access to the executable code, thus avoiding runtime
lookup of predicates for meta-calling.

SWI-Prolog 8.4 Reference Manual

54 CHAPTER 2. OVERVIEW

Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug_on _error (bool, changeable)
If t rue, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also the Prolog flag report_error.
Default is t rue.

debug_on_interrupt (bool, changeable)
If t rue, start the debugger on Control-C.'#. The initial value is false and the value is
set to t rue when entering the interactive top level. See ——debug-on-interrupt to
start handling interrupts immediately.

debugger_show_context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

debugger_write_options (term, changeable)
This argument is given as option-list to write_term/2 for printing goals by
the debugger. Modified by the ‘w’, ‘p” and ‘(N) d’ commands of the debug-
ger. Default is [quoted(true), portray(true), max_depth(10),
attributes (portray)].

determinism_error (atom, changeable)
This flag defines the behaviour when the predicate determinism is not according to its
declaration. See det /1. Possible values are error (default), warning and silent.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is_dialect (swi) :-—
catch (current_prolog_flag(dialect, swi), _, fail).

double_quotes (codes,chars,atom,string, changeable)

This flag determines how double quoted strings are read by Prolog and is —like
character_escapes and back_quotes— maintained for each module. The default
is string, which produces a string as described in section 5.2. If -——traditional
is given, the default is codes, which produces a list of character codes, integers that
represent a Unicode code-point. The value chars produces a list of one-character atoms
and the value at om makes double quotes the same as single quotes, creating a atom. See
also section 5.

editor (atom, changeable)
Determines the editor used by edit /1. See section 4.4.1 for details on selecting the
editor used.

emacs_inferior_process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.19.1 for details.

“More precisely when receiving STGINT

SWI-Prolog 8.4 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 55

executable (atom)
Pathname of the running executable. Used by gsave_program/2 as default emulator.

exit_status (integer)
Set by halt/1 to its argument, making the exit status available to hooks registered with
at_halt/L1.

file_ name_case_handling (atom, changeable)
This flag defines how Prolog handles the case of file names. The flag is used for case
normalization and to determine whether two names refer to the same file.'> It has one of
the following values:

case_sensitive
The filesystem is fully case sensitive. Prolog does not perform any case modification
or case insensitive matching. This is the default on Unix systems.

case_preserving
The filesystem is case insensitive, but it preserves the case with which the user has
created a file. This is the default on Windows systems.

case_insensitive
The filesystem doesn’t store or match case. In this scenario Prolog maps all file
names to lower case.

file_ name_variables (bool, changeable)
If true (default false), expand \$\arg{varname} and ~ in arguments of built-in
predicates that accept a file name (open/3,exists_file/1,access_file/2,etc.).
The predicate expand_-file_name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

file_search_cache_time (number, changeable)
Time in seconds for which search results from absolute_file_name/3 are cached.
Within this time limit, the system will first check that the old search result satisfies the
conditions. Default is 10 seconds, which typically avoids most repetitive searches for
(library) files during compilation. Setting this value to O (zero) disables the cache.

float_max (float)
The biggest representable floating point number.

float_max_integer (float)
The highest integer that can be represented precisely as a floating point number.

float_min (float)
The smallest representable floating point number above 0.0. See also nexttoward/2.

float_overflow (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
floating point overflow is mapped to positive or negative Inf. See section 4.27.2.

float_rounding (atom, changeable)
Defines how arithmetic rounds to a float. Defined values are to_nearest (default),
to_positive, to.negative or to_zero. For most scenarios the function
roundtoward/2 provides a safer and faster alternative.

SBUG: Note that file name case handling is typically a properly of the filesystem, while Prolog only has a global flag to
determine its file handling.

SWI-Prolog 8.4 Reference Manual

56

CHAPTER 2. OVERVIEW

float_undefined (atom, changeable)
One of error (default) or nan. The first is ISO compliant. Using nan, undefined
operations such as sqrt(-2.0) is mapped to NaN. See section 4.27.2.

float_underflow (atom, changeable)
One of error or ignore (default). The second is ISO compliant, binding the result to
0.0.

float_zero_div (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
division by 0.0 is mapped to positive or negative Inf. See section 4.27.2.

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage collection, nor
stack shifts will take place, even not on explicit request. May be changed.

gc_thread (bool)
If t rue (default if threading is enabled), atom and clause garbage collection are executed
in a separate thread with the alias gc. Otherwise the thread that detected sufficient
garbage executes the garbage collector. As running these global collectors may take
relatively long, using a separate thread improves real time behaviour. The gc thread can
be controlled using set _prolog._gc_thread/1.

generate_debug_info (bool, changeable)
If t rue (default) generate code that can be debugged using t race/0, spy/1, etc. Can
be set to false using the ——no—-debug. This flag is scoped within a source file. Many
of the libraries have : — set_prolog_flag(generate_debug_info, false)
to hide their details from a normal trace.'®

gmp_version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 12.4.9.

gui (bool)
Set to t rue if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer > 0, support Unix csh (1) -like history as described in section 2.8. Otherwise,
only support reusing commands through the command line editor. The default is to set
this Prolog flag to 0 if a command line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home directory. SWI-Prolog uses its home directory to find
its startup file as (home)/boot .prc and to find its library as (home)/library.
Some installations may put architecture independent files in a shared home and also
define shared_home. System files can be found using absolute_file name/3 as
swi(file). See file_search_path/2.

hwnd (integer)
In swipl-win.exe, this refers to the MS-Windows window handle of the console
window.

15In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates further changes to the compiler.

SWI-Prolog 8.4 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 57

integer_rounding_function (down,toward_zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible with normal SWI-Prolog
behaviour. Currently it has the following effect:

The / /2 (float division) always returns a float, even if applied to integers that can be
divided.

In the standard order of terms (see section 4.6.1), all floats are before all integers.
atom_length/2 yields a type error if the first argument is a number.
clause/ [2, 3] raises a permission error when accessing static predicates.
abolish/[1, 2] raises a permission error when accessing static predicates.
Syntax is closer to the ISO standard:

— Unquoted commas and bars appearing as atoms are not allowed. Instead of

f(,,a) now write £ (’,’,a). Unquoted commas can only be used to sep-
arate arguments in functional notation and list notation, and as a conjunction
operator. Unquoted bars can only appear within lists to separate head and tail,
like [Head|Taill], and as infix operator for alternation in grammar rules, like
a —> Db | c.

Within functional notation and list notation terms must have priority below
1000. That means that rules and control constructs appearing as arguments need

bracketing. A term like [a :- b, c]. must now be disambiguated to mean
[(a := b), cl.or[(a :=— b, c)].

Operators appearing as operands must be bracketed. Instead of
X == -, true. write X == (=), true. Currently, this is not en-

tirely enforced.

Backslash-escaped newlines are interpreted according to the ISO standard. See
section 2.16.1.

large files (bool)
If present and t rue, SWI-Prolog has been compiled with large file support (LFS) and is
capable of accessing files larger than 2GB. This flag is always t rue on 64-bit hardware
and true on 32-bit hardware if the configuration detected support for LFS. Note that it
may still be the case that the file system on which a particular file resides puts limits on
the file size.

last_call_optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is the negation of the debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable it during debugging.

malloc (atom)

Set after a successful identification of the used malloc() implementation. Currently possi-
bly values are tcmalloc and ptmalloc. See section 4.43.2 for details.

max_answers_for_subgoal (integer, changeable)
Limit the number of answers in a table. The atom infinite clears the flag. By default
this flag is not defined. See section 7.10 for details.

SWI-Prolog 8.4 Reference Manual

58

CHAPTER 2. OVERVIEW

max_answers_for_subgoal_action (atom, changeable)
The action taken when a table reaches the number of answers specified in
max_answers_for_subgoal. Supported values are bounded.rationality,
error (default) or suspend.

max_arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max_char_code (integer)
Highest (Unicode) code point that is supported. SWI-Prolog supports all Unicode code
points from O (zero) upto and including the value of this flag. Currently Oxffff on
Windows (UCS-2) and 0x10£f f£f on most other platforms.

max_integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

max_procedure_arity (integer)
Maximum arity for a predicate. An attempt to define or call such a predicate results in a
representation_error (max_procedure_arity) exception. Currently set to

1024.

max_rational size (integer, changeable)
Limit the size in bytes for rational numbers. This fripwire can be used to identify cases
where setting the Prolog flag prefer_rationals to true creates excessively big
rational numbers and, if precision is not required, one should use floating point arithmetic.

max_rational_size_action (atom, changeable)
Action when the max_rational_size tripwire is exceeded. Possible values are error
(default), which throws a tripwire resource error and £ 1oat, which converts the rational
number into a floating point number. Note that rational numbers may exceed the range
for floating point numbers.

max_table_answer _size (integer, changeable)
Limit the size of an answer substitution for tabling. The atom infinite clears the flag.
By default this flag is not defined. See section 7.10 for details.

max_table_answer _size_action (atom, changeable)
The action taken if an answer substitution larger than max_table_answer_size is
added to a table. Supported values are error (default), bounded_rationality,
suspendand fail.

max_table_subgoal size (integer, changeable)
Limit the size of a goal term accessing a table. The atom infinite clears the flag. By
default this flag is not defined. See section 7.10 for details.

max_table_subgoal _size_action (atom, changeable)
The action taken if a tabled goal exceeds max_table_subgoal_size. Supported
values are error (default), abstract and suspend.

max_tagged _integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require one
word storage. Larger integers are represented as ‘indirect data’ and require significantly
more space.

SWI-Prolog 8.4 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 59

message_context (list(atom), changeable)
Context information to add to messages of the levels error and warning. The list may
contain the elements thread to add the thread that generates the message to the message,
time or t ime(Format) to add a time stamp. The default time format is $T.%3£f. The
defaultis [thread]. See also format_time/3 and print_message/2.
min_integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

min_tagged _integer (integer)
Start of the tagged-integer value range.

mitigate_spectre (bool, changeable)

When true (default false), enforce mitigation against the Spectre timing-based secu-
rity vulnerability. Spectre based attacks can extract information from memory owned by
the process that should remain invisible, such as passwords or the private key of a web
server. The attacks work by causing speculative access to sensitive data, and leaking the
data via side-channels such as differences in the duration of successive instructions. An
example of a potentially vulnerable application is SWISH. SWISH allows users to run
Prolog code while the swish server must protect the privacy of other users as well as its
HTTPS private keys, cookies and passwords.

Currently, enabling this flag reduces the resolution of get_time/1 and
statistics/2 CPU time to 20us.

WARNING: Although a coarser timer makes a successful attack of this type harder, it
does not reliably prevent such attacks in general. Full mitigation may require compiler
support to disable speculative access to sensitive data.

occurs_check (atom, changeable)

This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using t rue, unification behaves as unify with_occurs_check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs_check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

on_error (atom, changeable)
Determines how to act on an error printed using print _message/2, i.e., an error that
is reported to the user. The possible values are print (default), status and halt.
Using halt the process halts immediately with status 1. Otherwise execution continues.
Using status halt/0 exits with status 1 if one or more errors were printed by the
process. In compile mode (see —c) the default is status. This flag can be set from the
commandline using ——on—error. See also section 4.3.2.

on_warning (atom, changeable)
As on_error, but for warnings. The default is always print. The commandline option
is ——on-warning.

open_shared _object (bool)
If true, open_shared_object/2 and friends are implemented, providing access to
shared libraries (. so files) or dynamic link libraries (. DLL files).

SWI-Prolog 8.4 Reference Manual

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://swish.swi-prolog.org

60 CHAPTER 2. OVERVIEW

optimise (bool, changeable)
If t rue, compile in optimised mode. The initial value is t rue if Prolog was started with
the —O command line option. The opt imi se flag is scoped to a source file.

Currently optimised compilation implies compilation of arithmetic, and deletion of redun-
dant t rue/ 0 that may result from expand_goal/2.

Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

optimise_unify (bool, changeable)
If t rue (default), allow the compiler to (re)move explicit unification calls (=/2). While
this behaviour can significantly improve performance, it is not yet handled properly by
the source-level debugger. See section 2.18.3.

os_argy (list, changeable)
List is a list of atoms representing the command line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned. See argv to get
the application options.

packs (bool)
If true, extension packs (add-ons) are attached. Can be set to false using the
——no-packs.

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation-
defined.

pipe (bool, changeable)
If true, open (pipe (command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

portable_vmi (bool, changeable)
If t rue (default), generate . g1 £ files and saved states that run both on 32 bit and 64-bit
hardware. If false, some optimized virtual machine instructions are only used if the
integer argument is within the range of a tagged integer for 32-bit machines.

posix_shell (atom, changeable)
Path to a POSIX compatible shell. This default is typically /bin/sh. This flag is used
by shell/1 and gsave_program/2.

prefer_rationals (bool, changeable)
Only provided if the system is compiled with unbounded and rational arithmetic support
(see bounded). If t rue, prefer arithmetic to produce rational numbers over floats. This
implies:

* Division (//2) of two integers produces a rational number.

* Power (" /2) of two integers produces a rational number, also if the second operant
is a negative number. For example, 2~ (-2) evaluates to 1/4.

Using true can create excessively large rational numbers. = The Prolog flag
max_rational_size can be used to detect and act on this tripwire.

SWI-Prolog 8.4 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 61

If false, rational numbers can only be created using the functions rational/1,
rationalize/1 and rdiv/2 or by reading them. See also rational_syntax,
section 2.16.1 and section 4.27.2.

The current default is false. We consider changing this to t rue in the future. Users are
strongly encouraged to set this flag to t rue and report issues this may cause.

print_write_options (term, changeable)
Specifies the options for write term/2 used by print /1 and print/2.

prompt_alternatives_on (atom, changeable)
Determines prompting for alternatives in the Prolog top level. Default is determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choice points. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

protect_static_code (bool, changeable)
If true (default false), clause/2 does not operate on static code, providing some
basic protection from hackers that wish to list the static code of your Prolog program.
Once the flag is true, it cannot be changed back to false. Protection is default in
ISO mode (see Prolog flag iso). Note that many parts of the development environment
require clause/2 to work on static code, and enabling this flag should thus only be
used for production code.

qcompile (atom, changeable)
This option provides the default for the gcompile(+Atom) option of load_files/2.

rational_syntax (atom, changeable)
Determines the read and write syntax for rational numbers. Possible values are natural
(e.g., 1/3) or compatibility (e.g., 1r3). The compatibility syntax is always
accepted. This flag is module sensitive.
The default for this flag is currently compatibility, which reads and writes rational
numbers as e.g., 1r3.'7 We will consider natural as a default in the future. Users are
strongly encouraged to set this flag to natural and report issues this may cause.

readline (atom, changeable)
Specifies which form of command line editing is provided. Possible values are below. The
flag may be set from the user’s init file (see section 2.3) to one of false, readline or
editline. This causes the toplevel not to load a command line editor (false) or load
the specified one. If loading fails the flag is set to false.

false
No command line editing is available.

readline
The library readline is loaded, providing line editing based on the GNU readline
library.

editline
The library editline is loaded, providing line editing based on the BSD libedit.
This is the default if edit1ine is available and can be loaded.

swipl_win
SWI-Prolog uses its own console (swipl-win.exe on Windows, the Qt based
swipl-win on MacOS) which provides line editing.

"There is still some discussion on the separating character. See section 2.16.1.

SWI-Prolog 8.4 Reference Manual

62

CHAPTER 2. OVERVIEW

report_error (bool, changeable)
If true, print error messages; otherwise suppress them. May be changed. See also the
debug_on_error Prolog flag. Default is t rue, except for the runtime version.

resource_database (atom)
Set to the absolute filename of the attached state. Typically this is the file boot32.prc,
the file specified with —x or the running executable. See also resource/3.

runtime (bool)
If present and t rue, SWI-Prolog is compiled with -DO_RUNTIME, disabling various
useful development features (currently the tracer and profiler).

sandboxed _load (bool, changeable)
If true (default false), load_files/2 calls hooks to allow library(sandbox) to
verify the safety of directives.

saved_program (bool)
If present and true, Prolog has been started from a state saved with
gsave_program/[1,2].

shared_home (atom)
Indicates that part of the SWI-Prolog system files are installed in (prefix) / share/swipl
instead of in the home at the (prefix)/1ib/swipl. This flag indicates the location
of this shared home and the directory is added to the file search path swi. See
file_search_path/2 and the flag home.

shared_object_extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .d11 for Windows. Used for locating files using the file type executable.
See also absolute_file name/3.

shared_object_search_path (arom)
Name of the environment variable used by the system to search for shared objects.

shared _table_space (integer, changeable)
Space reserved for storing shared answer tables. See section 7.9 and the Prolog flag
table_space.

shift_check (bool, changeable)
When true (default false), check for suspicious delimited continuations captured by
shift_for_copy/1l.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command line option
—--no-signals is active. See section 12.4.23 for details.

stack_limit (int, changeable)
Limits the combined sizes of the Prolog stacks for the current thread. See also
—-stack-1imit and section 2.20.1.

stream_type_check (atom, changeable)
Defines whether and how strictly the system validates that byte I/O should not be applied
to text streams and text I/O should not be applied to binary streams. Values are false
(no checking), t rue (full checking) and 1 cose. Using checking mode 1oose (default),

SWI-Prolog 8.4 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 63

the system accepts byte I/O from text stream that use ISO Latin-1 encoding and accepts
writing text to binary streams.

string_stack_tripwire (int, changeable)
Maintenance for foreign language string management. Prints a warning if the string stack
depth hits the tripwire value. See section 12.4.12 for details.

system_thread _id (int)
Available in multithreaded version (see section 10) where the operating system provides
system-wide integer thread identifiers. The integer is the thread identifier used by the
operating system for the calling thread. See also thread_self/1.

table_incremental (bool, changeable)
Set the default for whether to use incremental tabling or not. Initially set to false. See
table/1.

table_shared (bool, changeable)
Set the default for whether to use shared tabling or not. Initially set to false. See
table/1.

table_space (integer, changeable)
Space reserved for storing answer tables for tabled predicates (see table/1).'"® When
exceeded a resource_error(table_space) exception is raised.

table_subsumptive (bool, changeable)
Set the default choice between variant tabling and subsumptive tabling. Initially set to
false. See table/1.

threads (bool, changeable)
True when threads are supported. If the system is compiled without thread support the
value is false and read-only. Otherwise the value is t rue unless the system was started
with the ——no-threads. Threading may be disabled only if no threads are running.
See also the gc_thread flag.

timezone (integer)
Offset in seconds west of GMT of the current time zone. Set at initialization time
from the timezone variable associated with the POSIX tzset() function. See also
format_time/3.

tmp_dir (atom, changeable)
Path to the temporary directory. initialised from the environment variable TMP or TEMP
in windows. If this variable is not defined a default is used. This default is typically /tmp
or c: /temp in windows.

toplevel goal (term, changeable)
Defines the goal that is executed after running the initialization goals and entry point
(see —g, initialization/2 and section 2.11.2. The initial value is default,
starting a normal interactive session. This value may be changed using the com-
mand line option —-t. The explicit value prolog is equivalent to default. If
initialization(Goal,main) is used and the toplevel is default, the toplevel is set
tohalt (see halt/0).

toplevel list_wfs_residual_program (bool, changeable)
If t rue (default) and the answer is undefined according to the Well Founded Semantics

BBUG: Currently only counts the space occupied by the nodes in the answer tries.

SWI-Prolog 8.4 Reference Manual

64 CHAPTER 2. OVERVIEW

(see section 7.6), list the residual program before the answer. Otherwise the answer
terminated with undefined. See also undefined/O0.

toplevel_mode (atom, changeable)
If backtracking (default), the toplevel backtracks after completing a query. If
recursive, the toplevel is implemented as a recursive loop. This implies that global
variables set using b_setval/2 are maintained between queries. In recursive mode,
answers to toplevel variables (see section 2.9) are kept in backtrackable global variables
and thus not copied. In backtracking mode answers to toplevel variables are kept in the
recorded database (see section 4.14.2).

The recursive mode has been added for interactive usage of CHR (see section 9),'” which
maintains the global constraint store in backtrackable global variables.

toplevel name _variables (bool, changeable)
If true (default), give names to variables at the toplevel instead of printing them as
_NNN. The variables are named _A, _B, ... Variables that appear only once (singletons) are
printed as _.

toplevel_print_anon (bool, changeable)
If t rue, top-level variables starting with an underscore (_) are printed normally. If false
they are hidden. This may be used to hide bindings in complex queries from the top level.

toplevel _print_factorized (bool, changeable)
If true (default false) show the internal sharing of subterms in the answer substi-
tution. The example below reveals internal sharing of leaf nodes in red-black trees as
implemented by the rbt rees predicate rb_new/1:

?—- set_prolog_flag(toplevel_ print_factorized, true).
?— rb_new (X) .
X = t(_S1l, _S1), % where

S1 = black (", _G387, _G388, "’').

If this flag is false, the $ where notation is still used to indicate cycles as illustrated
below. This example also shows that the implementation reveals the internal cycle length,
and not the minimal cycle length. Cycles of different length are indistinguishable in Prolog

(as illustrated by S == R).

?- 3 =5s8(S), R=1s(s(R)), S ==R
S = s(3),

R = s(s(R))

toplevel_prompt (atom, changeable)
Define the prompt that is used by the interactive top level. The following ~ (tilde) se-
quences are replaced:

~-m Type in module if not user (see module/1)

~1 Break level if not O (see break/0)

~d Debugging state if not normal execution (see debug/0, trace/0)
~1 History event if history is enabled (see flag history)

1Suggested by Falco Nogatz

SWI-Prolog 8.4 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 65

toplevel_var _size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. See section 2.9.

trace_gc (bool, changeable)
If true (default false), garbage collections and stack-shifts will be reported on the
terminal. May be changed. Values are reported in bytes as G+1', where G is the global
stack value and T’ the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of bytes allocated,
but not in use. Below is an example output.

% GC: gained 236,416+163,424 in 0.00 sec; ‘
| used 13,448+5,808; free 72,568+47,440 |

traditional (bool)
Available in SWI-Prolog version 7. If t rue, ‘traditional’ mode has been selected using
——traditional. Notice that some SWI7 features, like the functional notation on
dicts, do not work in this mode. See also section 5.

tty_control (bool, changeable)
Determines whether the terminal is switched to raw mode for get _single_char/1,
which also reads the user actions for the trace. May be set. If this flag is false at
startup, command line editing is disabled. See also the ——no-tty command line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C
compiler used to compile this version of SWI-Prolog either defines ___unix___ or unix.
On other systems this flag is not available. See also apple and windows.

unknown (fail, warning,error, changeable)

Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icate fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined, and if error (default), an existence_error exception is
raised. This flag is local to each module and inherited from the module’s import-module.
Using default setup, this implies that normal modules inherit the flag from user, which
in turn inherit the value error from system. The user may change the flag for module
user to change the default for all application modules or for a specific module. It is
strongly advised to keep the error default and use dynamic/1 and/ormultifile/1
to specify possible non-existence of a predicate.

unload foreign libraries (bool, changeable)
If t rue (default false), unload all loaded foreign libraries. Default is false because
modern OSes reclaim the resources anyway and unloading the foreign code may cause
registered hooks to point to no longer existing data or code.

user _flags (Atom, changeable)
Define the behaviour of set_prolog_flag/2 if the flag is not known. Values are
silent, warning and error. The first two create the flag on-the-fly, where
warning prints a message. The value error is consistent with ISO: it raises an
existence error and does not create the flag. See also create prolog_flag/3. The
default is silent, but future versions may change that. Developers are encouraged to

SWI-Prolog 8.4 Reference Manual

66

CHAPTER 2. OVERVIEW

use another value and ensure proper use of create_prolog.-flag/3 to create flags
for their library.

var_prefix (bool, changeable)
If true (default false), variables must start with an underscore (_). May be changed.
This flag is local to the module in which it is changed. See section 2.16.1.

verbose (atom, changeable)
This flag is used by print_message/2. If its value is silent, messages of type
informational and banner are suppressed. The —g switches the value from the
initial normal to silent.

verbose_autoload (bool, changeable)
If t rue the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose_file_search (bool, changeable)
If true (default false), print messages indicating the progress of
absolute_file_name/[2, 3] in locating files. Intended for debugging com-
plicated file-search paths. See also file_search path/2.

verbose_load (atom, changeable)
Determines messages printed for loading (compiling) Prolog files. Current values are
full (print a message at the start and end of each file loaded), normal (print a message
at the end of each file loaded), brief (print a message at end of loading the toplevel
file), and silent (no messages are printed, default). The value of this flag is normally
controlled by the option silent(Bool) provided by load_files/2.

version (integer)
The version identifier is an integer with value:

10000 x Major + 100 x Minor 4 Patch

version_data (swi(Major, Minor, Patch, Extra))
Part of the dialect compatibility layer; see also the Prolog flag dialect and section C.
Extra provides platform-specific version information as a list. Extra is used for ragged
versions such as “7.4.0-rc1”, in which case Extra contains a term tag(rcl).

version_git (atom)
Available if created from a git repository. See git—describe for details.

warn_override_implicit_import (bool, changeable)
If t rue (default), a warning is printed if an implicitly imported predicate is clobbered by
a local definition. See use_module/ 1 for details.

win_file_access_check (atom, changeable)
Controls the behaviour or access_file/2 under Windows. There is no reliable way to
check access to files and directories on Windows. This flag allows for switching between
three alternative approximations.

access
Use Windows _waccess() function. This ignores ACLs (Access Control List) and
thus may indicate that access is allowed while it is not.

SWI-Prolog 8.4 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 67

getfilesecurity
Use the Windows GetFileSecurity() function. This does not work on all file systems,
but is probably the best choice on file systems that do support it, notably local NTFS
volumes.

openclose
Try to open the file and close it. This works reliable for files, but not for directories.
Currently directories are checked using _waccess(). This is the default.

windows (bool)
If present and t rue, the operating system is an implementation of Microsoft Windows.
This flag is only available on MS-Windows based versions. See also unix.

wine_version (arom)
If present, SWI-Prolog is the MS-Windows version running under the Wine emulator.

write_attributes (atom, changeable)
Defines how write/1 and friends write attributed variables. The option values are
described with the attributes option of write_term/2. Defaultis ignore.

write_help_with_overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and t rue it prints
bold and underlined text using overstrike.

xpce (bool)
Available and set to t rue if the XPCE graphics system is loaded.

xpce_version (atom)
Available and set to the version of the loaded XPCE system.

xref (bool, changeable)
If t rue, source code is being read for analysis purposes such as cross-referencing. Oth-
erwise (default) it is being read to be compiled. This flag is used at several places by
term expansion/2 and goal_expansion/2 hooks, notably if these hooks use
side effects. See also the libraries prolog_source and prolog_xref.

set_prolog_flag(:Key, +Value) [1S0]
Define a new Prolog flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission_error. If the provided Value does not match the type of the flag, a
type_error is raised.

Some flags (e.g., unknown) are maintained on a per-module basis. The addressed module is
determined by the Key argument.

In addition to ISO, SWI-Prolog allows for user-defined Prolog flags. The type of the flag is de-
termined from the initial value and cannot be changed afterwards. Defined types are boolean
(if the initial value is one of false, true, on or off), atom if the initial value is any other
atom, integer if the value is an integer that can be expressed as a 64-bit signed value. Any
other initial value results in an untyped flag that can represent any valid Prolog term.

The behaviour when Key denotes a non-existent key depends on the Prolog flag
user_flags. The default is to define them silently. New code is encouraged to use
create_prolog_flag/3 for portability.

SWI-Prolog 8.4 Reference Manual

https://www.winehq.org/

68 CHAPTER 2. OVERVIEW

create_prolog_flag(+Key, +Value, +Options) [YAP]
Create a new Prolog flag. The ISO standard does not foresee creation of new flags, but many
libraries introduce new flags. Options is a list of the options below. See also user_flags.

access(+Access)
Define access rights for the flag. Values are read_write and read_only. The default
is read_write.

type(+Atom)
Define a type restriction. Possible values are boolean, atom, integer, float and
term. The default is determined from the initial value. Note that t e rm restricts the term
to be ground.

keep(+Boolean)
If true, do not modify the flag if it already exists. Otherwise (default), this predicate
behaves as set prolog_flag/2 if the flag already exists.

2.13 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

* portray/1
Hook into write_term/3 to alter the way terms are printed (ISO).

* message_hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

* message_property/2
Hook into print _message/ 2 that defines prefix, output stream, color, etc.

* message_prefix_hook/2
Hook into print_message/2 to add additional prefixes to the message such as the time and
thread.

e library.directory/1
Hook into absolute_file_name/ 3 to define new library directories (most Prolog systems).

e file_search_path/2
Hook into absolute_file_name/ 3 to define new search paths (Quintus/SICStus).

* term_expansion/2
Hook into 1oad_files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog systems).

* goal_expansion/2
Same as term_expansion/2 for individual goals (SICStus).

SWI-Prolog 8.4 Reference Manual

2.14. AUTOMATIC LOADING OF LIBRARIES 69

e prolog_load_file/2
Hook into load_files/2 to load other data formats for Prolog sources from ‘non-file’ re-
sources. The load_files/2 predicate is the ancestor of consult/1, usemodule/1,
etc.

e prolog_edit:locate/3
Hook into edit /1 to locate objects (SWI).

e prolog_edit:edit_source/1
Hook into edit /1 to call an internal editor (SWI).

e prolog_edit:edit_command/2
Hook into edit /1 to define the external editor to use (SWI).

* prolog_list_goal/1l
Hook into the tracer to list the code associated to a particular goal (SWI).

e prolog_trace_interception/4
Hook into the tracer to handle trace events (SWI).

e prolog:debug_control_hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control pred-
icates to higher-level libraries.

* prolog:help_hook/1
Hook in help/0, help/1 and apropos/1 to extend the help system.

* resource/3
Define a new resource (not really a hook, but similar) (SWI).

* exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

e attr_unify_hook/2
Unification hook for attributed variables. Can be defined in any module. See section 8.1 for
details.

2.14 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped, the system will first try to import the pred-
icate from the module’s default module (see section 6.10. If this fails the auto loader is acti-
vated.”’’ On first activation an index to all library files in all library directories is loaded in core
(see library_directory/1, file_search_path/2 and reload_library_index/0). If
the undefined predicate can be located in one of the libraries, that library file is automatically loaded
and the call to the (previously undefined) predicate is restarted. By default this mechanism loads
the file silently. The current_prolog_flag/2 key verbose_autoload is provided to get
verbose loading. The Prolog flag autoload can be used to enable/disable the autoload system.
A more controlled form of autoloading as well as lazy loading application modules is provided by
autoload/[1,2].

20Actually, the hook user:exception/3 is called; only if this hook fails it calls the autoloader.

SWI-Prolog 8.4 Reference Manual

70 CHAPTER 2. OVERVIEW

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 6. The files are loaded with use_module/2 and only the trapped undefined predicate is imported
into the module where the undefined predicate was called. Each library directory must hold a file
INDEX.pl that contains an index to all library files in the directory. This file consists of lines of the
following format:

index (Name, Arity, Module, File).

The predicate make/0 updates the autoload index. It searches for all library directories
(see library. directory/1 and file_search _path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists, updating is achieved by loading this file, normally containing a directive calling
make_library_index/2. Otherwise make_library_index/1 is called, creating an index for
all » . p1 files containing a module.
Below is an example creating an indexed library directory.

mkdir ~/${XDG_DATA_HOME-.config}/swi-prolog/lib
cd " /${XDG_DATA_HOME-.config}/swi-prolog/lib
swipl —-g 'make_library_index(.)’ -t halt

o° o o°

If there is more than one library file containing the desired predicate, the following search schema is
followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appearinthe library directory/1
predicate and within the directory alphabetically.

autoload_path(+DirAlias)
Add DirAlias to the libraries that are used by the autoloader. This extends the search path
autoload and reloads the library index. For example:

:— autoload_path (library (http)) .

If this call appears as a directive, it is term-expanded into a clause for
user:file_search path/2 and a directive calling reload_library_index/0.
This keeps source information and allows for removing this directive.

make_library_index(+Directory)
Create an index for this directory. The index is written to the file 'INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make_library_index(+Directory, +ListOfPatterns)
Normally used in MKINDEX . p1, this predicate creates INDEX . p1 for Directory, indexing all
files that match one of the file patterns in ListOfPatterns.

SWI-Prolog 8.4 Reference Manual

2.15. PACKS: COMMUNITY ADD-ONS 71

Sometimes library packages consist of one public load file and a number of files used by this
load file, exporting predicates that should not be used directly by the end user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX . p1,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

:— prolog_load_context (directory, Dir),
make_library_index (Dir,
["*x.pl",
"trace/browse.pl’,
"swi/x.pl’
1) .

reload library_index
Force reloading the index after modifying the set of library directories by changing the rules for
library.directory/1, file_search_path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX . pl files. Check make_library_index/[1, 2]
and make /0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload_library_index/0 is necessary if
directories are removed or the order of the library directories is changed.

When creating an executable using either gsave_program/2 or the —c command line options,
it is necessary to load all predicates that would normally be autoloaded explicitly. This is discussed in
section 13. See autoload_all/o0.

2.15 Packs: community add-ons

SWI-Prolog has a mechanism for easy incorporation of community extensions. See the pack landing
page for details and available packs. This section documents the built-in predicates to attach packs.
Predicates for creating, registering and installing packs are provided by the library prolog_pack.

attach_packs
Attaches all packs in subdirectories of directories that are accessible through the file search
path (see absolute_file name/3) pack. The default for this search path is given below.
See file_search_path/2 for the app_data search path.

user:file_search_path (pack, app_data (pack)).

The predicate attach_packs/0 is called on startup of SWI-Prolog.

attach_packs(+Directory)

Attach all packs in subdirectories of Directory. Same as attach_packs(Directory, []).
attach_packs(+Directory, +Options)

Attach all packs in subdirectories of Directory. Options is one of:

SWI-Prolog 8.4 Reference Manual

http://www.swi-prolog.org/pack/list
http://www.swi-prolog.org/pack/list

72 CHAPTER 2. OVERVIEW

search(+Where)
Determines the order in which pack library directories are searched. Default is to add new
packages at the end (1ast). Using first, new packages are added at the start.
duplicate(+Action)
Determines what happens if a pack with the same name is already attached. Default is
warning, which prints a warning and ignores the new pack. Other options are keep,
which is like warning but operates silently and replace, which detaches the old pack
and attaches the new.

The predicate attach_packs/2 can be used to attach packages that are bundled with an
application.

2.16 The SWI-Prolog syntax

SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is based on the Edinburgh Prolog
syntax. A formal description can be found in the ISO standard document. For an informal introduction
we refer to Prolog text books (see section 1) and online tutorials. In addition to the differences from
the ISO standard documented here, SWI-Prolog offers several extensions, some of which also extend
the syntax. See section 5 for more information.

2.16.1 1ISO Syntax Support

This section lists various extensions w.r.t. the ISO Prolog syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to Unicode. See also section 2.19.

Nested comments

SWI-Prolog allows for nesting /x ...x/ comments. Where the ISO standard accepts
/* .../ ...%/ as a comment, SWI-Prolog will search for a terminating /. This is useful
if some code with /% .. .*/ comment statements in it should be commented out. This modification

also avoids unintended commenting in the example below, where the closing =/ of the first comment
has been forgotten.”!

/* comment

code

/* second comment =x/

code

2IRecent copies of GCC give a style warning if / + is encountered in a comment, which suggests that this problem has
been recognised more widely.

SWI-Prolog 8.4 Reference Manual

http://www.swi-prolog.org/Links.html
http://www.unicode.org/

2.16. THE SWI-PROLOG SYNTAX 73

Character Escape Syntax

Within quoted atoms (using single quotes: ’ (atom)’) special characters are represented using escape
sequences. An escape sequence is led in by the backslash (\) character. The list of escape sequences is
compatible with the ISO standard but contains some extensions, and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility. Undefined escape characters
raise a syntax_error exception.”?

\a
Alert character. Normally the ASCII character 7 (beep).

\b

Backspace character.

\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. Not supported by ISO. Example:

format (' This is a long line that looks better if it was \c
split across multiple physical lines in the input’)

\(NEWLINE)
When in ISO mode (see the Prolog flag i so), only skip this sequence. In native mode, white
space that follows the newline is skipped as well and a warning is printed, indicating that this
construct is deprecated and advising to use \c. We advise using \c or putting the layout
before the \, as shown below. Using \ ¢ is supported by various other Prolog implementations
and will remain supported by SWI-Prolog. The style shown below is the most compatible
solution.”

format (' This is a long line that looks better if it was \
split across multiple physical lines in the input’)

instead of

format (' This is a long line that looks better if it was\
split across multiple physical lines in the input’)

Note that SWI-Prolog also allows unescaped newlines to appear in quoted material. This is not
allowed by the ISO standard, but used to be common practice before.

\e
Escape character (ASCII 27). Not ISO, but widely supported.

\f

Form-feed character.

22Up to SWI-Prolog 6.1.9, undefined escape characters were copied verbatim, i.e., removing the backslash.
“Future versions will interpret \ (return) according to I1SO.

SWI-Prolog 8.4 Reference Manual

74 CHAPTER 2. OVERVIEW

\n
Next-line character.

\r
Carriage-return only (i.e., go back to the start of the line).

\s
Space character. Intended to allow writing 0’ \ s to get the character code of the space charac-
ter. Not ISO.

\t
Horizontal tab character.

\v
Vertical tab character (ASCII 11).

\xXX. .\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility with the older Edinburgh stan-
dard. The code \xa\3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters
specified this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard, fixing two problems. First, where \ x defines
a numeric character code, it doesn’t specify the character set in which the character should be
interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog syntax.

\UXXXXKXXXX
Same as \uxXXXX, but using 8 digits to cover the whole Unicode set.

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\\
Escapes the backslash itself. Thus, \\’ is an atom consisting of a single \.

\ ’
Single quote. Note that “\’’ and '’’’ both describe the atom with a single ’, i.e.,
"\'7 == 7'’ jstrue.

\ n
Double quote.

\ \

Back quote.

Character escaping is only available if current prolog.-flag (character_escapes, true)
is active (default). See current prolog_flag/2. Character escapes conflict with writef/2
in two ways: \40 is interpreted as decimal 40 by writef/2, but as octal 40 (decimal 32)

SWI-Prolog 8.4 Reference Manual

2.16. THE SWI-PROLOG SYNTAX 75

by read. Also, the writef/2 sequence \1 is illegal. It is advised to use the more widely
supported format/[2, 3] predicate instead. If you insist upon using writef/2, either switch
character_escapesto false, oruse double \\, asinwritef ("\\1").

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as (radix)’ (number), where (radix) is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0 [bxo] (number). For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

Using digit groups in large integers

SWI-Prolog supports splitting long integers into digit groups. Digit groups can be separated with
the sequence (underscore), (optional white space). If the (radix) is 10 or lower, they may also be
separated with exactly one space. The following all express the integer 1 million:

1 _000_000
1 000 000
1 _000_/*morex/000

Integers can be printed using this notation with format /2, using the ~ I format specifier. For exam-
ple:

?— format (" "I’, [10000007).
1_000_000

The current syntax has been proposed by Ulrich Neumerkel on the SWI-Prolog mailinglist.

Rational number syntax

As of version 8.1.22, SWI-Prolog supports rational numbers as a primary citizen atomic data type if
SWI-Prolog is compiled with the GMP library. This can be tested using the bounded Prolog flag. An
atomic type also requires a syntax. Unfortunately there are few options for adding rational numbers
without breaking the ISO standard.”*

ECLiPSe and SWI-Prolog have agreed to define the canonical syntax for rational numbers to
be e.g., 1r3. In addition, ECLiPSe accepts 1_3 and SWI-Prolog can be asked to accept 1/3 us-
ing the module sensitive Prolog flag rational_syntax, which has the values below. Note that
write_canonical/1 always uses the compatible 1r3 syntax.

natural
This is the default mode where we ignore the ambiguity issue and follow the most natural
(integer)/(nonneg) alternative. Here, (integer) follows the normal rules for Prolog decimal

2ECLIiPSe uses numerator_denominator. This syntax conflicts with SWI-Prolog digit groups (see section 2.16.1) and
does not have a recognised link to rational numbers. The notation 1/3r and 1/3R have also been proposed. The 1/3r
is compatible to Ruby, but is hard to parse due to the required look-ahead and not very natural. See also https://en.
wikipedia.org/wiki/Rational_data_type.

SWI-Prolog 8.4 Reference Manual

https://en.wikipedia.org/wiki/Rational_data_type
https://en.wikipedia.org/wiki/Rational_data_type

76 CHAPTER 2. OVERVIEW

integers and (nonneg) does the same, but does not allows for a sign. Note that the parser
translates a rational number to its canonical form which implies there are no common divisors
in the resulting numerator and denominator. Examples of ration numbers are:

172 172
2/4 172
1 000 000/33 000 1000/33
-3/5 -3/5

We expect very few programs to have text parsed into a rational number while a term was
expected. Note that for rationals appearing in an arithmetic expression the only difference is
that evaluation moves from runtime to compiletime. The utility 1ist_rationals/0 may
be used on a loaded program to check whether the program contains rational numbers inside
clauses and thus may be subject to compatibility issues. If a term is intended this can be written
as/(1,2), (1)/2,1 / 2 orsome variation thereof.

compatibility
Read and write rational numbers as e.g., 1r3. In other words, this adheres to the same rules as
natural above, but using the ‘r’ instead of ‘/’. Note that this may conflict with traditional

Prolog as ‘r’ can be defined as an infix operator. The same argument holds for 0x23 and
similar syntax for numbers that are part of the ISO standard.

While the syntax is controlled by the flag rational_syntax, behavior on integer division
and exponentiation is controlled by the flag prefer_rationals. See section section 4.27.2 for
arithmetic on rational numbers.

NaN and Infinity floats and their syntax

SWI-Prolog supports reading and printing ‘special’ floating point values according to Proposal for
Prolog Standard core update wrt floating point arithmetic by Joachim Schimpf and available in
ECLiPSe Prolog. In particular,

* Infinity is printed as 1.0Inf or —1.0Inf. Any sequence matching the regular expression
[+-1?\sd+[.]\sd+Inf is mapped to plus or minus infinity.

* NaN (Not a Number) is printed as 1.xxxNaN, where /.xxx is the float after replacing the
exponent by ‘1°. Such numbers are read, resulting in the same NaN. The NaN constant can also
be produced using the function nan/0, e.g.,

?— A is nan.
A = 1.5NaN.

By default SWI-Prolog arithmetic (see section 4.27) follows the ISO standard with describes that
floating point operations either produce a normal floating point number or raise an exception. sec-
tion 4.27.2 describes the Prolog flags that can be used to support the IEEE special float values. The
ability to create, read and write such values facilitates the exchange of data with languages that can
represent the full range of IEEE doubles.

SWI-Prolog 8.4 Reference Manual

http://eclipseclp.org/Specs/core_update_float.html
http://eclipseclp.org/Specs/core_update_float.html

2.16. THE SWI-PROLOG SYNTAX 77

Force only underscore to introduce a variable

According to the ISO standard and most Prolog systems, identifiers that start with an uppercase letter
or an underscore are variables. In the past, Prolog by BIM provided an alternative syntax, where
only the underscore (_) introduces a variable. As of SWI-Prolog 7.3.27 SWI-Prolog supports this
alternative syntax, controlled by the Prolog flag var_prefix. As the character_escapes flag,
this flag is maintained per module, where the default is false, supporting standard syntax.

Having only the underscore introduce a variable is particularly useful if code contains identifiers
for case sensitive external languages. Examples are the RDF library where code frequently specifies
property and class names>> and the R interface for specifying functions or variables that start with an
uppercase character. Lexical databases where part of the terms start with an uppercase letter is another
category were the readability of the code improves using this option.

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is based on version 6.0.0 of the Unicode stan-
dard. Please note that char_type/2 and friends, intended to be used with all text except Prolog
source code, is based on the C library locale-based classification routines.

* Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXXXX and \UXXXXXXXX (see section 2.16.1) were introduced to specify Unicode code
points in ASCII files.

* Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.”® In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore (_).
Otherwise it is an atom. Note that many languages do not have the notion of character case. In
such languages variables must be written as _name.

» White space
All characters marked as separators (Z*) in the Unicode tables are handled as layout characters.

» Control and unassigned characters
Control and unassigned (C*) characters produce a syntax error if encountered outside quoted
atoms/strings and outside comments.

e Other characters
The first 128 characters follow the ISO Prolog standard. Unicode symbol and punctuation
characters (general category S* and P*) act as glueing symbol characters (i.e., just like ==: an
unquoted sequence of symbol characters are combined into an atom).

2Samer Abdallah suggested this feature based on experience with non-Prolog users using the RDF library.
®http://www.unicode.org/reports/tr3l/

SWI-Prolog 8.4 Reference Manual

http://www.unicode.org/reports/tr31/

78 CHAPTER 2. OVERVIEW

Other characters (this is mainly No: a numeric character of other type) are currently handled as
‘solo’.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases, however, people prefer to give the variable a name.
As mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled
by style_check/1) if a variable is used only once. The system can be informed that a variable is
meant to appear once by starting it with an underscore, e.g., _Name. Please note that any variable,
except plain _, shares with variables of the same name. The term t (_X, _X) is equivalent to
t (X, X),which is different fromt (_, _).

As Unicode requires variables to start with an underscore in many languages, this schema needs
to be extended.”’ First we define the two classes of named variables.

* Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an

uppercase letter, e.g., __var or _Var.

e Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.?®

Any normal variable appearing exactly once in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.
Singleton messages can be suppressed using the style_check/1 directive.

test().

test(_a). Singleton variables: [_a]

test(_12). Singleton variables: [_12]

test(A). Singleton variables: [A]

test(_A).

test(__a).

test(_, _).

test(_a, _a).

test(__a, __a). | Singleton-marked variables appearing more than once: [__a]
test(_A, _A). | Singleton-marked variables appearing more than once: [-A]
test(A, A).

Semantic singletons Starting with version 6.5.1, SWI-Prolog has syntactic singletons and seman-
tic singletons. The first are checked by read_clause/3 (and read_term/3 using the option
singletons(warning)). The latter are generated by the compiler for variables that appear alone in
a branch. For example, in the code below the variable X is not a syntactic singleton, but the variable
X does not communicate any bindings and replacing X with _ does not change the semantics.

‘test M ‘
‘ (test_1(X) ‘

27 After a proposal by Richard O’Keefe.
2Some Prolog dialects write variables this way.

SWI-Prolog 8.4 Reference Manual

2.17. RATIONAL TREES (CYCLIC TERMS) 79

; test_ 2 (X)

2.17 Rational trees (cyclic terms)

SWI-Prolog supports rational trees, also known as cyclic terms. ‘Supports’ is so de-
fined that most relevant built-in predicates terminate when faced with rational trees. Al-
most all SWI-Prolog’s built-in term manipulation predicates process terms in a time that is
linear to the amount of memory used to represent the term on the stack. The follow-
ing set of predicates safely handles rational trees: =../2, ==/2, =@=/2, =/2, @</2,
@=</2,0@>=/2,@>/2, \==/2,\=0@=/2, \=/2, acyclic_term/1, bagof/3, compare/3,
copy_term/2, cyclic_term/1, dif/2, duplicate_term/2, findall/3, ground/1,
term_hash/2, numbervars/3, numbervars/4, recorda/3, recordz/3, setof/3,
subsumes_term/2, term_variables/2, throw/1l, unify_with_occurs_check/2,
unifiable/3,when/2, write/1 (and related predicates) .

In addition, some built-ins recognise rational trees and raise an appropriate exception. Arithmetic
evaluation belongs to this group. The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide meaningful processing of rational
trees raise a representation_error. Predicates for which rational trees have no meaningful
interpretation raise a t ype_error. For example:

1 ?2- A = f(A), asserta(a(d)).

ERROR: asserta/l: Cannot represent due to ‘cyclic_term’

2 ?- A = 1+A, B is A.

ERROR: 1s/2: Type error: ‘expression’ expected, found
‘@(S_1, [S_1=1+S_1]1)" (cyclic term)

2.18 Just-in-time clause indexing
SWI-Prolog provides ‘just-in-time’ indexing over multiple arguments.”® ‘Just-in-time’ means that
clause indexes are not built by the compiler (or asserta/1 for dynamic predicates), but on the
first call to such a predicate where an index might help (i.e., a call where at least one argument is
instantiated). This section describes the rules used by the indexing logic. Note that this logic is not
‘set in stone’. The indexing capabilities of the system will change. Although this inevitably leads to
some regressing on some particular use cases, we strive to avoid significant slowdowns.

The list below describes the clause selection process for various predicates and calls. The alterna-
tives are considered in the order they are presented.

* Special purpose code
Currently two special cases are recognised by the compiler: static code with exactly one clause
and static code with two clauses, one where the first argument is the empty list ([1) and one
where the first argument is a non-empty list ([_|_]).

PJIT indexing was added in version 5.11.29 (Oct. 2011).

SWI-Prolog 8.4 Reference Manual

80 CHAPTER 2. OVERVIEW

* Linear scan on first argument
The principal clause list maintains a key for the first argument. An indexing key is either a
constant or a functor (name/arity reference). Calls with an instantiated first argument and less
than 10 clauses perform a linear scan for a possible matching clause using this index key. If the
result is deterministic it is used. Otherwise the system looks for better indexes.*.

* Hash lookup
If none of the above applies, the system considers the available hash tables for which the corre-
sponding argument is instantiated. If a table is found with acceptable characteristics, it is used.
Otherwise it assesses the clauses for all instantiated arguments and selects the best candidate
for creating a new hash table. If there is no single argument that provides an acceptable hash
quality it will search for a combination of arguments.”' Searching for index candidates is only
performed on the first 254 arguments.

If a single-argument index contains multiple compound terms with the same name and arity
and at least one non-variable argument, a [list index is created. A subsequent query where this
argument is bound to a compound causes jiti indexing to be applied recursively on the arguments
of the term. This is called deep indexing.’> See also section 2.18.1

Clauses that have a variable at an otherwise indexable argument must be linked into all hash
buckets. Currently, predicates that have more than 10% such clauses for a specific argument are
not considered for indexing on that argument.

Disregarding variables, the suitability of an argument for hashing is expressed as the number of
unique indexable values divided by the standard deviation of the number of duplicate values for
each value plus one.*

The indexes of dynamic predicates are deleted if the number of clauses is doubled since
its creation or reduced below 1/4th. The JIT approach will recreate a suitable index on
the next call. Indexes of running predicates cannot be deleted. They are added to a ‘re-
moved index list’ associated to the predicate. Outdated indexes of predicates are reclaimed
by garbage_collect_clauses/0. The clause garbage collector is scheduled automati-
cally, based on time and space based heuristics. See garbage_collect_clauses/0 for
details.

The library prolog_jiti provides jiti_1ist/0,]1 to list the characteristics of all or some of
the created hash tables.

Dynamic predicates are indexed using the same rules as static predicates, except that the special
purpose schemes are never applied. In addition, the JITI index is discarded if the number of clauses
has doubled since the predicate was last assessed or shrinks below one fourth. A subsequent call
reassesses the statistics of the dynamic predicate and, when applicable, creates a new index.

39Up to 7.7.2 this result was used also when non-deterministic.

3The last step was added in SWI-Prolog 7.5.8.

3Deep indexing was added in version 7.7.4.

3Earlier versions simply used the number of unique values, but poor distribution of values makes a table less suitable.
This was analysed by Fabien Noth and Giinter Kniesel.

SWI-Prolog 8.4 Reference Manual

2.18. JUST-IN-TIME CLAUSE INDEXING 81

2.18.1 Deep indexing

As introduced in section 2.18, deep indexing creates hash tables distinguish clauses that share a com-
pound with the same name and arity. Deep indexes allow for efficient lookup of arbitrary terms.
Without it is advised to flatten the term, i.e., turn F(X) into two arguments for the fact, one argument
denoting the functor F' and the second the argument X. This works fine as long as the arity of the
each of the terms is the same. Alternatively we can use term_hash/2 or term_hash/4 to add a
column holding the hash of the term. That approach can deal with arbitrary arities, but requires us
to know that the term is ground (term_hash/2) or up to which depth we get sufficient selectivity
(term_hash/4).

Deep indexing does not require this knowledge and leads to efficient lookup regardless of the
instantiation of the query and term. The current version does come with some limitations:

* The decision which index to use is taken independently at each level. Future versions may be
smarter on this.

* Deep indexing only applies to a single argument indexes (on any argument).

* Currently, the depth of indexing is limited to 7 levels.

Note that, when compiling DCGs (see section 4.13) and the first body term is a literal, it is
included into the clause head. See for example the grammar and its plain Prolog representation below.

det (det (a), sg) -——> "a",
det (det (an), pl) --> "an".
det (det (the), _) —-——> "the".

?— listing(det) .

det (det (a), sg, [97|A], A).

det (det (an), pl, [97, 110|A], A).

det (det (the), _, [116, 104, 101|A], A).

Deep argument indexing will create indexes for the 3rd list argument, providing speedup and making
clause selection deterministic if all rules start with a literal and all literals are unique in the first 6
elements. Note that deep index creation stops as soon as a deterministic choice can be made or there
are no two clauses that have the same name/arity combination.

2.18.2 Future directions

* The ‘special cases’ can be extended. This is notably attractive for static predicates with a
relatively small number of clauses where a hash lookup is too costly.

* Create an efficient decision diagram for selecting between low numbers of static clauses.

* Implement a better judgements for selecting between deep and plain indexes.

SWI-Prolog 8.4 Reference Manual

82 CHAPTER 2. OVERVIEW

2.18.3 Indexing for body code

The current SWI-Prolog versions only consider the head for generating clause indexing. This would
make it impossible to examine a head argument and pass the argument in the body without copying
the argument. Consider the two clauses below. Both have equal semantics under Prolog. The first
version would loose clause indexing while the second creates a copy of the £/1 argument. Neither is
desirable.

p(X) :— X = £(I), integer (I) g (X) .
p(£(I)) :- integer(I), q(f(X)).

As of SWI-Prolog 8.3.21, unifications against head arguments that happen before anything else in
the body are compiled special. Effectively, the term unified too is moved into the head (providing
indexing) and places where this term is used simply use the corresponding argument. The explicit
unification is removed. Decompilation (clause/2) reverses this process, but may not produce ex-
actly the same term. The re-inserted unfications are ordered according to the argument position and
the variable is always on the left hand of the =/2. Thus,

p(XrY) H f(_) = Yr X = g(_)r CI(XIY)-

Is decompiled into the following equivalent clause.

p(X,Y) :— X

Il
«Q
B
=

Il

£, alx,Y).

Additional notes:
* This transformation is only performed on static code.
* The unifications must immediately follow the head in a conjunction.

* As sole exception, calls to t rue /0 are skipped. This allows goal_expansion/2 to convert
goals to t rue while preserving this optimization.

* If the head argument is not used the body unification is still moved into the head. The decom-
piler does not inverse the process in that case. Thus, p (X) :- X = a. is fully equivalent to
p(a).

* Currently this optimziation is enabled regardless of the Prolog flag opt imise. As this opti-
mization harms source-level debugging, this may not be desirable. On the other hand we do not
want determinism to depend on optimization while this optimization affects determinism.

2.18.4 Indexing and portability

The base-line functionality of Prolog implementations provides indexing on constants and functor
(name/arity) on the first argument. This must be your assumption if wide portability of your program
is important. This can typically be achieved by exploiting term_hash/2 or term_hash/4 and/or
maintaining multiple copies of a predicate with reordered arguments and wrappers that update all
implementations (assert/retract) and selects the appropriate implementation (query).

YAP provides full JIT indexing, including indexing arguments of compound terms. YAP’s index-
ing has been the inspiration for enhancing SWI-Prolog’s indexing capabilities.

SWI-Prolog 8.4 Reference Manual

2.19. WIDE CHARACTER SUPPORT 83

2.19 Wide character support

SWI-Prolog supports wide characters, characters with character codes above 255 that cannot be rep-
resented in a single byte. Universal Character Set (UCS) is the ISO/IEC 10646 standard that specifies
a unique 31-bit unsigned integer for any character in any language. It is a superset of 16-bit Unicode,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages, and character classification (uppercase, lowercase,
digit, etc.) and operations such as case conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section 5.2).
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in chapter 12 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.19.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 ... 127
represent simply the corresponding US-ASCII character, while bytes 128 ... 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
Unicode standard, represented by pairs of bytes, is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ences get_code/2 and put_code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flag encoding, which is initialised from
setlocale (LC_CTYPE, NULL) tooneof text,utf8 or iso_latin_1. One of the latter two
is used if the encoding name is recognized, while text is used as default. Using t ext, the translation
is left to the wide-character functions of the C library.** The encoding can be specified explicitly in
load_files/2 for loading Prolog source with an alternative encoding, open/4 when opening
files or using set_stream/2 on any open stream. For Prolog source files we also provide the
encoding/1 directive that can be used to switch between encodings that are compatible with US-
ASCII (ascii, iso_latin_1, ut £8 and many locales). See also section 3.1.3 for writing Prolog
files with non-US-ASCII characters and section 2.16.1 for syntax issues. For additional information
and Unicode resources, please visit http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but generates errors and warnings
on encountering values above 127.

3*The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 8.4 Reference Manual

http://www.unicode.org/

84 CHAPTER 2. OVERVIEW

iso_latin_1
8-bit encoding supporting many Western languages. This causes the stream to be read and
written fully untranslated.

text
C library default locale encoding for text files. Files are read and written using the C library
functions mbrtowc() and wertomb(). This may be the same as one of the other locales, notably
it may be the same as iso_latin_1 for Western languages and ut £8 in a UTF-8 context.
utf8
Multi-byte encoding of full UCS, compatible with ascii. See above.
unicode_be
Unicode Big Endian. Reads input in pairs of bytes, most significant byte first. Can only repre-
sent 16-bit characters.
unicode_le

Unicode Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream
on these errors can be controlled using set_stream/2. Initially the terminal stream writes the
characters using Prolog escape sequences while other streams generate an 1/O exception.

BOM: Byte Order Mark

From section 2.19.1, you may have got the impression that text files are complicated. This section
deals with a related topic, making life often easier for the user, but providing another worry to the
programmer. BOM or Byte Order Marker is a technique for identifying Unicode text files as well as
the encoding they use. Such files start with the Unicode character OxFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or ...

Some formats start off as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the use
of a UTF-8 BOM. In other cases there is additional information revealing the encoding, making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available through st ream_property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

2.20 System limits

2.20.1 Limits on memory areas

The SWI-Prolog engine uses three stacks the local stack (also called environment stack) stores the
environment frames used to call predicates as well as choice points. The global stack (also called

SWI-Prolog 8.4 Reference Manual

2.20. SYSTEM LIMITS 85

heap) contains terms, floats, strings and large integers. Finally, the trail stack records variable bind-
ings and assignments to support backtracking. The internal data representation limits these stacks to
128 MB (each) on 32-bit processors. More generally to obits-per-pointer—5 bytes, which implies they
are virtually unlimited on 64-bit machines.

As of version 7.7.14, the stacks are restricted by the writeable flag stack_limit or the com-
mand line option ——stack-1imit. This flag limits the combined size of the three stacks per thread.
The default limit is currently 512 Mbytes on 32-bit machines, which imposes no additional limit con-
sidering the 128 Mbytes hard limit on 32-bit and 1 Gbytes on 64-bit machines.

Considering portability, applications that need to modify the default limits are advised to do so
using the Prolog flag stack_limit.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the area
to store atoms, functors, predicates and their clauses, records and other dynamic data. No limits are
imposed on the addresses returned by malloc() and friends.

2.20.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap; removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the length of atoms and strings. The number of
atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines this is virtually
unlimited. See also section 12.4.2.

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 MB for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Nesting of terms Most built-in predicates that process Prolog terms create an explicitly managed
stack and perform optimization for processing the last argument of a term. This implies they
can process deeply nested terms at constant and low usage of the C stack, and the system raises
a resource error if no more stack can be allocated. Currently only read/1 and write/1 (and
all variations thereof) still use the C stack and may cause the system to crash in an uncontrolled
way (i.e., not mapped to a Prolog exception that can be caught).

Integers On most systems SWI-Prolog is compiled with support for unbounded integers by means of
the GNU GMP library. In practice this means that integers are bound by the global stack size.
Too large integers cause a resource_error. On systems that lack GMP, integers are 64-bit
on 32- as well as 64-bit machines.

Integers up to the value of the max_tagged.-integer Prolog flag are represented
more efficiently on the stack. For integers that appear in clauses, the value (below
max_tagged_integer or not) has little impact on the size of the clause.

Floating point numbers Floating point numbers are represented as C-native double precision floats,
64-bit IEEE on most machines.

SWI-Prolog 8.4 Reference Manual

86 CHAPTER 2. OVERVIEW

Area name Description

local stack The local stack is used to store
the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the al-
ternatives are cut off with the
1/0 predicate or no choice points
have been created since the invo-
cation and the last subclause is
started (last call optimisation).
global stack | The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are no
longer needed.

As the trail and global stacks
are garbage collected together, a
small trail can cause an exces-
sive amount of garbage collec-
tions. To avoid this, the trail
is automatically resized to be at
least 1/6th of the size of the
global stack.

Table 2.2: Memory areas

SWI-Prolog 8.4 Reference Manual

2.21. SWI-PROLOG AND 64-BIT MACHINES 87

2.20.3 Reserved Names

The boot compiler (see —b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [] all predicates, database keys, etc., that
should be hidden from the user start with a dollar ($) sign.

2.21 SWI-Prolog and 64-bit machines

Most of today’s 64-bit platforms are capable of running both 32-bit and 64-bit applications. This asks
for some clarifications on the advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.

2.21.1 Supported platforms

SWI-Prolog can be compiled for a 32- or 64-bit address space on any system with a suitable C com-
piler. Pointer arithmetic is based on the type (u)intptr_t from stdint . h, with suitable emulation on
MS-Windows.

2.21.2 Comparing 32- and 64-bits Prolog

Most of Prolog’s memory usage consists of pointers. This indicates the primary drawback: Prolog
memory usage almost doubles when using the 64-bit addressing model. Using more memory means
copying more data between CPU and main memory, slowing down the system.

What then are the advantages? First of all, SWI-Prolog’s addressing of the Prolog stacks does not
cover the whole address space due to the use of type tag bits and garbage collection flags. On 32-bit
hardware the stacks are limited to 128 MB each. This tends to be too low for demanding applications
on modern hardware. On 64-bit hardware the limit is 23 times higher, exceeding the addressing
capabilities of today’s CPUs and operating systems. This implies Prolog can be started with stack
sizes that use the full capabilities of your hardware.

Multi-threaded applications profit much more because every thread has its own set of stacks. The
Prolog stacks start small and are dynamically expanded (see section 2.20.1). The C stack is also
dynamically expanded, but the maximum size is reserved when a thread is started. Using 100 threads
at the maximum default C stack of 8Mb (Linux) costs 800Mb virtual memory!*>

The implications of theoretical performance loss due to increased memory bandwidth implied by
exchanging wider pointers depend on the design of the hardware. We only have data for the popular
IA32 vs. AMD64 architectures. Here, it appears that the loss is compensated for by an instruction set
that has been optimized for modern programming. In particular, the AMD64 has more registers and
the relative addressing capabilities have been improved. Where we see a 10% performance degra-
dation when placing the SWI-Prolog kernel in a Unix shared object, we cannot find a measurable
difference on AMD64.

2.21.3 Choosing between 32- and 64-bit Prolog

For those cases where we can choose between 32 and 64 bits, either because the hardware and OS
support both or because we can still choose the hardware and OS, we give guidelines for this decision.

35C-recursion over Prolog data structures is removed from most of SWI-Prolog. When removed from all predicates it
will often be possible to use lower limits in threads. See http://www.swi-prolog.org/Devel/CStack.html

SWI-Prolog 8.4 Reference Manual

http://www.swi-prolog.org/Devel/CStack.html

88 CHAPTER 2. OVERVIEW

First of all, if SWI-Prolog needs to be linked against 32- or 64-bit native libraries, there is no
choice as it is not possible to link 32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to use either do the different character-
istics of Prolog become important.

Prolog applications that require more than the 128 MB stack limit provided in 32-bit addressing
mode must use the 64-bit edition. Note however that the limits must be doubled to accommodate the
same Prolog application.

If the system is tight on physical memory, 32-bit Prolog has the clear advantage of using only
slightly more than half of the memory of 64-bit Prolog. This argument applies as long as the applica-
tion fits in the virfual address space of the machine. The virtual address space of 32-bit hardware is
4GB, but in many cases the operating system provides less to user applications.

The only standard SWI-Prolog library adding significantly to this calculation is the RDF database
provided by the semweb package. It uses approximately 80 bytes per triple on 32-bit hardware and
150 bytes on 64-bit hardware. Details depend on how many different resources and literals appear in
the dataset as well as desired additional literal indexes.

Summarizing, if applications are small enough to fit comfortably in virtual and physical memory,
simply take the model used by most of the applications on the OS. If applications require more than
128 MB per stack, use the 64-bit edition. If applications approach the size of physical memory, fit
in the 128 MB stack limit and fit in virtual memory, the 32-bit version has clear advantages. For
demanding applications on 64-bit hardware with more than about 6GB physical memory the 64-bit
model is the model of choice.

2.22 Binary compatibility

SWI-Prolog first of all attempts to maintain source code compatibility between versions. Data and
programs can often be represented in binary form. This touches a number of interfaces with vary-
ing degrees of compatibility. The relevant version numbers and signatures are made available by
PL.version (), the ——abi-version and the Prolog flag abi_version.

Foreign extensions
Dynamically loadable foreign extensions have the usual dependencies on the architecture, ABI
model of the (C) compiler, dynamic link library format, etc. They also depend on the backward
compatibility of the PL_* API functions provided lib 1ibswipl.

A compatible API allows distribution of foreign extensions in binary form, notably for platforms
on which compilation is complicated (e.g., Windows). This compatibility is therefore high on
the priority list, but must infrequently be compromised.

PL.version(): PL.VERSIONFLI, abi_versionkey: foreign_ interface

Binary terms
Terms may be represented in binary format using PL_record_external () and
fast_write/2. As these formats are used for storing binary terms in databases or
communicate terms between Prolog processes in binary form, great care is taken to maintain
compatibility.

PL_version(): PL.VERSION_REC, abi_version key: record

SWI-Prolog 8.4 Reference Manual

2.22. BINARY COMPATIBILITY 89

QLF files
QLF files (see gcompile/1) are binary representation of Prolog file or module. They repre-
sent clauses as sequences of virtual machine (VM) instructions. Their compatibility relies on
the QLF file format and the ABI of the VM. Some care is taken to maintain compatibility.

PL_version(): PL_VERSION_QLF, PL_VERSION_QLF_LOAD and PL_VERSION_VM,
abi_versionkey: glf,glfmin_load, vmi

Saved states
Saved states (see —c and gsave_program/2) is a zip file that contains the entire Prolog
database using the same representation as QLF files. A saved state may contain additional
resources, such as foreign extensions, data files, etc. In addition to the dependency concerns
of QLF files, built-in and core library predicates may call internal foreign predicates. The
interface between the public built-ins and internal foreign predicates changes frequently. Patch
level releases in the stable branch will as much as possible maintain compatibility.

The relevant ABI version keys are the same as for QLF files with one addition:
PL.version(): PL.VERSION_BUILT_IN, abi_versionkey: built_in

SWI-Prolog 8.4 Reference Manual

Initialising and Managing a
Prolog Project

Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter explains how to run a project. There is
no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and SWI-
Prolog’s commands are there to support this practice. This chapter describes the conventions and
supporting commands.

The first two sections (section 3.1 and section 3.2) only require plain Prolog. The remainder
discusses the use of the built-in graphical tools that require the XPCE graphical library installed on
your system.

3.1 The project source files

Organisation of source files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
with one directory holding a couple of files and some files to link it all together. Even bigger projects
will be organised in sub-projects, each using its own directory.

3.1.1 File Names and Locations
File Name Extensions

The first consideration is what extension to use for the source files. Tradition calls for
.pl, but conflicts with Perl force the use of another extension on systems where ex-
tensions have global meaning, such as MS-Windows. On such systems .pro is the
common alternative. On MS-Windows, the alternative extension is stored in the reg-
istry key HKEY_CURRENT_USER/Software/SWI/Prolog/fileExtension or
HKEY_LOCAL_MACHINE/Software/SWI/Prolog/fileExtension. All versions of
SWI-Prolog load files with the extension .pl as well as with the registered alternative extension
without explicitly specifying the extension. For portability reasons we propose the following
convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .p1.

With a conflict choose . pro and use this extension for the files you want to load through your file
manager. Use . p1 for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using its own directory or directory struc-

ture. If nobody else will ever touch your files and you use only one computer, there is little to worry

SWI-Prolog 8.4 Reference Manual

3.1. THE PROJECT SOURCE FILES 91

about, but this is rarely the case with a large project.

To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses the
forward slash (/) to separate directories. Just before reaching the file system, SWI-Prolog uses
prolog_to_os_filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog_to_os_filename/2 to convert computed paths into system
paths when constructing commands for shel1/1 and friends.

Sub-projects using search paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file_search_path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph algorithms, set operations and GUI primi-
tives. These sub-projects are likely candidates for re-use in future projects. A good choice is to create
a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory hierarchy of the
current project. Another is to use a completely dislocated directory. Third, the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file_search_path/2 is:

:— prolog_load_context (directory, Dir),
asserta (user:file_search_path (myapp, Dir)).

user:file_search_path (graph, myapp (graph)) .
user:file_search_path (ui, myapp (ui)) .

When using sub-projects in the SWI-Prolog hierarchy, one should use the path alias swi as basis. For
a system-wide installation, use an absolute path.

Extensive sub-projects with a small well-defined API should define a load file with calls to
use_module/1 to import the various library components and export the AP

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list:

e Jload.pl
Use this file to set up the environment (Prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command line options
and start the application.

* run.pl
Use this file to start the application. Normally it loads 1oad.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 8.4 Reference Manual

92 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

* save.pl
Use this file to create a saved state of the application by loading load.pl and calling
gsave_program/2 to generate a saved state with the proper options.

e debug.pl
Loads the program for debugging. In addition to loading 1oad.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.19, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This section discusses the
options for source files not in US-ASCIL.

SWI-Prolog can read files in any of the encodings described in section 2.19. Two encodings are of
particular interest. The t ext encoding deals with the current locale, the default used by this computer
for representing text files. The encodings ut £8, unicode_le and unicode_be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source file, there are several
options:

» Use escape sequences
This approach describes NON-ASCII as sequences of the form \octa/\. The numerical argu-
ment is interpreted as a UNICODE character.' The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

» Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine, this
machine must use the same locale or the file is unreadable. There is no elegant way if files from
multiple locales must be united in one application using this technique. In other words, it is fine
for local projects in countries with uniform locale conventions.

* Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use of
UTF-8 encoding. Prolog can be notified of this encoding in two ways, using a UTF-8 BOM (see
section 2.19.1) or using the directive : — encoding (ut£8) . Many of today’s text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that were started using local
conventions can be re-coded using the Unix iconv tool or often using commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because:

"To my knowledge, the ISO escape sequence is limited to 3 octal digits, which means most characters cannot be repre-
sented.

SWI-Prolog 8.4 Reference Manual

3.3. THE TEST-EDIT-RELOAD CYCLE 93

* They hide local predicates
This is the reason they were invented in the first place. Hiding provides two features. They
allow for short predicate names without worrying about conflicts. Given the flat name-space in-
troduced by modules, they still require meaningful module names as well as meaningful names
for exported predicates.

» They document the interface
Possibly more important than avoiding name conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the exported predicates without
worrying.

» They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate in
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module is a good understanding required of the resolution
of terms to predicates inside a module. Here is a typical example from readutil.

:— module (read_util,

[read_line_to_codes/2,
read_line to_codes/3,
read_stream_to_codes/2,
read_stream to_ codes/3,
read_file_to_codes/3,
read_file to_terms/3

+Fd, -Codes

+Fd, —-Codes, ?Tail

+Fd, -Codes

+Fd, —-Codes, ?Tail
+File, -Codes, +Options
+File, -Terms, +Options

o o° o° o° o oP

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing Prolog source code. Editors are
complicated programs that must be mastered in detail for real productive programming. If you are
familiar with a specific editor you should not be forced to change. You may specify your favourite
editor using the Prolog flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1.

The use of a built-in editor, which is selected by setting the Prolog flag editor to pce_emacs,
has advantages. The XPCE editor object, around which the built-in PceEmacs is built, can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit/1, an extensible front-end that searches for
objects (files, predicates, modules, as well as XPCE classes and methods) in the Prolog database.

SWI-Prolog 8.4 Reference Manual

94 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

If multiple matches are found it provides a choice. Together with the built-in completion on atoms
bound to the TAB key this provides a quick way to edit objects:

?— edit (country) .
Please select item to edit:

1 chat:country/10 '’ /home/Jjan/.config/swi-prolog/lib/chat/countr.
2 chat:country/1 " /home/jan/.config/swi-prolog/lib/chat/world0.

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do refry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. For example, after the tracer reveals there is something wrong with prove/ 3,
you do:

?— edit (prove) .

Now edit the source, possibly switching to other files and making multiple changes. After finishing,
invoke make /0, either through the editor Ul (Compile/Make (Control-C Control-M)) or on
the top level, and watch the files being reloaded.”

o)

% show compiled into photo_gallery 0.03 sec, 3,360 bytes

?— make.

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit /1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the Prolog flag editor to pce_emacs and the
other is by starting the editor explicitly using the emacs/ [0, 1] predicates.

2Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

SWI-Prolog 8.4 Reference Manual

pl’:16
pl’:72

3.4. USING THE PCEEMACS BUILT-IN EDITOR 95

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.”

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu bar above
each editor window. A complete overview of the bindings for the current mode is provided through
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source) text. For our purpose we want Prolog mode. There are various ways to make PceEmacs use
Prolog mode for a file.

e Using the proper extension
If the file ends in . p1 or the selected alternative (e.g. . pro) extension, Prolog mode is selected.

* Using #! /path/to/.../swipl
If the file is a Prolog Script file, starting with the line #! /path/to/swipl options, Prolog
mode is selected regardless of the extension.

e Using —x— Prolog —x-—
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

e Explicit selection
Finally, using File/Mode/Prolog you can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

* Cut/Copy/Paste

These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle-mouse button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps,
there is the Edit/Paste menu entry. Text is pasted at the caret location.

* Undo
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows Control-Z sequence.

* Abort
Multi-key sequences can be aborted at any stage using Control-G.

*Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 8.4 Reference Manual

96 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

* Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start keys, the system indicates search mode in the status line.
As you are typing the search string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

If the target cannot be found, PceEmacs warns you and no longer extends the search string.*
During search, some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search forwards for next.

Control-R
Search backwards for next.

Control-W
Extend search to next word boundary.

Control-G
Cancel search, go back to where it started.

ESC

Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

* Dynamic Abbreviation
Also called dabbrev, dynamic abbreviation is an important feature of Emacs clones to support
programming. After typing the first few letters of an identifier, you may press Alt-/, causing
PceEmacs to search backwards for identifiers that start the same and use it to complete the text
you typed. A second Alt-/ searches further backwards. If there are no hits before the caret, it
starts searching forwards. With some practice, this system allows for entering code very fast
with nice and readable identifiers (or other difficult long words).

* Open (afile)
Is called File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, press Alt-s or click the little icon at the
bottom left to make the window sticky.

o Split view
Sometimes you want to look at two places in the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These are the most commonly used commands. In section 3.4.3 we discuss specific support for
dealing with Prolog source code.

*GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 8.4 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 97

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog-specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

* After typing a .
After typing a . that is not preceded by a symbol character, the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

o After the command Control-c Control-s
Acronym for Check Syntax, it performs the same checks as above for the clause surrounding
the caret. On a syntax error, however, the caret is moved to the expected location of the error.’

* After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

* After typing Control-I Control-|
The Control-l command re-centers the window (scrolls the window to make the caret the center
of the window). Typing this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog_colour. The colouring can be extended
and modified using multifile predicates. Please check this source file for details. In general, underlined
objects have a popup (right-mouse button) associated with common commands such as viewing the
documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project, supports only one
particular style for layout.® Below are examples of typical constructs.

head (argl, arg2).

head (argl, arg2) :— !.

head (Argl, arg2) :- !,
calll (Argl).

head (Argl, arg2) :-—

5In most cases the location where the parser cannot proceed is further down the file than the actual error location.
®Defined in Prolog in the file emacs/prolog.mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 8.4 Reference Manual

98 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Clauses
Blue bold | Head of an exported predicate
Red bold Head of a predicate that is not called
Black bold | Head of remaining predicates

Calls in the clause body
Blue Call to built-in or imported predicate
Red Call to undefined predicate
Purple Call to dynamic predicate

Other entities
Dark green | Comment

Dark blue | Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

(if (Argl)
-> then
; else

head (Argl)

a (many,
long,
arguments (with,
many,
more),
and ([a,
long,
list,
with,
ay,
| tail
1)) .

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken across multiple lines as illustrated
above.

SWI-Prolog 8.4 Reference Manual

3.5. THE GRAPHICAL DEBUGGER 929

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit /1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use_module/ [1, 2], consult /1, etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text console-based 4-port Prolog tracer and
the other is a window-based source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog_trace_interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides a much better overview due to the eminent relation to your source
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice point stack. There are some drawbacks though. Using a textual trace on the console, one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control—-c b) to insert a break-point at a specific location in the source code.

The graphical tracer is particularly useful for debugging threads. The tracer must be loaded from
the main thread before it can be used from a background thread.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through t race/0, by hitting a spy point defined by spy /1 or a break point defined using the
PceEmacs command Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer/0, reverting to normal text console-based tracing.

gtrace
Utility defined as guitracer, trace.

gdebug
Utility defined as guitracer, debug.

gspy(+Predicate)
Utility defined as guitracer, spy (Predicate).

SWI-Prolog 8.4 Reference Manual

100 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.6 The Prolog Navigator

Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command
Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

3.7 Cross-referencer

A cross-referencer is a tool that examines the caller-callee relation between predicates, and, using this
information to explicate dependency relations between source files, finds calls to non-existing pred-
icates and predicates for which no callers can be found. Cross-referencing is useful during program
development, reorganisation, clean-up, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically using call/1 after
construction of a goal term. Abstract interpretation can find some of these calls, but they can also come
from external communication, making it impossible to predict the callee. In other words, the cross-
referencer has only partial understanding of the program, and its results are necessarily incomplete.
Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog_xref
is an extensible library for information gathering described in section A.38, and the XPCE library
pce_xref provides a graphical front-end for the cross-referencer described here. We demonstrate
the tool on CHAT®80, a natural language question and answer system by Fernando C.N. Pereira and
David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1) provides browsers for loaded files and predicates. To avoid
long file paths, the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias, and below it are the file-search-path aliases (see
file_search_path/2 and absolute_file_name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using the file search path. All
loaded files that fall outside these categories are below the last branch called /. Files where the
system found suspicious dependencies are marked with an exclamation mark. This also holds for
directories holding such files. Clicking on a file opens a File info window in the right pane.

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allow editing the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

SWI-Prolog 8.4 Reference Manual

3.7. CROSS-REFERENCER

101

4 Prolog XREF

File View

Files 1 Prsd\::ales] Dependenciesl F\Ieiniu]

E@&“‘m E chattop pl
FE pirc Modified: | Tue Dec 2 161031 2008
—a‘ aggreg.pl L Called by
Hg¢ border.pl display/1 check_word/2, control, failure/0
:% z:::;s.pl otherwise/0 show_results3
L m pp_quant’2 report_item/2

cities.pl time test/0
—I!] clotab.pl wersion/0 runtime_entry/1
¥ contai.pl Nol called
g ;3;“:; p: runtime_entry/1
newdic.ppl testo
LM newg.el Defined Used by
~a‘ ptree.pl hi/0 chat.pl (1}
Hg¢ aplan.pl test_chat/D plrc (1)
e ’_ead‘” pl quote ptree.pl (1)
8 o From Uss
7@ slots.pl newdic.pl word/1
@ talkr.pl newg.pl sentence/S
—a’ templa.pl ptree.pl print_tree
) worldopl gplan.pl qplan/2
_a xgrun.pl readin.pl read_in/1
= alias
c] library scopes.pl clausify/2
®) library slots.pl i_sentence/2
B] poe_boot talkr.pl answer/1, holds/2, seto3, write_tree
A swi I

®) user_preiile k4|

| Undefined predicate version/0

Figure 3.1: File info for chattop.pl, part of CHAT80

File View

Files 1 Prsd\::ales]

E—%{p{imam

—I!] plrc
& aggreg.pl
~a‘ border.pl
—E] chat.pl
—a‘ chatops.pl
—E] chattop.pl
~a‘ cities.pl
F® clotab.pl
—a‘ contai.pl
—a‘ countr.pl
& ndtabl pl
newdic.pl
—E] newg.pl
& piree.pl
& aplan.pl
—a‘ readin.pl
—a‘ rivers.pl
—@ scopes.pl
7E] slots.pl
F® takepl
—a‘ templa.pl
—@ world0.pl
~a‘ xgrun.pl
alias
) library
®1 library
#) pee_boot

[v]

=

Dependencies I File info]

readin.pl

chal.pl

piree.pl

qplan.pl

xgrun.pl

slols.pl

4 nas

Definition

ndial

"

cost’s

-

aggreq.pl

cifies.pl rid0.pl

countr.pl
rivers.pl

ntal.pl

border.pl

(#) user_profile

M|ET

[*]

Figure 3.2: Dependencies between source files of CHATS0

SWI-Prolog 8.4 Reference Manual

102 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the Header menu command, the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one,
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

Warn not called
If enabled (default), the file overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with its own interface.
In addition, some of these components require each other, and loading IDE components must be on
demand to avoid the IDE being part of a saved state (see gsave_program/2). For this reason,
access to the IDE is concentrated on a single interface called prolog_ide/1:

prolog_ide(+Action)
This predicate ensures the IDE-enabling XPCE component is loaded, creates the XPCE class
prolog_ide and sends Action to its one and only instance @prolog_ide. Action is one of the
following:

open_navigator(+Directory)
Open the Prolog Navigator (see section 3.0) in the given Directory.

open_debug_status
Open a window to edit spy and trace points.

open_query_window
Open a little window to run Prolog queries from a GUI component.

thread_monitor
Open a graphical window indicating existing threads and their status.

debug_monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

SWI-Prolog 8.4 Reference Manual

3.9. SUMMARY OF THE IDE 103

3.9

Summary of the IDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated

tools.

Here is a list of the most important features and tips.

* Atom completion

The console’ completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

Use edit /1 for finding locations
The command edit /1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the user’s preferred editor at the right location.

Select editor
External editors are selected using the EDITOR environment variable, by setting the Prolog flag
editor, or by defining the hook prolog_edit:edit_source/1.

Update Prolog after editing
Using make/ 0, all files you have edited are re-loaded.

PceEmacs
Offers syntax highlighting and checking based on real-time parsing of the editor’s buffer, layout
support and navigation support.

Using the graphical debugger

The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu
items from PceEmacs or the Prolog Navigator.

The Prolog Navigator
Shows the file structure and structure inside the file. It allows for loading files, editing, setting
Spy points, etc.

"On Windows this is realised by swipl-win.exe, on Unix through the GNU readline library, which is included automati-
cally when found by configure.

SWI-Prolog 8.4 Reference Manual

Built-in Predicates

4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First, the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a mode indicator.

4.1.1 The argument mode indicator

An argument mode indicator gives information about the intended direction in which information
carried by a predicate argument is supposed to flow. Mode indicators (and types) are not a formal
part of the Prolog language but help in explaining intended semantics to the programmer. There is
no complete agreement on argument mode indicators in the Prolog community. We use the following
definitions:'

!These definitions are taken from the PIDoc markup language description. PldDoc markup is used for source code
markup (as well as for the commenting tool). The current manual has only one mode declaration per predicate and therefore
predicates with mode (+,—) and (—,+) are described as (?,?). The @-mode is often replaced by
chr+.

SWI-Prolog 8.4 Reference Manual

4.1. NOTATION OF PREDICATE DESCRIPTIONS

105

++

At call time, the argument must be ground, i.e., the argument may not
contain any variables that are still unbound.

At call time, the argument must be instantiated to a term satisfying
some (informal) type specification. The argument need not necessar-
ily be ground. For example, the term [_] is a list, although its only
member is the anonymous variable, which is always unbound (and thus
nonground).

Argument is an output argument. It may or may not be bound at
call-time. If the argument is bound at call time, the goal behaves as
if the argument were unbound, and then unified with that term after
the goal succeeds. This is what is called being steadfast: instantia-
tion of output arguments at call-time does not change the semantics of
the predicate, although optimizations may be performed. For example,
the goal findall (X, Goal, [T]) is good style and equivalent to
findall (X, Goal, Xs), Xs = [T]? Note that any determin-
ism specification, e.g., det, only applies if the argument is unbound.
For the case where the argument is bound or involved in constraints,
det effectively becomes semidet, and multi effectively becomes
nondet.

At call time, the argument must be unbound. This is typically used by
predicates that create ‘something’ and return a handle to the created
object, such as open/ 3, which creates a stream.

At call time, the argument must be bound to a partial term (a
term which may or may not be ground) satisfying some (infor-
mal) type specification. Note that an unbound variable is a par-
tial term. Think of the argument as either providing input or ac-
cepting output or being used for both input and output. For ex-
ample, in stream property (S, reposition(Bool)), the
reposition part of the term provides input and the unbound-at-call-
time Bool variable accepts output.

Argument is a meta-argument, for example a term that can be called as
goal. The predicate is thus a meta-predicate. This flag implies +.
Argument will not be further instantiated than it is at call-time. Typi-
cally used for type tests.

Argument contains a mutable structure that may be modified using
setarg/3 ornb_setarg/3.

See also section 4.8 for examples of meta-predicates, and section 6.5 for mode flags to label
meta-predicate arguments in module export declarations.

4.1.2 Predicate indicators

Referring to a predicate in running text is done using a predicate indicator. The canonical and most
generic form of a predicate indicator is a term [(module) :] (name) / (arity). The module is generally
omitted if it is irrelevant (case of a built-in predicate) or if it can be inferred from context.

SWI-Prolog 8.4 Reference Manual

106 CHAPTER 4. BUILT-IN PREDICATES

Non-terminal indicators

Compliant to the ISO standard draft on Definite Clause Grammars (see section 4.13), SWI-Prolog also
allows for the non-terminal indicator to refer to a DCG grammar rule. The non-terminal indicator is
written as [(module)] : (name)/ /{arity).

A non-terminal indicator (name)/ /{arity) is understood to be equivalent to (name)/{arity)+2,
regardless of whether or not the referenced predicate is defined or can be used as a grammar rule.’
The //-notation can be used in all places that traditionally allow for a predicate indicator, e.g., the
module declaration, spy/1, and dynamic/1.

4.1.3 Predicate behaviour and determinism

To describe the general behaviour of a predicate, the following vocabulary is employed. In source
code, structured comments contain the corresponding keywords:

det A deterministic predicate always succeeds exactly once and does not
leave a choicepoint.

semidet A semi-deterministic predicate succeeds at most once. If it succeeds it
does not leave a choicepoint.

nondet A non-deterministic predicate is the most general case and no claims

are made on the number of solutions (which may be zero, i.e., the pred-
icate may fail) and whether or not the predicate leaves an choicepoint
on the last solution.

multi As nondet, but succeeds at least once.

undefined Well founded semantics third value. See undefined/O0.

4.2 Character representation

In traditional (Edinburgh) Prolog, characters are represented using character codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bit US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many Western languages.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

* code
A character code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text file is in general not the same as reading a byte.

* char
Alternatively, characters may be represented as one-character atoms. This is a natural repre-
sentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

3This, however, makes a specific assumption about the implementation of DCG rules, namely that DCG rules are pre-
processed into standard Prolog rules taking two additional arguments, the input list and the output list, in accumulator style.
This need not be true in all implementations.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 107

* byte
Bytes are used for accessing binary streams.

In SWI-Prolog, character codes are always the Unicode equivalent of the encoding. That is,
if get_code/1 reads from a stream encoded as KOI8-R (used for the Cyrillic alphabet), it re-
turns the corresponding Unicode code points. Similarly, assembling or disassembling atoms using
atom_codes/2 interprets the codes as Unicode points. See section 2.19.1 for details.

To ease the pain of the two character representations (code and char), SWI-Prolog’s built-in predi-
cates dealing with character data work as flexible as possible: they accept data in any of these formats
as long as the interpretation is unambiguous. In addition, for output arguments that are instantiated,
the character is extracted before unification. This implies that the following two calls are identical,
both testing whether the next input character is an a.

‘peek_code (Stream, a). ‘
‘peek_code (Stream, 97). ‘

The two character representations are handled by a large number of built-in predicates,
all of which are ISO-compatible. = For converting between code and character there is
char_code/2. For breaking atoms and numbers into characters there are atom_chars/2,
atom_codes/2, number_chars/2 and number_codes/2. For character I/O on streams
there are get_char/[1,2], get_code/[1,2], get byte/[1,2], peek_char/[1, 2],
peek_code/[1,2], peekbyte/[1,2], put_code/[1,2], put_char/[1,2] and
put byte/[1,2]. The Prolog flag double_quotes controls how text between double quotes is
interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains Prolog clauses and directives, but no module declara-
tion (see module/1). They are normally loaded using consult /1 or ensure_loaded/1.
Currently, a non-module file can only be loaded into a single module.*

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module, and only the exported predicates are made available to the context
loading the module. Module files are normally loaded with use module/ [1, 2]. See chap-
ter 6 for details.

An include Prolog source file is loaded using the include/1 directive, textually including Prolog
text into another Prolog source. A file may be included into multiple source files and is typically
used to share declarations such as multifile or dynamic between source files.

Prolog source files are located using absolute_file_name/3 with the following options:

“This limitation may be lifted in the future. Existing limitations in SWI-Prolog’s source code administration make this
non-trivial.

SWI-Prolog 8.4 Reference Manual

108 CHAPTER 4. BUILT-IN PREDICATES

locate_prolog_file(Spec, Path) :-
absolute_file_name (Spec,
[file_type (prolog),
access (read)

1,
Path) .

The file_type(prolog) option is used to determine the extension of the file using
prolog_file_type/2. The default extension is .pl. Spec allows for the path alias construct de-
fined by absolute_file_name/3. The most commonly used path alias is 1 ibrary(LibraryFile).
The example below loads the library file ordsets.pl (containing predicates for manipulating or-
dered sets).

:— use_module (library (ordsets)) .

SWI-Prolog recognises grammar rules (DCG) as defined in []. The user
may define additional compilation of the source file by defining the dynamic multifile predicates
term_expansion/2,term_expansion/4,goal_expansion/2 and goal_expansion/4.
It is not allowed to use assert/1l, retract/l or any other database predicate in
term_expansion/2 other than for local computational purposes.” Code that needs to create ad-
ditional clauses must use compile_aux_clauses/1. See library (apply.-macros) for an
example.

A directive is an instruction to the compiler. Directives are used to set (predicate) properties (see
section 4.15), set flags (see set _prolog_flag/2) and load files (this section). Directives are terms
of the form : - (term).. Here are some examples:

:— use_module (library(lists)) .
:— dynamic

[}

store/2. % Name, Value

The directive initialization/1 can be used to run arbitrary Prolog goals. The specified goal is
started after loading the file in which it appears has completed.

SWI-Prolog compiles code as it is read from the file, and directives are executed as goals. This
implies that directives may call any predicate that has been defined before the point where the directive
appears. It also accepts ?— (ferm). as a synonym.

SWI-Prolog does not have a separate reconsult /1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

Advanced topics are handled in subsequent sections: mutually dependent files (section 4.3.2),
multithreaded loading (section 4.3.2) and reloading running code (section 4.3.2).

The core of the family of loading predicates is 1oad_files/2. The predicates consult/1,
ensure_loaded/1l,usemodule/1,usemodule/2 and reexport /1 pass the file argument
directly to 1oad_files/2 and pass additional options as expressed in the table 4.1:

3Tt does work for normal loading, but not for gcompile/1.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 109

Predicate if must_be_module import
consult/1 true false all
ensure_loaded/1 not_loaded false all
use_module/1 not_loaded true all
use_module/2 not_loaded true specified
reexport/1 not_loaded true all
reexport/2 not_loaded true specified

Table 4.1: Properties of the file-loading predicates. The import column specifies what is imported if
the loaded file is a module file.

load _files(: Files)
Equivalent to 1oad_files(Files, []). Same as consult/1, See load_-files/2 for sup-
ported options.

load files(. Files, +Options)
The predicate 1load_files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load_files/2. Files
is either a single source file or a list of source files. The specification for a source file is handed
to absolute_file_name/2. See this predicate for the supported expansions. Options is a
list of options using the format OptionName(OptionValue).

The following options are currently supported:

autoload(Bool)
If true (default false), indicate that this load is a demand load. This implies that,
depending on the setting of the Prolog flag verbose_autoload, the load action is
printed at level informational or silent. See also print message/2 and
current_prolog_flag/2.

check_script(Bool)
If false (default true), do not check the first character to be # and skip the first line
when found.

derived_from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and
load the original file rather than the derived file.

dialect(+Dialect)
Load Files with enhanced compatibility with the target Prolog system identified by Di-
alect. See expects_dialect/1 and section C for details.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the Prolog flag
encoding. See section 2.19.1 for details.

expand(Bool)
If t rue, run the filenames through expand_file_name/2 and load the returned files.
Default is false, except for consult /1 which is intended for interactive use. Flexible
location of files is defined by file_search_path/2.

SWI-Prolog 8.4 Reference Manual

110 CHAPTER 4. BUILT-IN PREDICATES

format(+Format)
Used to specify the file format if data is loaded from a stream using the st ream(Stream)
option. Default is source, loading Prolog source text. If glf, load QLF data (see
gcompile/1).

if(Condition)
Load the file only if the specified condition is satisfied. The value t rue loads the file
unconditionally, changed loads the file if it was not loaded before or has been modified
since it was loaded the last time, and not_loaded loads the file if it was not loaded
before.

imports(/mport)

Specify what to import from the loaded module. The default for use module/1 is
all. Import is passed from the second argument of use_module/2. Traditionally it is
a list of predicate indicators to import. As part of the SWI-Prolog/YAP integration, we
also support Pred as Name to import a predicate under another name. Finally, Import
can be the term except(Exceptions), where Exceptions is a list of predicate indicators
that specify predicates that are not imported or Pred as Name terms to denote renamed
predicates. See also reexport /2 and use_module/2.°

If Import equals all, all operators are imported as well. Otherwise, operators are not
imported. Operators can be imported selectively by adding terms op(Pri,Assoc, Name) to
the Import list. If such a term is encountered, all exported operators that unify with this
term are imported. Typically, this construct will be used with all arguments unbound to
import all operators or with only Name bound to import a particular operator.

modified(7imeStamp)
Claim that the source was loaded at TimeStamp without checking the source. This option
is intended to be used together with the stream(/npuf) option, for example after
extracting the time from an HTTP server or database.

module(+Module)
Load the indicated file into the given module, overruling the module name specified in
the : - module (Name, ...) directive. This currently serves two purposes: (1) allow

loading two module files that specify the same module into the same process and force
and (2): force loading source code in a specific module, even if the code provides its own
module name. Experimental.
must_be_module(Bool)
If t rue, raise an error if the file is not a module file. Used by use_module/[1,2].
qcompile(Arom)
How to deal with quick-load-file compilation by gcompile/1. Values are:
never
Default. Do not use qcompile unless called explicitly.
auto
Use gqcompile for all writeable files. See comment below.
large
Use qcompile if the file is ‘large’. Currently, files larger than 100 Kbytes are consid-
ered large.

®BUG: NamelArity as NewName is currently implemented using a link clause. This harms efficiency and does not allow
for querying the relation through predicate_property/2.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 111

part
If load_files/2 appears in a directive of a file that is compiled into Quick Load
Format using gcompile/1, the contents of the argument files are included in the
.qlf file instead of the loading directive.

If this option is not present, it uses the value of the Prolog flag gcompi le as default.

optimise(+Boolean)
Explicitly set the optimization for compiling this module. See optimise.

redefine_module(+Action)
Defines what to do if a file is loaded that provides a module that is already loaded from
another file. Action is one of false (default), which prints an error and refuses to load
the file, or t rue, which uses unload_file/1 on the old file and then proceeds loading
the new file. Finally, there is ask, which starts interaction with the user. ask is only
provided if the stream user_input is associated with a terminal.

reexport(Bool)
If t rue re-export the imported predicate. Used by reexport/1 and reexport /2.
register(Bool)
If false, do not register the load location and options. This option is used by
make/0 and load hotfixes/1 to avoid polluting the load-context database. See
source_file_property/2.

sandboxed(Bool)
Load the file in sandboxed mode. This option controls the flag sandboxed_load. The
only meaningful value for Bool is true. Using false while the Prolog flag is set to
true raises a permission error.

scope_settings(Bool)
Scope style_check/1 and expects_dialect/1 to the file and files loaded from
the file after the directive. Default is t rue. The system and user initialization files (see
—f and -F) are loading with scope_settings(false).

silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the Prolog flag
verbose_load with the negation of Bool.

stream(/nput)
This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source location of the
loaded clauses as well as to remove all clauses if the data is reconsulted.
This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult /1) or other servers. It can be combined with format(gqlf)
to load QLF data from a stream.

The load_files/2 predicate can be hooked to load other data or data from objects other than
files. See prolog_-load_file/2 for a description and http/http_-load for an example.
All hooks for 1oad_files/2 are documented in section B.9.

consult(:File)
Read File as a Prolog source file. Calls to consult/1 may be abbreviated by just typing a
number of filenames in a list. Examples:

SWI-Prolog 8.4 Reference Manual

112 CHAPTER 4. BUILT-IN PREDICATES

?— consult (load) . % consult 1oad or load.pl
?- [library(lists)]. % load library lists
?- [user]. % Type program on the terminal

The predicate consult /1 isequivalentto load_files (File, []),exceptfor handling
the special file user, which reads clauses from the terminal. See also the stream(Input)
option of 1load_files/2. Abbreviation using ?— [filel,file2] . does not work for
the empty list ([]). This facility is implemented by defining the list as a predicate. Applications
may only rely on using the list abbreviation at the Prolog toplevel and in directives.

ensure_loaded(:File)
If the file is not already loaded, this is equivalent to consult /1. Otherwise, if the file defines
a module, import all public predicates. Finally, if the file is already loaded, is not a module
file, and the context module is not the global user module, ensure_loaded/1 will call
consult/1.

With this semantics, we hope to get as close as possible to the clear semantics with-
out the presence of a module system. Applications using modules should consider using
use_module/[1,2].

Equivalentto 1oad_files (Files, [if (not_loaded)]) 7

include(+File) [150]
Textually include the content of File at the position where the directive
:— include (File) . appears. The include construct is only honoured if it appears
as a directive in a source file. Textual include (similar to C/C++ #include) is obviously useful
for sharing declarations such as dynamic/1 or multifile/1 by including a file with
directives from multiple files that use these predicates.

Textually including files that contain clauses is less obvious. Normally, in SWI-Prolog, clauses
are owned by the file in which they are defined. This information is used to replace the old
definition after the file has been modified and is reloaded by, e.g., make /0. As we understand
it, include/1 is intended to include the same file multiple times. Including a file holding
clauses multiple times into the same module is rather meaningless as it just duplicates the same
clauses. Including a file holding clauses in multiple modules does not suffer from this problem,
but leads to multiple equivalent copies of predicates. Using use_module/1 can achieve the
same result while sharing the predicates.

If include/1 is used to load files holding clauses, and if these files are loaded only once,
then these include/ 1 directives can be replaced by other predicates (such as consult/1).
However, there are several cases where either include/1 has no alternative, or using any
alternative also requires other changes. An example of the former is using include/1 to
share directives. An example of the latter are cases where clauses of different predicates
are distributed over multiple files: If these files are loaded with include/1, the directive
discontiguous/1 is appropriate, whereas if they are consulted, one must use the directive
multifile/1.

To accommodate included files holding clauses, SWI-Prolog distinguishes between the source
location of a clause (in this case the included file) and the owner of a clause (the file that includes

"On older versions the condition used to be if (changed). Poor time management on some machines or copying
often caused problems. The make /0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 113

the file holding the clause). The source location is used by, e.g., edit /1, the graphical tracer,
etc., while the owner is used to determine which clauses are removed if the file is modified.
Relevant information is found with the following predicates:

* source_file/2 describes the owner relation.
* predicate_property/2 describes the source location (of the first clause).
* clause_property/2 provides access to both source and ownership.

* source_file property/2 can be used to query include relationships between files.

require(+Predicates)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. Predicates is either a list of predicate indicators or a comma-list
of predicate indicators. First, all built-in predicates are removed from the set. The remaining
predicates are searched using the library index used for autoloading and mapped to a set of
autoload/2 directives. This implies that the targets will be loaded lazily if autoloading is
not completely disabled and loaded using use_module/2 otherwise. See autoload.

The require/1 directive provides less control over the exact nature and location of the pred-
icate. As autoload/2, it prevents a local definition of this predicate. As SWI-Prolog guaran-
tees that the set of built-in predicates and predicates available for autoloading is unambiguous
(i.e., has no duplicates) the specification is unambiguous. It provides four advantages over
autoload/2: (1) the user does not have to remember the exact library, (2) the directive can
be supported in other Prolog systems®, providing compatibility despite differences in library
and built-in predicate organization, (3) it is robust against changes to the SWI-Prolog libraries
and (4) it is less typing.

encoding(+Encoding)
This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.19.1.

make

Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using p1 -c ... and files loaded using
consult/1 or one of its derivatives. The predicate make/0 is called after edit /1,
automatically reloading all modified files. If the user uses an external editor (in a separate
window), make /0 is normally used to update the program after editing. In addition, make /0
updates the autoload indices (see section 2.14) and runs list_undefined/0 from the
check library to report on undefined predicates.

library_directory(?Atom)
Dynamic predicate used to specify library directories. Defaults to app_config(lib) (see
file_search_path/2) and the system’s library (in this order) are defined. The user may
add library directories using assertz/1, asserta/1 or remove system defaults using
retract/1. Deprecated. New code should use file _search path/2.

8SICStus provides it

SWI-Prolog 8.4 Reference Manual

CHAPTER 4. BUILT-IN PREDICATES

file_search_path(+Alias, -Path)

Dynamic multifile hook predicate used to specify ‘path aliases’. This hook is called by
absolute_file_name/3 to search files specified as A1ias(Name), e.g., 1ibrary(lists).
This feature is best described using an example. Given the definition:

file_search_path(demo, ’/usr/lib/prolog/demo’) .

the file specification demo (myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file_search_path/2 may be another alias.

Below is the initial definition of the file search path. This path implies swi ((Path)) and refers
to a file in the SWI-Prolog home directory. The alias foreign ((Path)) is intended for storing
shared libraries (. so or .DLL files). See also use_foreign_library/1.

user:file_search_path(library, X) :-
library_directory (X) .
user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).
user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat (" 1ib/’, Arch, ArchLib).
user:file_search_path(foreign, swi(lib)).
user:file_search_path(path, Dir) :-
getenv (' PATH’, Path),
(current_prolog_flag(windows, true)
-> atomic_1list_concat (Dirs, (;), Path)
; atomic_list_concat (Dirs, :, Path)
)
member (Dir, Dirs).
user:file_search_path (user_app_data, Dir) :-
"$xdg_prolog_directory’ (data, Dir).
user:file_search_path (common_app_data, Dir) :-
"$xdg_prolog_directory’ (common_data, Dir).
user:file_search_path (user_app_config, Dir) :-
"$xdg_prolog_directory’ (config, Dir).
user:file_search_path (common_app_config, Dir) :-
"$xdg_prolog_directory’ (common_config, Dir).
user:file_search_path (app_data, user_app_data(’.’)).
user:file_search_path (app_data, common_app_data(’.’)).
user:file_search_path (app_config, user_app_config(’.”)).
user:file_search_path (app_config, common_app_config(’.’)).

The ’$xdgprolog.directory’/2 wuses either the XDG Base Directory or
win_folder/2 on Windows. On Windows, user config is mapped to roaming appdata
(CSIDL_APPDATA), user data to the non-roaming (CSIDL_LOCAL_APPDATA) and common
data to (CSIDL_.COMMON_APPDATA).

SWI-Prolog 8.4 Reference Manual

https://wiki.archlinux.org/index.php/XDG_Base_Directory

4.3. LOADING PROLOG SOURCE FILES 115

The file_search_path/2 expansion is used by all loading predicates as well as by
absolute_file_name/[2, 3].

The Prolog flag verbose_file_search can be set to true to help debugging Prolog’s
search for files.

expand file_search_path(+Spec, -Path) [nondet]
Unifies Path with all possible expansions of the filename specification Spec. See also
absolute_file_name/3.

prolog_file_type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file_search_path/2. Extension is the filename extension without the leading dot, and
Type denotes the type as used by the £ile _type(Type) option of file search path/2.
Here is the initial definition of prolog_file_type/2:

user:prolog_file_type (pl, prolog) .
user:prolog_file_type (Ext, prolog) :-
current_prolog_flag(associate, Ext),
Ext \== pl.
user:prolog_file_type(qlf, qglf).
user:prolog_file_type (Ext, executable) :-
current_prolog_flag(shared_object_extension, Ext).

Users can add extensions for Prolog source files to avoid conflicts (for example with perl)
as well as to be compatible with another Prolog implementation. We suggest using .pro for
avoiding conflicts with perl. Overriding the system definitions can stop the system from
finding libraries.

source_file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source
file.

source_file(:Pred, ?File)
True if the predicate specified by Pred is owned by file File, where File is an absolute path name
(see absolute_file_name/2). Can be used with any instantiation pattern, but the database
only maintains the source file for each predicate. If Pred is a multifile predicate this predicate
succeeds for all files that contribute clauses to Pred.’ See also clause_property/2. Note
that the relation between files and predicates is more complicated if include/1 is used. The
predicate describes the owner of the predicate. See include/1 for details.

source _file_property(’File, ?Property)
True when Property is a property of the loaded file File. If File is non-var, it can be a file
specification that is valid for load_files/2. Defined properties are:

derived _from(Original, OriginalModified)
File was generated from the file Original, which was last modified at time OriginalMod-
ified at the time it was loaded. This property is available if File was loaded using the
derived_from(Original) option to load_files/2.

The current implementation performs a linear scan through all clauses to establish this set of files.

SWI-Prolog 8.4 Reference Manual

116 CHAPTER 4. BUILT-IN PREDICATES

includes(/ncludedFile, IncludedFileModified)
File used include/1 to include IncludedFile. The last modified time of IncludedFile
was IncludedFileModified at the time it was included.

included_in(MasterFile, Line)
File was included into MasterFile from line Line. This is the inverse of the includes
property.

load_context(Module, Location, Options)
Module is the module into which the file was loaded. If File is a module, this is the
module into which the exports are imported. Otherwise it is the module into which the
clauses of the non-module file are loaded. Location describes the file location from
which the file was loaded. It is either a term (file):(line) or the atom user if the file was
loaded from the terminal or another unknown source. Options are the options passed to
load_files/2. Note that all predicates to load files are mapped to load_-files/2,
using the option argument to specify the exact behaviour.

load_count(-Count)
Count is the number of times the file have been loaded, i.e., 1 (one) if the file has been
loaded once.

modified(Stamp)
File modification time when File was loaded. This is used by make /0 to find files whose
modification time is different from when it was loaded.

source(Source)
One of £ile if the source was loaded from a file, resource if the source was loaded
from a resource or state if the file was included in the saved state.

module(Module)
File is a module file that declares the module Module.

number_of_clauses(Count)
Count is the number of clauses associated with File. Note that clauses loaded from in-
cluded files are counted as part of the main file.

reloading
Present if the file is currently being reloaded.

exists_source(+Source) [semidet]
True if Source (a term valid for 1oad_files/2) exists. Fails without error if this is not the
case. The predicate is intended to be used with conditional compilation (see section 4.3.1 For
example:

- if (exists_source(library(error))) .

E |
‘ — use_module_library (error) . ‘
‘ - endif. ‘

The implementation uses absolute_file name/3 using £ile_type(prolog).

exists_source(+Source, -File) [semidet]
As exists_source/1, binding File to an atom describing the full absolute path to the
source file.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 117

unload _file(+File)
Remove all clauses loaded from File. If File loaded a module, clear the module’s export list
and disassociate it from the file. File is a canonical filename or a file indicator that is valid for
load_files/2.

This predicate should be used with care. The multithreaded nature of SWI-Prolog makes re-
moving static code unsafe. Attempts to do this should be reserved for development or situations
where the application can guarantee that none of the clauses associated to File are active.

prolog_load_context(?Key, ?Value)
Obtain context information during compilation. This predicate can be used from directives
appearing in a source file to get information about the file being loaded as well as by the
term_expansion/2 and goal_expansion/2 hooks. See also source_location/2
and 1 £/1. The following keys are defined:

Key Description

directory Directory in which source lives

dialect Compatibility mode. See expects_dialect/1.

file Similar to source, but returns the file being included when called while
an include file is being processed

module Module into which file is loaded

reload true if the file is being reloaded. Not present on first load

script Boolean that indicates whether the file is loaded as a script file (see —s)

source File being loaded. If the system is processing an included file, the value
is the main file. Returns the original Prolog file when loading a .g1f
file.

stream Stream identifier (see current_input/1)

term_position Start position of last term read. See also stream property/2
(position property and st ream_position._data/3.'"

term Term being expanded by expand_term/2.

variable_names | A list of ‘Name = Var’ of the last term read. See read_term/2 for
details.

The directory is commonly used to add rules to file_search_path/2, setting up a
search path for finding files with absolute_file_name/3. For example:

:— dynamic user:file_search_path/2.
:— multifile user:file_search_path/2.

:— prolog_load_context (directory, Dir),

asserta(user:file_search_path (my_program_home, Dir)).

absolute_file_name (my_program_home (' README.TXT’), ReadMe,
[access(read) 1),

SWI-Prolog 8.4 Reference Manual

118 CHAPTER 4. BUILT-IN PREDICATES

source_location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the file user or a string), unify
File with an absolute path to the file and Line with the line number in the file. New code should
use prolog_load_context/2.

at_halt(:Goal)
Register Goal to be run from PL_cleanup (), which is called when the system halts. The
hooks are run in the reverse order they were registered (FIFO). Success or failure executing
a hook is ignored. If the hook raises an exception this is printed using print message/2.
An attempt to call halt/ [0, 1] from a hook is ignored. Hooks may call cancel_halt/1,
causing halt/0 and PL_halt (0) to print a message indicating that halting the system has
been cancelled.

cancel_halt(+Reason)
If this predicate is called from a hook registered with at _halt /1, halting Prolog is cancelled
and an informational message is printed that includes Reason. This is used by the development
tools to cancel halting the system if the editor has unsaved data and the user decides to cancel.

:- initialization(:Goal) [150]
Call Goal after loading the source file in which this directive appears has been completed. In
addition, Goal is executed if a saved state created using gsave_program/1 is restored.

The ISO standard only allows for using :— Term if Term is a directive. This means that
arbitrary goals can only be called from a directive by means of the initialization/1
directive. SWI-Prolog does not enforce this rule.

The initialization/1 directive must be used to do program initialization in saved states
(see gsave_program/1). A saved state contains the predicates, Prolog flags and operators
present at the moment the state was created. Other resources (records, foreign resources, etc.)
must be recreated using initialization/1 directives or from the entry goal of the saved
state.

Up to SWI-Prolog 5.7.11, Goal was executed immediately rather than after load-
ing the program text in which the directive appears as dictated by the ISO stan-
dard. In many cases the exact moment of execution is irrelevant, but there are
exceptions. For example, load_foreign_library/1 must be executed immedi-
ately to make the loaded foreign predicates available for exporting. SWI-Prolog
now provides the directive use_foreign_library/1 to ensure immediate loading as
well as loading after restoring a saved state. If the system encounters a directive
:— initialization(load-foreign_library(...)), it will load the foreign li-
brary immediately and issue a warning to update your code. This behaviour can be extended
by providing clauses for the multifile hook predicate prolog:initialize_now(Term, Ad-
vice), where Advice is an atom that gives advice on how to resolve the compatibility issue.

initialization(:Goal, + When)
Similar to initialization/1, but allows for specifying when Goal is executed while
loading the program text:

now
Execute Goal immediately.

SWI-Prolog 8.4 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 119

after_load
Execute Goal after loading the program text in which the directive appears. This is the
same as initialization/1.

prepare_state
Execute Goal as part of gsave program/2. This hook can be used for example to
eagerly execute initialization that is normally done lazily on first usage.

restore_state
Do not execute Goal while loading the program, but only when restoring a saved state.'!

program
Execute Goal once after executing the —g goals at program startup. Registered goals
are executed in the order encountered and a failure or exception causes the Prolog to
exit with non-zero exit status. These goals are not executed if the —1 is given to merely
load files. In that case they may be executed explicitly using initialize/0. See also
section 2.11.2.

main

When Prolog starts, the last goal registered using initialization(Goal, main) is
executed as main goal. If Goal fails or raises an exception, the process terminates with
non-zero exit code. If not explicitly specified using the —t the foplevel goal is set to
halt /0, causing the process to exit with status 0. An explicitly specified toplevel is exe-
cuted normally. This implies that -t prolog causes the application to start the normal
interactive toplevel after completing Goal. See also the Prolog flag toplevel _goal
and section 2.11.2.

initialize [det]
Run all initialization goals registered using initialization(Goal, program). Raises an er-
ror initialization_error(Reason, Goal, File:Line) if Goal fails or raises an exception.
Reason is failed or the exception raised.

compiling
True if the system is compiling source files with the —c option or gcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term_expansion/2 (see also the —O option) or to omit execution of directives during
compilation.

4.3.1 Conditional compilation and program transformation

ISO Prolog defines no way for program transformations such as macro expansion or conditional com-
pilation. Expansion through term_expansion/2 and expand_term/2 can be seen as part of the
de-facto standard. This mechanism can do arbitrary translation between valid Prolog terms read from
the source file to Prolog terms handed to the compiler. As term_expansion/2 can return a list,
the transformation does not need to be term-to-term.

Various Prolog dialects provide the analogou