
Wine Developer’s Guide

Wine Developer’s Guide

Table of Contents
I. Developing Wine..vi

1. Debugging Wine...1
1.1. Introduction...1
1.2. WineDbg’s modes of invocation..2
1.3. Using the Wine Debugger...4
1.4. Useful memory addresses..12
1.5. Configuration...13
1.6. WineDbg Expressions and Variables...15
1.7. WineDbg Command Reference...16
1.8. Other debuggers...22

2. Debug Logging...26
2.1. Debugging classes...26
2.2. Debugging channels..27
2.3. Are we debugging?..28
2.4. Helper functions..28
2.5. Controlling the debugging output..29
2.6. Compiling Out Debugging Messages..30
2.7. A Few Notes on Style..31

3. Other debugging techniques...33
3.1. Doing A Hardware Trace...33
3.2. Understanding undocumented APIs..36
3.3. How to do regression testing using CVS...38
3.4. Which code has been tested?...40

4. Coding Practice..44
4.1. Patch Format..44
4.2. Some notes about style..44
4.3. Quality Assurance...46
4.4. Porting Wine to new Platforms..46
4.5. Adding New Languages..49

5. Writing Conformance tests..50
5.1. Introduction...50
5.2. What to test for?..51
5.3. Running the tests in Wine..51
5.4. Cross-compiling the tests with MinGW..52
5.5. Building and running the tests on Windows..53
5.6. Inside a test..55
5.7. Writing good error messages...56
5.8. Handling platform issues...58

6. Documenting Wine..60
6.1. An Overview Of Wine Documentation...60
6.2. Writing Wine API Documentation..61
6.3. The Wine DocBook System..68

iii

II. Wine Architecture ...80

7. Overview..81
7.1. Wine Overview..81
7.2. Standard Windows Architectures..83
7.3. Wine architecture...84

8. Kernel modules..93
8.1. The Wine initialization process...93
8.2. Detailed memory management..95
8.3. Multi-processing in Wine..97
8.4. Multi-threading in Wine..99
8.5. Structured Exception Handling...103
8.6. File management...105
8.7.NTDLLmodule...116
8.8.KERNEL32Module..116

9. Graphical modules...124
9.1. GDI Module...124

10. Windowing system...125
10.1. USER Module...125
10.2. X Windows System interface..131

11. COM in Wine...134
11.1. Writing COM Components for Wine..134
11.2. A brief introduction to DCOM in Wine..139

12. Wine and OpenGL...151
12.1. What is needed to have OpenGL support in Wine..151
12.2. How it all works..152
12.3. Known problems..153

13. Outline of DirectDraw Architecture...155
13.1. DirectDraw inheritance tree...155
13.2. DirectDrawSurface inheritance tree..155
13.3. Interface Thunks..156
13.4. Logical Object Layout...156
13.5. Creating Objects..157

14. Wine and Multimedia...158
14.1. Overview...158
14.2. Multimedia architecture...158
14.3. Low level layers...161
14.4. Mid level drivers (MCI)...163
14.5. High level layers..163
14.6. MS ACM Dlls..164
14.7. MS Video Dlls...165
14.8. Multimedia configuration..166

iv

List of Tables
1-1. WineDbg’s misc. commands..16
1-2. WineDbg’s flow control commands...16
1-3. WineDbg’s break & watch points...17
1-4. WineDbg’s stack manipulation...18
1-5. WineDbg’s directory & source file manipulation...18
1-6. WineDbg’s list command examples...19
1-7. WineDbg’s displays..19
1-8. WineDbg’s dissassembly..20
1-9. WineDbg’s memory management..20
1-10. WineDbg’s Win32 objects management..21
1-11. WineDbg’s debug channels’ management...21
1-12. WineDbg’s debug channels’ management...22
1-13. Debuggers comparison...25
7-1. Wine executables..82
7-2. Memory layout (Windows and Wine)..92
8-1. DOS, Win32 and NT paths equivalences...108
8-2. File systems’ properties..109
8-3. Mapping of Windows device names into Unix device names..115
8-4. Function consoles implementation comparison...117
8-5. Console registry settings..119
14-1. Wine multimedia drivers’ functionalities...162
14-2. Wine MCI drivers...163
14-3. Wine ACM drivers..165
14-4. Wine VIDC drivers...166
14-5. Wine multimedia configuration scheme...167

v

I. Developing Wine

Chapter 1. Debugging Wine

1.1. Introduction

1.1.1. Processes and threads: in underlying OS and in
Windows

Before going into the depths of debugging in Wine, here’s a small overview of process and thread
handling in Wine. It has to be clear that there are two different beasts: processes/threads from the Unix
point of view and processes/threads from a Windows point of view.

Each Windows’ thread is implemented as a Unix thread, meaning that all threads of a same Windows’
process share the same (unix) address space.

In the following:

• W-process means a process in Windows’ terminology

• U-process means a process in Unix’ terminology

• W-thread means a thread in Windows’ terminology

A W-process is made of one or severalW-threads . EachW-thread is mapped to one and only one
U-process . All U-processes of a sameW-process share the same address space.

Each Unix process can be identified by two values:

• the Unix process id (upid in the following)

• the Windows’s thread id (tid)

Each Windows’ process has also a Windows’ process id (wpid in the following). It must be clear that
upid andwpid are different and shall not be used instead of the other.

Wpid andtid are defined (Windows) system wide. They must not be confused with process or thread
handles which, as any handle, is an indirection to a system object (in this case process or thread). A same
process can have several different handles on the same kernel object. The handles can be defined as local
(the values is only valid in a process), or system wide (the same handle can be used by anyW-process).

1

Chapter 1. Debugging Wine

1.1.2. Wine, debugging and WineDbg

When talking of debugging in Wine, there are at least two levels to think of:

• the Windows’ debugging API.

• the Wine integrated debugger, dubbedwinedbg.

Wine implements most of the Windows’ debugging API. The first part of the debugging APIs (in
KERNEL32.DLL) allows a W-process, called the debugger, to control the execution of another W-process,
the debuggee. To control means stopping/resuming execution, enabling/disabling single stepping, setting
breakpoints, reading/writing debuggee memory... Another part of the debugging APIs resides in
DBGHELP.DLL(and its ancestorIMAGEHLP.DLL) and lets a debugger look into symbols and types from
any module (if the module has been compiled with the proper options).

winedbg is a Winelib application making use of these APIs (KERNEL32.DLL’s debugging API and
DBGHELP.DLL) to allow debugging both any Wine or Winelib applications as well as Wine itself (kernel
and all DLLs).

1.2. WineDbg’s modes of invocation

1.2.1. Starting a process

Any application (either a Windows’ native executable, or a Winelib application) can be run through
winedbg. Command line options and tricks are the same as for wine:

winedbg telnet.exe
winedbg hl.exe -windowed

1.2.2. Attaching

winedbgcan also be launched without any command line argument:winedbg is started without any
attached process. You can get a list of runningW-processes (and theirwpid ’s) using theinfo process
command, and then, with theattach command, pick up thewpid of theW-process you want to debug.
This is a neat feature as it allows you to debug an already started application.

2

Chapter 1. Debugging Wine

1.2.3. On exceptions

When something goes wrong, Windows tracks this as an exception. Exceptions exist for segmentation
violation, stack overflow, division by zero, etc.

When an exception occurs, Wine checks if theW-process is debugged. If so, the exception event is sent
to the debugger, which takes care of it: end of the story. This mechanism is part of the standard
Windows’ debugging API.

If the W-process is not debugged, Wine tries to launch a debugger. This debugger (normallywinedbg,
see III Configuration for more details), at startup, attaches to theW-process which generated the
exception event. In this case, you are able to look at the causes of the exception, and either fix the causes
(and continue further the execution) or dig deeper to understand what went wrong.

If winedbg is the standard debugger, thepassandcont commands are the two ways to let the process go
further for the handling of the exception event.

To be more precise on the way Wine (and Windows) generates exception events, when a fault occurs
(segmentation violation, stack overflow...), the event is first sent to the debugger (this is known as a first
chance exception). The debugger can give two answers:

continue

the debugger had the ability to correct what’s generated the exception, and is now able to continue
process execution.

pass

the debugger couldn’t correct the cause of the first chance exception. Wine will now try to walk the
list of exception handlers to see if one of them can handle the exception. If no exception handler is
found, the exception is sent once again to the debugger to indicate the failure of the exception
handling.

Note: since some of Wine’s code uses exceptions and try/catch blocks to provide some
functionality, winedbg can be entered in such cases with segv exceptions. This happens, for
example, with IsBadReadPtr function. In that case, the pass command shall be used, to let the
handling of the exception to be done by the catch block in IsBadReadPtr .

1.2.4. Interrupting

You can stop the debugger while it’s running by hitting Ctrl-C in its window. This will stop the debugged
process, and let you manipulate the current context.

3

Chapter 1. Debugging Wine

1.2.5. Quitting

Wine supports the new XP APIs, allowing for a debugger to detach from a program being debugged (see
detachcommand).

1.3. Using the Wine Debugger

This section describes where to start debugging Wine. If at any point you get stuck and want to ask for
help, please read theHow to Report A Bugsection of theWine Users Guidefor information on how to
write useful bug reports.

1.3.1. Crashes

These usually show up like this:

|Unexpected Windows program segfault - opcode = 8b
|Segmentation fault in Windows program 1b7:c41.
|Loading symbols from ELF file /root/wine/wine...
|....more Loading symbols from ...
|In 16 bit mode.
|Register dump:
| CS:01b7 SS:016f DS:0287 ES:0000
| IP:0c41 SP:878a BP:8796 FLAGS:0246
| AX:811e BX:0000 CX:0000 DX:0000 SI:0001 DI:ffff
|Stack dump:
|0x016f:0x878a: 0001 016f ffed 0000 0000 0287 890b 1e5b
|0x016f:0x879a: 01b7 0001 000d 1050 08b7 016f 0001 000d
|0x016f:0x87aa: 000a 0003 0004 0000 0007 0007 0190 0000
|0x016f:0x87ba:
|
|0050: sel=0287 base=40211d30 limit=0b93f (bytes) 16-bit rw-
|Backtrace:
|0 0x01b7:0x0c41 (PXSRV_FONGETFACENAME+0x7c)
|1 0x01b7:0x1e5b (PXSRV_FONPUTCATFONT+0x2cd)
|2 0x01a7:0x05aa
|3 0x01b7:0x0768 (PXSRV_FONINITFONTS+0x81)
|4 0x014f:0x03ed (PDOXWIN_@SQLCURCB$Q6CBTYPEULN8CBSCTYPE+0x1b1)
|5 0x013f:0x00ac
|
|0x01b7:0x0c41 (PXSRV_FONGETFACENAME+0x7c): movw %es:0x38(%bx),%dx

Steps to debug a crash. You may stop at any step, but please report the bug and provide as much of the
information gathered to the bug report as feasible.

4

Chapter 1. Debugging Wine

1. Get the reason for the crash. This is usually an access to an invalid selector, an access to an out of
range address in a valid selector, popping a segment register from the stack or the like. When
reporting a crash, report thiswholecrashdump even if it doesn’t make sense to you.

(In this case it is access to an invalid selector, for %es is0000 , as seen in the register dump).

2. Determine the cause of the crash. Since this is usually a primary/secondary reaction to a failed or
misbehaving Wine function, rerun Wine with theWINEDEBUG=+relay environment variable set.
This will generate quite a lot of output, but usually the reason is located in the last call(s). Those
lines usually look like this:

|Call KERNEL.90: LSTRLEN(0227:0692 "text") ret=01e7:2ce7 ds=0227
^^^^^^^^^ ^ ^^^^^^^^^ ^^^^^^ ^^^^^^^^^ ^^^^
| | | | | |Datasegment
| | | | |Return address
| | | |textual parameter
| | |
| | |Argument(s). This one is a win16 segmented pointer.
| |Function called.
|The module, the function is called in. In this case it is KERNEL.

|Ret KERNEL.90: LSTRLEN() retval=0x0004 ret=01e7:2ce7 ds=0227
^^^^^^

|Returnvalue is 16 bit and has the value 4.

3. If you have found a misbehaving function, try to find out why it misbehaves. Find the function in the
source code. Try to make sense of the arguments passed. Usually there is a
WINE_DEFAULT_DEBUG_CHANNEL(<channel>); at the beginning of the file. Rerun wine with the
WINEDEBUG=+xyz,+relay environment variable set.

Occasionally there are additional debug channels defined at the beginning of the file in the form.
WINE_DECLARE_DEBUG_CHANNEL(<channel>); If so the offending function may also uses one
of these alternate channels. Look through the the function forTRACE_(<channel>)(" ...

/n"); and add any additional channels to the commandline.

4. Additional information on how to debug using the internal debugger can be found in
programs/winedbg/README .

5. If this information isn’t clear enough or if you want to know more about what’s happening in the
function itself, try running wine withWINEDEBUG=+all, which dumps ALL included debug
information in wine.

6. If even that isn’t enough, add more debug output for yourself into the functions you find relevant.
See The section on Debug Logging in this guide for more information. You might also try to run the
program ingdb instead of using the Wine debugger. If you do that, usehandle SIGSEGV nostop

noprint to disable the handling of seg faults insidegdb (needed for Win16).

7. You can also set a breakpoint for that function. Start wine useingwinedbg instead ofwine. Once the
debugger is is running enterbreak KERNEL_LSTRLEN(replace by function you want to debug,

5

Chapter 1. Debugging Wine

CASE IS RELEVANT) to set a breakpoint. Then usecontinue to start normal program-execution.
Wine will stop if it reaches the breakpoint. If the program isn’t yet at the crashing call of that
function, usecontinueagain until you are about to enter that function. You may now proceed with
single-stepping the function until you reach the point of crash. Use the other debugger commands to
print registers and the like.

1.3.2. Program hangs, nothing happens

Start the program withwinedbg instead ofwine. When the program locks up switch to the winedbg’s
terminal and pressCtrl -C. this will stop the program and let you debug the program as you would for a
crash.

1.3.3. Program reports an error with a Messagebox

Sometimes programs are reporting failure using more or less nondescript messageboxes. We can debug
this using the same method as Crashes, but there is one problem... For setting up a message box the
program also calls Wine producing huge chunks of debug code.

Since the failure happens usually directly before setting up the Messagebox you can start winedbg and
set a breakpoint atMessageBoxA (called by win16 and win32 programs) and proceed withcontinue.
With WINEDEBUG=+all Wine will now stop directly before setting up the Messagebox. Proceed as
explained above.

You can also run wine usingWINEDEBUG=+relay wine program.exe 2>&1 | less -iand inlesssearch
for “MessageBox”.

1.3.4. Disassembling programs

You may also try to disassemble the offending program to check for undocumented features and/or use
of them.

The best, freely available, disassembler for Win16 programs is Windows Codeback, archive name
wcbxxx.zip (e.g.wcb105a.zip), which usually can be found in theCica-Mirror subdirectory on the
Wine ftp sites. (SeeANNOUNCE).

Disassembling win32 programs is possible using Windows Disassembler 32. Look for a file called
w32dsm87.zip (or similar) on http://www.winsite.com (http://www.winsite.com/) and mirrors. The
shareware version does not allow saving of disassembly listings. You can also use the newer (and in the
full version better) Interactive Disassembler (IDA) from the ftp sites mentioned at the end of the
document. Understanding disassembled code is mostly a question of exercise.

6

Chapter 1. Debugging Wine

Most code out there uses standard C function entries (for it is usually written in C). Win16 function
entries usually look like that:

push bp
mov bp, sp
... function code ..
retf XXXX <--------- XXXX is number of bytes of arguments

This is aFARfunction with no local storage. The arguments usually start at[bp+6] with increasing
offsets. Note, that[bp+6] belongs to therightmostargument, for exported win16 functions use the
PASCAL calling convention. So, if we usestrcmp(a,b) with a andb both 32 bit variablesb would be
at [bp+6] anda at [bp+10] .

Most functions make also use of local storage in the stackframe:

enter 0086, 00
... function code ...
leave
retf XXXX

This does mostly the same as above, but also adds0x86 bytes of stackstorage, which is accessed using
[bp-xx] . Before calling a function, arguments are pushed on the stack using something like this:

push word ptr [bp-02] <- will be at [bp+8]
push di <- will be at [bp+6]
call KERNEL.LSTRLEN

Here first the selector and then the offset to the passed string are pushed.

1.3.5. Sample debugging session

Let’s debug the infamous WordSHARE.EXEmessagebox:

|marcus@jet $ wine winword.exe
| +---+
| | ! You must leave Windows and load SHARE.EXE|
| | before starting Word. |
| +---+

|marcus@jet $ WINEDEBUG=+relay,-debug wine winword.exe
|CallTo32(wndproc=0x40065bc0,hwnd=000001ac,msg=00000081,wp=00000000,lp=00000000)
|Win16 task ’winword’: Breakpoint 1 at 0x01d7:0x001a
|CallTo16(func=0127:0070,ds=0927)
|Call WPROCS.24: TASK_RESCHEDULE() ret=00b7:1456 ds=0927

7

Chapter 1. Debugging Wine

|Ret WPROCS.24: TASK_RESCHEDULE() retval=0x8672 ret=00b7:1456 ds=0927
|CallTo16(func=01d7:001a,ds=0927)
| AX=0000 BX=3cb4 CX=1f40 DX=0000 SI=0000 DI=0927 BP=0000 ES=11f7
|Loading symbols: /home/marcus/wine/wine...
|Stopped on breakpoint 1 at 0x01d7:0x001a
|In 16 bit mode.
|Wine-dbg>break MessageBoxA <---- Set Breakpoint
|Breakpoint 2 at 0x40189100 (MessageBoxA [msgbox.c:190])
|Wine-dbg>c <---- Continue
|Call KERNEL.91: INITTASK() ret=0157:0022 ds=08a7
| AX=0000 BX=3cb4 CX=1f40 DX=0000 SI=0000 DI=08a7 ES=11d7 EFL=00000286
|CallTo16(func=090f:085c,ds=0dcf,0x0000,0x0000,0x0000,0x0000,0x0800,0x0000,0x0000,0x0dcf)
|... <----- Much debugoutput
|Call KERNEL.136: GETDRIVETYPE(0x0000) ret=060f:097b ds=0927

^^^^^^ Drive 0 (A:)
|Ret KERNEL.136: GETDRIVETYPE() retval=0x0002 ret=060f:097b ds=0927

^^^^^^ DRIVE_REMOVEABLE
(It is a floppy diskdrive.)

|Call KERNEL.136: GETDRIVETYPE(0x0001) ret=060f:097b ds=0927
^^^^^^ Drive 1 (B:)

|Ret KERNEL.136: GETDRIVETYPE() retval=0x0000 ret=060f:097b ds=0927
^^^^^^ DRIVE_CANNOTDETERMINE

(I don’t have drive B: assigned)

|Call KERNEL.136: GETDRIVETYPE(0x0002) ret=060f:097b ds=0927
^^^^^^^ Drive 2 (C:)

|Ret KERNEL.136: GETDRIVETYPE() retval=0x0003 ret=060f:097b ds=0927
^^^^^^ DRIVE_FIXED

(specified as a harddisk)

|Call KERNEL.97: GETTEMPFILENAME(0x00c3,0x09278364"doc",0x0000,0927:8248) ret=060f:09b1 ds=0927
^^^^^^ ^^^^^ ^^^^^^^^^
| | |buffer for fname
| |temporary name ~docXXXX.tmp
|Force use of Drive C:.

|Warning: GetTempFileName returns ’C:~doc9281.tmp’, which doesn’t seem to be writeable.
|Please check your configuration file if this generates a failure.

Whoops, it even detects that something is wrong!

|Ret KERNEL.97: GETTEMPFILENAME() retval=0x9281 ret=060f:09b1 ds=0927
^^^^^^ Temporary storage ID

|Call KERNEL.74: OPENFILE(0x09278248"C:~doc9281.tmp",0927:82da,0x1012) ret=060f:09d8 ds=0927
^^^^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^
|filename |OFSTRUCT |open mode:

OF_CREATE|OF_SHARE_EXCLUSIVE|OF_READWRITE

8

Chapter 1. Debugging Wine

This fails, since myC: drive is in this case mounted readonly.

|Ret KERNEL.74: OPENFILE() retval=0xffff ret=060f:09d8 ds=0927
^^^^^^ HFILE_ERROR16, yes, it failed.

|Call USER.1: MESSAGEBOX(0x0000,0x09278376"You must close Windows and load SHARE.EXE before you start Word.",0x00000000,0x1030) ret=060f:084f ds=0927

And MessageBox’ed.

|Stopped on breakpoint 2 at 0x40189100 (MessageBoxA [msgbox.c:190])
|190 { <- the sourceline
In 32 bit mode.
Wine-dbg>

The code seems to find a writeable harddisk and tries to create a file there. To work around this bug, you
can defineC: as a networkdrive, which is ignored by the code above.

1.3.6. Debugging Tips

Here are some additional debugging tips:

• If you have a program crashing at such an early loader phase that you can’t use the Wine debugger
normally, but Wine already executes the program’s start code, then you may use a special trick. You
should do a

WINEDEBUG=+relay wine program

to get a listing of the functions the program calls in its start function. Now you do a

winedbg winfile.exe

This way, you get intowinedbg. Now you can set a breakpoint on any function the program calls in
the start function and just typec to bypass the eventual calls of Winfile to this function until you are
finally at the place where this function gets called by the crashing start function. Now you can proceed
with your debugging as usual.

• If you try to run a program and it quits after showing an error messagebox, the problem can usually be
identified in the return value of one of the functions executed beforeMessageBox() . That’s why you
should re-run the program with e.g.

WINEDEBUG=+relay wine <program name> &>relmsg

Then do amore relmsgand search for the last occurrence of a call to the string "MESSAGEBOX".
This is a line like

Call USER.1: MESSAGEBOX(0x0000,0x01ff1246 "Runtime error 219 at 0004:1056.",0x00000000,0x1010) ret=01f7:2160 ds=01ff

9

Chapter 1. Debugging Wine

In my example the lines before the call toMessageBox() look like that:

Call KERNEL.96: FREELIBRARY(0x0347) ret=01cf:1033 ds=01ff
CallTo16(func=033f:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:1033 ds=01ff
Call KERNEL.96: FREELIBRARY(0x036f) ret=01cf:1043 ds=01ff
CallTo16(func=0367:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:1043 ds=01ff
Call KERNEL.96: FREELIBRARY(0x031f) ret=01cf:105c ds=01ff
CallTo16(func=0317:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:105c ds=01ff
Call USER.171: WINHELP(0x02ac,0x01ff05b4 "COMET.HLP",0x0002,0x00000000) ret=01cf:1070 ds=01ff
CallTo16(func=0117:0080,ds=01ff)
Call WPROCS.24: TASK_RESCHEDULE() ret=00a7:0a2d ds=002b
Ret WPROCS.24: TASK_RESCHEDULE() retval=0x0000 ret=00a7:0a2d ds=002b
Ret USER.171: WINHELP() retval=0x0001 ret=01cf:1070 ds=01ff
Call KERNEL.96: FREELIBRARY(0x01be) ret=01df:3e29 ds=01ff
Ret KERNEL.96: FREELIBRARY() retval=0x0000 ret=01df:3e29 ds=01ff
Call KERNEL.52: FREEPROCINSTANCE(0x02cf00ba) ret=01f7:1460 ds=01ff
Ret KERNEL.52: FREEPROCINSTANCE() retval=0x0001 ret=01f7:1460 ds=01ff
Call USER.1: MESSAGEBOX(0x0000,0x01ff1246 "Runtime error 219 at 0004:1056.",0x00000000,0x1010) ret=01f7:2160 ds=01ff

I think that the call toMessageBox() in this example isnot caused by a wrong result value of some
previously executed function (it’s happening quite often like that), but instead the messagebox
complains about a runtime error at0x0004:0x1056 .

As the segment value of the address is only4, I think that that is only an internal program value. But
the offset address reveals something quite interesting: Offset1056 is veryclose to the return address
of FREELIBRARY() :

Call KERNEL.96: FREELIBRARY(0x031f) ret=01cf:105c ds=01ff
^^^^

Provided that segment0x0004 is indeed segment0x1cf , we now we can use IDA (available at
http://www.filelibrary.com:8080/cgi-bin/freedownload/DOS/h/72/ida35bx.zip
(http://www.filelibrary.com:8080/cgi-bin/freedownload/DOS/h/72/ida35bx.zip)) to disassemble the
part that caused the error. We just have to find the address of the call toFreeLibrary() . Some lines
before that the runtime error occurred. But be careful! In some cases you don’t have to disassemble the
main program, but instead some DLL called by it in order to find the correct place where the runtime
error occurred. That can be determined by finding the origin of the segment value (in this case0x1cf).

• If you have created a relay file of some crashing program and want to set a breakpoint at a certain
location which is not yet available as the program loads the breakpoint’s segment during execution,
you may set a breakpoint toGetVersion16/32 as those functions are called very often.

Then do ac until you are able to set this breakpoint without error message.

10

Chapter 1. Debugging Wine

• Some useful programs:

IDA:
http://www.filelibrary.com:8080/cgi-bin/freedownload/DOS/h/72/ida35bx.zip

(http://www.filelibrary.com:8080/cgi-bin/freedownload/DOS/h/72/ida35bx.zip)

Verygood DOS disassembler ! It’s badly needed for debugging Wine sometimes.

XRAY: http://garbo.uwasa.fi/pub/pc/sysinfo/xray15.zip

(http://garbo.uwasa.fi/pub/pc/sysinfo/xray15.zip)

Traces DOS calls (Int 21h, DPMI, ...). Use it with Windows to correct file management problems
etc.

pedump: ftp://ftp.simtel.net/pub/simtelnet/win95/prog/pedump.zip

(ftp://ftp.simtel.net/pub/simtelnet/win95/prog/pedump.zip)

Dumps the imports and exports of a PE (Portable Executable) DLL.

winedump:

Dumps the imports and exports of a PE (Portable Executable) DLL (included in wine tree).

1.3.7. Some basic debugger usages

After starting your program with

wine -debug myprog.exe

the program loads and you get a prompt at the program starting point. Then you can set breakpoints:

b RoutineName (by routine name) OR
b *0x812575 (by address)

Then you hitc (continue) to run the program. It stops at the breakpoint. You can type

step (to step one line) OR
stepi (to step one machine instruction at a time;

here, it helps to know the basic 386
instruction set)

info reg (to see registers)
info stack (to see hex values in the stack)
info local (to see local variables)
list <line number > (to list source code)

11

Chapter 1. Debugging Wine

x <variable name > (to examine a variable; only works if code
is not compiled with optimization)

x 0x4269978 (to examine a memory location)
? (help)
q (quit)

By hitting Enter, you repeat the last command.

1.4. Useful memory addresses

Wine uses several different kinds of memory addresses.

Win32/"normal" Wine addresses/Linux: linear addresses.

Linear addresses can be everything from 0x0 up to 0xffffffff. In Wine on Linux they are often
around e.g. 0x08000000, 0x00400000 (std. Win32 program load address), 0x40000000. Every
Win32 process has its own private 4GB address space (that is, from 0x0 up to 0xffffffff).

Win16 "enhanced mode": segmented addresses.

These are the "normal" Win16 addresses, called SEGPTR. They have a segment:offset notation, e.g.
0x01d7:0x0012. The segment part usually is a "selector", whichalwayshas the lowest 3 bits set.
Some sample selectors are 0x1f7, 0x16f, 0x8f. If these bits are set except for the lowest bit, as e.g.
with 0x1f6,xi then it might be a handle to global memory. Just set the lowest bit to get the selector
in these cases. A selector kind of "points" to a certain linear (see above) base address. It has more or
less three important attributes: segment base address, segment limit, segment access rights.

Example:

Selector 0x1f7 (0x40320000, 0x0000ffff, r-x) So 0x1f7 has a base address of 0x40320000, the
segment’s last address is 0x4032ffff (limit 0xffff), and it’s readable and executable. So an address of
0x1f7:0x2300 would be the linear address of 0x40322300.

DOS/Win16 "standard mode"

They, too, have a segment:offset notation. But they are completely different from "normal" Win16
addresses, as they just represent at most 1MB of memory: The segment part can be anything from 0
to 0xffff, and it’s the same with the offset part.

Now the strange thing is the calculation that’s behind these addresses: Just calculate segment*16 +
offset in order to get a "linear DOS" address. So e.g. 0x0f04:0x3628 results in 0xf040 + 0x3628 =
0x12668. And the highest address you can get is 0xfffff (1MB), of course. In Wine, this "linear
DOS" address of 0x12668 has to be added to the linear base address of the corresponding DOS

12

Chapter 1. Debugging Wine

memory allocated for dosmod in order to get the true linear address of a DOS seg:offs address. And
make sure that you’re doing this in the correct process with the correct linear address space, of
course ;-)

1.5. Configuration

1.5.1. Registry configuration

The Windows’ debugging API uses a registry entry to know which debugger to invoke when an
unhandled exception occurs (seeOn exceptionsfor some details). Two values in key

"MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug"

Determine the behavior:

Debugger

this is the command line used to launch the debugger (it uses twoprintf formats (%ld) to pass
context dependent information to the debugger). You should put here a complete path to your
debugger (winedbgcan of course be used, but any other Windows’ debugging API aware debugger
will do). The path to the debugger you chose to use must be reachable via a DOS drive in the Wine
config file !

Auto

if this value is zero, a message box will ask the user if he/she wishes to launch the debugger when
an unhandled exception occurs. Otherwise, the debugger is automatically started.

A regular Wine registry looks like:

[MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug] 957636538
"Auto"=dword:00000001
"Debugger"="winedbg %ld %ld"

Note 1: creating this key is mandatory. Not doing so will not fire the debugger when an exception
occurs.

Note 2: wineinstall (available in Wine source) sets up this correctly. However, due to some limitation
of the registry installed, if a previous Wine installation exists, it’s safer to remove the whole

[MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug]

13

Chapter 1. Debugging Wine

key before running again wineinstall to regenerate this key.

1.5.2. WineDbg configuration

winedbgcan be configured through a number of options. Those options are stored in the registry, on a
per user basis. The key is (inmyregistry)

[HKCU\\Software\\Wine\\WineDbg]

Those options can be read/written while insidewinedbg, as part of the debugger expressions. To refer to
one of these options, its name must be prefixed by a$ sign. For example,

set $BreakAllThreadsStartup = 1

sets the optionBreakAllThreadsStartup to TRUE.

All the options are read from the registry whenwinedbgstarts (if no corresponding value is found, a
default value is used), and are written back to the registry whenwinedbgexits (hence, all modifications
to those options are automatically saved whenwinedbg terminates).

Here’s the list of all options:

BreakAllThreadsStartup

Set toTRUEif at all threads start-up the debugger stops set toFALSE if only at the first thread startup
of a given process the debugger stops.FALSEby default.

BreakOnCritSectTimeOut

Set toTRUEif the debugger stops when a critical section times out (5 minutes);TRUEby default.

BreakOnAttach

Set toTRUEif whenwinedbgattaches to an existing process after an unhandled exception,winedbg
shall be entered on the first attach event. Since the attach event is meaningless in the context of an
exception event (the next event which is the exception event is of course relevant), that option is
likely to beFALSE.

BreakOnFirstChance

An exception can generate two debug events. The first one is passed to the debugger (known as a
first chance) just after the exception. The debugger can then decide either to resume execution (see

14

Chapter 1. Debugging Wine

winedbg’s cont command) or pass the exception up to the exception handler chain in the program
(if it exists) (winedbg implements this through thepasscommand). If none of the exception
handlers takes care of the exception, the exception event is sent again to the debugger (known as last
chance exception). You cannot pass on a last exception. When theBreakOnFirstChance

exception isTRUE, then winedbg is entered for both first and last chance execptions (toFALSE, it’s
only entered for last chance exceptions).

AlwaysShowThunk

Set toTRUEif the debugger, when looking up for a symbol from its name, displays all the thunks
with that name. The default value (FALSE) allows not to have to choose between a symbol and all
the import thunks from all the DLLs using that symbols.

1.6. WineDbg Expressions and Variables

1.6.1. Expressions

Expressions in Wine Debugger are mostly written in a C form. However, there are a few discrepancies:

• Identifiers can take a ’!’ in their names. This allow mainly to access symbols from different DLLs like
USER32!CreateWindowExA .

• In cast operation, when specifying a structure or an union, you must use the struct or union keyword
(even if your program uses a typedef).

When specifying an identifier by its name, if several symbols with the same name exist, the debugger
will prompt for the symbol you want to use. Pick up the one you want from its number.

In lots of cases, you can also use regular expressions for looking for a symbol.

winedbgdefines its own set of variables. The configuration variables from above are part of them. Some
others include:

$ThreadId

ID of the W-thread currently examined by the debugger

$ProcessId

ID of the W-thread currently examined by the debugger

15

Chapter 1. Debugging Wine

<registers>

All CPU registers are also available, using $ as a prefix. You can useinfo regs to get a list of avaible
CPU registers

The$ThreadId and$ProcessId variables can be handy to set conditional breakpoints on a given
thread or process.

1.7. WineDbg Command Reference

1.7.1. Misc

Table 1-1. WineDbg’s misc. commands

abort aborts the debugger

quit exits the debugger

attach N attach to a W-process (N is its ID, numeric or
hexadecimal (0xN)). IDs can be obtained using the
info process command. Note the info process
command returns hexadecimal values.

detach detach from a W-process.

help prints some help on the commands

help info prints some help on info commands

1.7.2. Flow control

Table 1-2. WineDbg’s flow control commands

cont, c continue execution until next breakpoint or
exception.

pass pass the exception event up to the filter chain.

step, s continue execution until next ’C’ line of code
(enters function call)

next, n continue execution until next ’C’ line of code
(doesn’t enter function call)

16

Chapter 1. Debugging Wine

stepi, si execute next assembly instruction (enters function
call)

nexti, ni execute next assembly instruction (doesn’t enter
function call)

finish, f execute until current function is exited

cont, step, next, stepi, nexti can be postfixed by a number (N), meaning that the command must be
executed N times.

1.7.3. Breakpoints, watch points

Table 1-3. WineDbg’s break & watch points

enable N enables (break|watch)point #N

disable N disables (break|watch)point #N

delete N deletes (break|watch)point #N

cond N removes any existing condition to
(break|watch)point N

cond N<expr> adds condition<expr> to (break|watch)point N.
<expr> will be evaluated each time the breakpoint
is hit. If the result is a zero value, the breakpoint
isn’t triggered

break * N adds a breakpoint at address N

break <id> adds a breakpoint at the address of symbol<id>

break <id> N adds a breakpoint at the address of symbol<id>

(N ?)

break N adds a breakpoint at line N of current source file

break adds a breakpoint at current $PC address

watch * N adds a watch command (on write) at address N (on
4 bytes)

watch <id> adds a watch command (on write) at the address of
symbol<id>

info break lists all (break|watch)points (with state)

You can use the symbolEntryPointto stand for the entry point of the Dll.

17

Chapter 1. Debugging Wine

When setting a break/watch-point by<id>, if the symbol cannot be found (for example, the symbol is
contained in a not yet loaded module), winedbg will recall the name of the symbol and will try to set the
breakpoint each time a new module is loaded (until it succeeds).

1.7.4. Stack manipulation

Table 1-4. WineDbg’s stack manipulation

bt print calling stack of current thread

bt N print calling stack of thread of ID N (note: this
doesn’t change the position of the current frame as
manipulated by theup anddn commands)

up goes up one frame in current thread’s stack

up N goes up N frames in current thread’s stack

dn goes down one frame in current thread’s stack

dn N goes down N frames in current thread’s stack

frame N set N as the current frame for current thread’s stack

info local prints information on local variables for current
function frame

1.7.5. Directory & source file manipulation

Table 1-5. WineDbg’s directory & source file manipulation

show dir prints the list of dir:s where source files are looked
for

dir <pathname> adds<pathname> to the list of dir:s where to look
for source files

dir deletes the list of dir:s where to look for source files

symbolfile<pathname> loads external symbol definition

symbolfile<pathname> N loads external symbol definition (applying an offset
of N to addresses)

list lists 10 source lines forwards from current position

list - lists 10 source lines backwards from current
position

18

Chapter 1. Debugging Wine

list N lists 10 source lines from line N in current file

list <path>:N lists 10 source lines from line N in file<path>

list <id> lists 10 source lines of function<id>

list * N lists 10 source lines from address N

You can specify the end target (to change the 10 lines value) using the ’,’. For example:

Table 1-6. WineDbg’s list command examples

list 123, 234 lists source lines from line 123 up to line 234 in
current file

list foo.c:1, 56 lists source lines from line 1 up to 56 in file foo.c

1.7.6. Displaying

A display is an expression that’s evaluated and printed after the execution of anywinedbgcommand.

winedbgwill automatically detect if the expression you entered contains a local variable. If so, display
will only be shown if the context is still in the same function as the one the debugger was in when the
display expression was entered.

Table 1-7. WineDbg’s displays

info display lists the active displays

display print the active displays’ values (as done each time
the debugger stops)

display <expr> adds a display for expression<expr>

display /fmt <expr> adds a display for expression<expr>. Printing
evaluated<expr> is done using the given format
(seeprint command for more on formats)

del display N , undisplay N deletes display #N

19

Chapter 1. Debugging Wine

1.7.7. Disassembly

Table 1-8. WineDbg’s dissassembly

disas disassemble from current position

disas<expr> disassemble from address<expr>

disas<expr>,<expr> disassembles code between addresses specified by
the two<expr>

1.7.8. Memory (reading, writing, typing)

Table 1-9. WineDbg’s memory management

x <expr> examines memory at<expr> address

x /fmt <expr> examines memory at<expr> address using format
/fmt

print <expr> prints the value of<expr> (possibly using its type)

print /fmt <expr> prints the value of<expr> (possibly using its type)

set<lval> = <expr> writes the value of<expr> in <lval>

whatis <expr> prints the C type of expression<expr>

/fmt is either/ <letter > or / <count ><letter > letter can be

s an ASCII string
u an Unicode UTF16 string
i instructions (disassemble)
x 32 bit unsigned hexadecimal integer
d 32 bit signed decimal integer
w 16 bit unsigned hexadecimal integer
c character (only printable 0x20-0x7f are actually printed)
b 8 bit unsigned hexadecimal integer
g GUID

20

Chapter 1. Debugging Wine

1.7.9. Information on Wine’s internals

Table 1-10. WineDbg’s Win32 objects management

info class lists all Windows’ classes registered in Wine

info class<id> prints information on Windows’s class<id>

info share lists all the dynamic libraries loaded in the
debugged program (including .so files, NE and PE
DLLs)

info share<N> prints information on module at address<N>

info regs prints the value of the CPU registers

info segment<N> prints information on segment<N> (i386 only)

info segment lists all allocated segments (i386 only)

info stack prints the values on top of the stack

info map lists all virtual mappings used by the debugged
program

info map <N> lists all virtual mappings used by the program of
pid <N>

info wnd <N> prints information of Window of handle<N>

info wnd lists all the window hierarchy starting from the
desktop window

info process lists all w-processes in Wine session

info thread lists all w-threads in Wine session

info exception lists the exception frames (starting from current
stack frame)

1.7.10. Debug channels

It is possible to turn on and off debug messages as you are debugging using the set command. See
Chapter 2for more details on debug channels.

Table 1-11. WineDbg’s debug channels’ management

set + warn win turn on warn on ’win’ channel

set + win turn on warn/fixme/err/trace on ’win’ channel

set - win turn off warn/fixme/err/trace on ’win’ channel

set - fixme turn off the ’fixme’ class

21

Chapter 1. Debugging Wine

1.8. Other debuggers

1.8.1. GDB mode

WineDbg can act as a remote monitor for GDB. This allows to use all the power of GDB, but while
debugging wine and/or any Win32 application. To enable this mode, just add--gdb to winedbg
command line. You’ll end up on a GDB prompt. You’ll have to use the GDB commands (not
WineDbg’s).

However, some limitation in GDB while debugging wine (see below) don’t appear in this mode:

• GDB will correctly present Win32 thread information and breakpoint behavior

• Moreover, it also provides support for the Dwarf II debug format (which became the default format
(instead of stabs) in gcc 3.1).

A few Wine extensions available through the monitor command.

Table 1-12. WineDbg’s debug channels’ management

monitor wnd lists all window in the Wine session

monitor proc lists all processes in the Wine session

monitor mem displays memory mapping of debugged process

1.8.2. Graphical frontends to gdb

This section will describe how you can debug Wine using the GDB mode of winedbg and some graphical
front ends to GDB for those of you who really like graphical debuggers.

1.8.2.1. DDD

Use the following steps, in this order:

1. Start the Wine debugger with a command line like:

winedbg --gdb --no-start <name_of_exe_to_debug.exe >

22

Chapter 1. Debugging Wine

2. Start ddd

3. In ddd, use the ’Open File’ or ’Open Program’ to point to the Wine executable (which is either
wine-pthread or wine-kthread depending on your settings).

4. In the output of 1/, there’s a line like

target remote localhost:32878

copy that line and paste into ddd command pane (the one with the (gdb) prompt)

The program should now be loaded and up and running. If you want, you can also add in 1/ after the
name of the exec all the needed parameters

1.8.2.2. kdbg

Use the following steps, in this order:

1. Start the Wine debugger with a command line like:

winedbg --gdb --no-start <name_of_exe_to_debug.exe >

2. In the output of 1/, there’s a line like

target remote localhost:32878

Start kdbg with

kdbg -r localhost:32878 wine

localhost:32878 is not a fixed value, but has been printed in step 1/. ’wine’ should also be the full
path to the Wine executable (which is either wine-pthread or wine-kthread depending on your
settings).

The program should now be loaded and up and running. If you want, you can also add in 1/ after the
name of the exec all the needed parameters

1.8.3. Using other Unix debuggers

You can also use other debuggers (likegdb), but you must be aware of a few items:

You need to attach the unix debugger to the correct unix process (representing the correct windows
thread) (you can "guess" it from aps fax for example: When running the emulator, usually the first two
upids are for the Windows’ application running the desktop, the first thread of the application is
generally the thirdupid ; when running a Winelib program, the first thread of the application is generally
the firstupid)

Note: If you plan to used gdb for a multi-threaded Wine application (native or Winelib), then gdb will
be able to handle the multiple threads directly only if:

• Wine is running on the pthread model (it won’t work in the kthread one). See the Wine architecture
documentation for further details.

• gdb supports the multi-threading (you need gdb at least 5.0 for that).

23

Chapter 1. Debugging Wine

In the unfortunate case (no direct thread support in gdb because one of the above conditions is
false), you’ll have to spawn a different gdb session for each Windows’ thread you wish to debug
(which means no synchronization for debugging purposes between the various threads).

Here’s how to get info about the current execution status of a certain Wine process:

Change into your Wine source dir and enter:

$ gdb wine

Switch to another console and enterps ax | grep wineto find all wine processes. Insidegdb, repeat for
all Wine processes:

(gdb) attach PID

with PID being the process ID of one of the Wine processes. Use

(gdb) bt

to get the backtrace of the current Wine process, i.e. the function call history. That way you can find out
what the current process is doing right now. And then you can use several times:

(gdb) n

or maybe even

(gdb) b SomeFunction

and

(gdb) c

to set a breakpoint at a certain function and continue up to that function. Finally you can enter

(gdb) detach

to detach from the Wine process.

24

Chapter 1. Debugging Wine

1.8.4. Using other Windows debuggers

You can use any Windows’ debugging API compliant debugger with Wine. Some reports have been
made of success with VisualStudio debugger (in remote mode, only the hub runs in Wine). GoVest fully
runs in Wine.

1.8.5. Main differences between winedbg and regular Unix
debuggers

Table 1-13. Debuggers comparison

WineDbg gdb

WineDbg debugs a Windows’ process: the various
threads will be handled by the same WineDbg
session, and a breakpoint will be triggered for any
thread of the W-process

gdb debugs a Windows’ thread: a separate gdb
session is needed for each thread of a Windows’
process and a breakpoint will be triggered only for
the w-thread debugged

WineDbg supports debug information from stabs
(standard Unix format) and Microsoft’s C,
CodeView, .DBG

GDB supports debug information from stabs
(standard Unix format) and Dwarf II.

25

Chapter 2. Debug Logging

To better manage the large volume of debugging messages that Wine can generate, we divide the
messages on a component basis, and classify them based on the severity of the reported problem.
Therefore a message belongs to achanneland aclassrespectively.

This section will describe the debugging classes, how you can create a new debugging channel, what the
debugging API is, and how you can control the debugging output. A picture is worth a thousand words,
so here are a few examples of the debugging API in action:

ERR("lock_count == 0 ... please report\n");
FIXME("Unsupported RTL style!\n");
WARN(": file seems to be truncated!\n");
TRACE("[%p]: new horz extent = %d\n", hwnd, extent);
MESSAGE("Could not create graphics driver ’%s’\n", buffer);

2.1. Debugging classes

A debugging class categorizes a message based on the severity of the reported problem. There is a fixed
set of classes, and you must carefully choose the appropriate one for your messages. There are five
classes of messages:

FIXME

Messages in this class are meant to signal unimplemented features, known bugs, etc. They serve as
a constant and active reminder of what needs to be done.

ERR

Messages in this class indicate serious errors in Wine, such as as conditions that should never
happen by design.

WARN

These are warning messages. You should report a warning when something unwanted happens, and
the function cannot deal with the condition. This is seldomly used since proper functions can
usually report failures back to the caller. Think twice before making the message a warning.

TRACE

These are detailed debugging messages that are mainly useful to debug a component. These are
turned off unless explicitly enabled.

26

Chapter 2. Debug Logging

MESSAGE

There messages are intended for the end user. They do not belong to any channel. As with warnings,
you will seldomly need to output such messages.

2.2. Debugging channels

Each component is assigned a debugging channel. The identifier of the channel must be a valid C
identifier (reserved word like int or static are premitted). To use a new channel, simply use it in your
code. It will be picked up automatically by the build process.

Typically, a file contains code pertaining to only one component, and as such, there is only one channel
to output to. You can declare a default chanel for the file using the
WINE_DEFAULT_DEBUG_CHANNEL() macro:

#include "wine/debug.h"

WINE_DEFAULT_DEBUG_CHANNEL(xxx);
...

FIXME("some unimplemented feature", ...);
...

if (zero != 0)
ERR("This should never be non-null: %d", zero);

...

In rare situations there is a need to output to more than one debug channel per file. In such cases, you
need to declare all the additional channels at the top of the file, and use the _-version of the debugging
macros:

#include "wine/debug.h"

WINE_DEFAULT_DEBUG_CHANNEL(xxx);
WINE_DECLARE_DEBUG_CHANNEL(yyy);
WINE_DECLARE_DEBUG_CHANNEL(zzz);
...

FIXME("this one goes to xxx channel");
...

FIXME_(yyy)("Some other msg for the yyy channel");
...

WARN_(zzz)("And yet another msg on another channel!");
...

27

Chapter 2. Debug Logging

2.3. Are we debugging?

To test whether the debugging channelxxx is enabled, use the TRACE_ON, WARN_ON, FIXME_ON,
or ERR_ON macros. For example:

if(TRACE_ON(atom)){
...blah...

}

You should normally need to test only ifTRACE_ON, all the others are very seldomly used. With careful
coding, you can avoid the use of these macros, which is generally desired.

2.4. Helper functions

Resource identifiers can be either strings or numbers. To make life a bit easier for outputting these beasts
(and to help you avoid the need to build the message in memory), I introduced a new function called
debugres .

The function is defined inwine/debug.h and has the following prototype:

LPSTR debugres(const void *id);

It takes a pointer to the resource id and returns a nicely formatted string of the identifier (which can be a
string or a number, depending on the value of the high word). Numbers are formatted as such:

#xxxx

while strings as:

’some-string’

Simply use it in your code like this:

#include "wine/debug.h"

...

TRACE("resource is %s", debugres(myresource));

28

Chapter 2. Debug Logging

Many times strings need to be massaged before output: they may beNULL, contain control characters, or
they may be too long. Similarly, Unicode strings need to be converted to ASCII for usage with the
debugging API. For all this, you can use thedebugstr_[aw]n? familly of functions:

HANDLE32 WINAPI YourFunc(LPCSTR s)
{

FIXME("(%s): stub\n", debugstr_a(s));
}

2.5. Controlling the debugging output

It is possible to turn on and off debugging output from within the debugger using the set command.
Please see the WineDbg Command Reference section (Section 1.7.10) for how to do this.

You can do the same using the task manager (taskmgr) and selecting your application in the application
list. Right clicking on the application, and selecting the debug option in the popup menu, will let you
select the modifications you want on the debug channels.

Another way to conditionally log debug output (e.g. in case of very large installers which may create
gigabytes of log output) is to create a pipe:

$ mknod /tmp/debug_pipe p

and then to run wine like that:

$ WINEDEBUG=+relay,+snoop wine setup.exe &>/tmp/debug_pipe

Since the pipe is initially blocking (and thus wine as a whole), you have to activate it by doing:

$ cat /tmp/debug_pipe

(press Ctrl-C to stop pasting the pipe content)

Once you are about to approach the problematic part of the program, you just do:

$ cat /tmp/debug_pipe >/tmp/wine.log

to capture specifically the part that interests you from the pipe without wasting excessive amounts of
HDD space and slowing down installation considerably.

29

Chapter 2. Debug Logging

TheWINEDEBUGenvironment variable controls the output of the debug messages. It has the following
syntax:WINEDEBUG= [yyy]#xxx[,[yyy1]#xxx1]*

• where# is either+ or -

• when the optional class argument (yyy) is not present, then the statement will enable(+)/disable(-) all
messages for the given channel (xxx) on all classes. For example:

WINEDEBUG=+reg,-file

enables all messages on thereg channel and disables all messages on thefile channel.

• when the optional class argument (yyy) is present, then the statement will enable (+)/disable(-)
messages for the given channel (xxx) only on the given class. For example:

WINEDEBUG=trace+reg,warn-file

enables trace messages on thereg channel and disables warning messages on thefile channel.

• also, the pseudo-channel all is also supported and it has the intuitive semantics:

WINEDEBUG=+all -- enables all debug messages
WINEDEBUG=-all -- disables all debug messages
WINEDEBUG=yyy+all -- enables debug messages for class yyy on all

channels.
WINEDEBUG=yyy-all -- disables debug messages for class yyy on all

channels.

So, for example:

WINEDEBUG=warn-all -- disables all warning messages.

Also, note that at the moment:

• theFIXME andERRclasses are enabled by default

• theTRACEandWARNclasses are disabled by default

2.6. Compiling Out Debugging Messages

To compile out the debugging messages, provideconfigurewith the following options:

--disable-debug -- turns off TRACE, WARN, and FIXME (and DUMP).
--disable-trace -- turns off TRACE only.

30

Chapter 2. Debug Logging

This will result in an executable that, when stripped, is about 15%-20% smaller. Note, however, that you
will not be able to effectively debug Wine without these messages.

This feature has not been extensively tested--it may subtly break some things.

2.7. A Few Notes on Style

This new scheme makes certain things more consistent but there is still room for improvement by using a
common style of debug messages. Before I continue, let me note that the output format is the following:

yyy:xxx:fff <message>

where:
yyy = the class (fixme, err, warn, trace)
xxx = the channel (atom, win, font, etc)
fff = the function name

these fields are output automatically. All you have to provide is the<message> part.

So here are some ideas:

• do not include the name of the function: it is included automatically

• if you want to output the parameters of the function, do it as the first thing and include them in
parentheses, like this:

TRACE("(%d, %p, ...)\n", par1, par2, ...);

• if you want to name a parameter, use= :

TRACE("(fd=%d, file=%s): stub\n", fd, name);

• for stubs, you should output aFIXME message. I suggest this style:

FIXME("(%x, %d, ...): stub\n", par1, par2, ...);

• try to output one line per message. That is, the format string should contain only one\n and it should
always appear at the end of the string.

• if the output string needs to be dynamically constructed, render it in memory before outputting it:

char buffer[128] = "";

if (flags & FLAG_A) strcat(buffer, "FLAG_A ");
if (flags & FLAG_B) strcat(buffer, "FLAG_B ");
if (flags & FLAG_C) strcat(buffer, "FLAG_C ");
TRACE("flags = %s\n", buffer);

31

Chapter 2. Debug Logging

Most of the time however, it is better to create a helper function that renders to a temporary buffer:

static const char *dbgstr_flags(int flags)
{

char buffer[128] = "";

if (flags & FLAG_A) strcat(buffer, "FLAG_A ");
if (flags & FLAG_B) strcat(buffer, "FLAG_B ");
if (flags & FLAG_C) strcat(buffer, "FLAG_C ");
return wine_dbg_sprintf("flags = %s\n\n", buffer);

}

...

TRACE("flags = %s\n", dbgstr_flags(flags));

32

Chapter 3. Other debugging techniques

3.1. Doing A Hardware Trace

The primary reason to do this is to reverse engineer a hardware device for which you don’t have
documentation, but can get to work under Wine.

This lot is aimed at parallel port devices, and in particular parallel port scanners which are now so cheap
they are virtually being given away. The problem is that few manufactures will release any programming
information which prevents drivers being written for Sane, and the traditional technique of using
DOSemu to produce the traces does not work as the scanners invariably only have drivers for Windows.

Presuming that you have compiled and installed wine the first thing to do is is to enable direct hardware
access to your parallel port. To do this editconfig (usually in~/.wine/) and in the ports section add
the following two lines

read=0x378,0x379,0x37a,0x37c,0x77a
write=0x378,x379,0x37a,0x37c,0x77a

This adds the necessary access required for SPP/PS2/EPP/ECP parallel port on LPT1. You will need to
adjust these number accordingly if your parallel port is on LPT2 or LPT0.

When starting wine use the following command line, whereXXXXis the program you need to run in
order to access your scanner, andYYYYis the file your trace will be stored in:

WINEDEBUG=+io wine XXXX 2> >(sed ’s/^[^:]*:io:[^]* //’ > YYYY)

You will need large amounts of hard disk space (read hundreds of megabytes if you do a full page scan),
and for reasonable performance a really fast processor and lots of RAM.

You will need to postprocess the output into a more manageable format, using theshrink program. First
you need to compile the source (which is located at the end of this section):

cc shrink.c -o shrink

Use theshrink program to reduce the physical size of the raw log as follows:

cat log | shrink > log2

33

Chapter 3. Other debugging techniques

The trace has the basic form of

XXXX > YY @ ZZZZ:ZZZZ

whereXXXXis the port in hexadecimal being accessed,YY is the data written (or read) from the port, and
ZZZZ:ZZZZ is the address in memory of the instruction that accessed the port. The direction of the arrow
indicates whether the data was written or read from the port.

> data was written to the port
< data was read from the port

My basic tip for interpreting these logs is to pay close attention to the addresses of the IO instructions.
Their grouping and sometimes proximity should reveal the presence of subroutines in the driver. By
studying the different versions you should be able to work them out. For example consider the following
section of trace from my UMAX Astra 600P

0x378 > 55 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > aa @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211

As you can see there is a repeating structure starting at address0297:01ec that consists of four io
accesses on the parallel port. Looking at it the first io access writes a changing byte to the data port the
second always writes the byte0x05 to the control port, then a value which always seems to0x8f is read

34

Chapter 3. Other debugging techniques

from the status port at which point a byte0x04 is written to the control port. By studying this and other
sections of the trace we can write a C routine that emulates this, shown below with some macros to make
reading/writing on the parallel port easier to read.

#define r_dtr(x) inb(x)
#define r_str(x) inb(x+1)
#define r_ctr(x) inb(x+2)
#define w_dtr(x,y) outb(y, x)
#define w_str(x,y) outb(y, x+1)
#define w_ctr(x,y) outb(y, x+2)

/* Seems to be sending a command byte to the scanner */
int udpp_put(int udpp_base, unsigned char command)
{

int loop, value;

w_dtr(udpp_base, command);
w_ctr(udpp_base, 0x05);

for (loop=0; loop < 10; loop++)
if ((value = r_str(udpp_base)) & 0x80)

{
w_ctr(udpp_base, 0x04);
return value & 0xf8;

}

return (value & 0xf8) | 0x01;
}

For the UMAX Astra 600P only seven such routines exist (well 14 really, seven for SPP and seven for
EPP). Whether you choose to disassemble the driver at this point to verify the routines is your own
choice. If you do, the address from the trace should help in locating them in the disassembly.

You will probably then find it useful to write a script/perl/C program to analyse the logfile and decode
them futher as this can reveal higher level grouping of the low level routines. For example from the logs
from my UMAX Astra 600P when decoded further reveal (this is a small snippet)

start:
put: 55 8f
put: aa 8f
put: 00 8f
put: 00 8f
put: 00 8f
put: c2 8f
wait: ff
get: af,87
wait: ff
get: af,87
end: cc
start:

35

Chapter 3. Other debugging techniques

put: 55 8f
put: aa 8f
put: 00 8f
put: 03 8f
put: 05 8f
put: 84 8f
wait: ff

From this it is easy to see thatput routine is often grouped together in five successive calls sending
information to the scanner. Once these are understood it should be possible to process the logs further to
show the higher level routines in an easy to see format. Once the highest level format that you can derive
from this process is understood, you then need to produce a series of scans varying only one parameter
between them, so you can discover how to set the various parameters for the scanner.

The following is theshrink.c program:

/* Copyright David Campbell <campbell@torque.net > */
#include <stdio.h >

#include <string.h >

int main (void)
{

char buff[256], lastline[256] = "";
int count = 0;

while (!feof (stdin))
{

fgets (buff, sizeof (buff), stdin);
if (strcmp (buff, lastline))

{
if (count > 1)

printf ("# Last line repeated %i times #\n", count);
printf ("%s", buff);
strcpy (lastline, buff);
count = 1;

}
else count++;

}
return 0;

}

36

Chapter 3. Other debugging techniques

3.2. Understanding undocumented APIs

Some background: On the i386 class of machines, stack entries are usually dword (4 bytes) in size,
little-endian. The stack grows downward in memory. The stack pointer, maintained in theesp register,
points to the last valid entry; thus, the operation of pushing a value onto the stack involves decrementing
esp and then moving the value into the memory pointed to byesp (i.e.,push p in assembly resembles
*(--esp) = p; in C). Removing (popping) values off the stack is the reverse (i.e.,pop p corresponds
to p = *(esp++); in C).

In thestdcall calling convention, arguments are pushed onto the stack right-to-left. For example, the C
call myfunction(40, 20, 70, 30); is expressed in Intel assembly as:

push 30
push 70
push 20
push 40
call myfunction

The called function is responsible for removing the arguments off the stack. Thus, before the call to
myfunction, the stack would look like:

[local variable or temporary]
[local variable or temporary]

30
70
20

esp -> 40

After the call returns, it should look like:

[local variable or temporary]
esp -> [local variable or temporary]

To restore the stack to this state, the called function must know how many arguments to remove (which is
the number of arguments it takes). This is a problem if the function is undocumented.

One way to attempt to document the number of arguments each function takes is to create a wrapper
around that function that detects the stack offset. Essentially, each wrapper assumes that the function will
take a large number of arguments. The wrapper copies each of these arguments into its stack, calls the
actual function, and then calculates the number of arguments by checking esp before and after the call.

The main problem with this scheme is that the function must actually be called from another program.
Many of these functions are seldom used. An attempt was made to aggressively query each function in a
given library (ntdll.dll) by passing 64 arguments, all 0, to each function. Unfortunately, Windows NT
quickly goes to a blue screen of death, even if the program is run from a non-administrator account.

37

Chapter 3. Other debugging techniques

Another method that has been much more successful is to attempt to figure out how many arguments
each function is removing from the stack. This instruction,ret hhll (where hhll is the number of bytes
to remove, i.e. the number of arguments times 4), contains the bytes0xc2 ll hh in memory. It is a
reasonable assumption that few, if any, functions take more than 16 arguments; therefore, simply
searching forhh == 0 && ll < 0x40 starting from the address of a function yields the correct
number of arguments most of the time.

Of course, this is not without errors.ret 00ll is not the only instruction that can have the byte
sequence0xc2 ll 0x0 ; for example,push 0x000040c2 has the byte sequence0x68 0xc2 0x40

0x0 0x0 , which matches the above. Properly, the utility should look for this sequence only on an
instruction boundary; unfortunately, finding instruction boundaries on an i386 requires implementing a
full disassembler -- quite a daunting task. Besides, the probability of having such a byte sequence that is
not the actual return instruction is fairly low.

Much more troublesome is the non-linear flow of a function. For example, consider the following two
functions:

somefunction1:
jmp somefunction1_impl

somefunction2:
ret 0004

somefunction1_impl:
ret 0008

In this case, we would incorrectly detect bothsomefunction1 andsomefunction2 as taking only a
single argument, whereassomefunction1 really takes two arguments.

With these limitations in mind, it is possible to implement more stubs in Wine and, eventually, the
functions themselves.

3.3. How to do regression testing using CVS

A problem that can happen sometimes is ’it used to work before, now it doesn’t anymore...’. Here is a
step by step procedure to try to pinpoint when the problem occurred. This isNOT for casual users.

1. Get the “full CVS” archive from winehq. This archive is the CVS tree but with the tags controlling
the versioning system. It’s a big file (> 40 meg) with a name like full-cvs-<last update date> (it’s
more than 100mb when uncompressed, you can’t very well do this with small, old computers or
slow Internet connections).

2. untar it into a repository directory:

cd /home/gerard
tar -zxf full-cvs-2003-08-18.tar.gz
mv wine repository

38

Chapter 3. Other debugging techniques

3. extract a new destination directory. This directory must not be in a subdirectory of the repository
elsecvswill think it’s part of the repository and deny you an extraction in the repository:

cd /home/gerard
mv wine wine_current (-> this protects your current wine sandbox, if any)
export CVSROOT=/home/gerard/repository
cvs -d $CVSROOT checkout wine

Note that it’s not possible to do a checkout at a given date; you always do the checkout for the last
date where the full-cvs-xxx snapshot was generated.

Note also that it is possible to do all this with a direct CVS connection, of course. The full CVS file
method is less painful for the WineHQ CVS server and probably a bit faster if you don’t have a very
good net connection.

4. you will have now in the~/wine directory an image of the CVS tree, on the client side. Now update
this image to the date you want:

cd /home/gerard/wine
cvs update -PAd -D "2004-08-23 CDT"

The date format isYYYY-MM-DD HH:MM:SS. Using the CST date format ensure that you will be
able to extract patches in a way that will be compatible with the wine-cvs archive
http://www.winehq.org/hypermail/wine-cvs (http://www.winehq.org/hypermail/wine-cvs)

Many messages will inform you that more recent files have been deleted to set back the client cvs
tree to the date you asked, for example:

cvs update: tsx11/ts_xf86dga2.c is no longer in the repository

cvs updateis not limited to upgrade to anewerversion as I have believed for far too long :-(

5. Now proceed as for a normal update:

./configure
make depend && make

If any non-programmer reads this, the fastest method to get at the point where the problem occurred
is to use a binary search, that is, if the problem occurred in 1999, start at mid-year, then is the
problem is already here, back to 1st April, if not, to 1st October, and so on.

39

Chapter 3. Other debugging techniques

If you have lot of hard disk free space (a full compile currently takes 400 Mb), copy the oldest
known working version before updating it, it will save time if you need to go back. (it’s better to
make distcleanbefore going back in time, so you have to make everything if you don’t backup the
older version)

When you have found the day where the problem happened, continue the search using the wine-cvs
archive (sorted by date) and a more precise cvs update including hour, minute, second:

cvs update -PAd -D "2004-08-23 15:17:25 CDT"

This will allow you to find easily the exact patch that did it.

6. If you find the patch that is the cause of the problem, you have almost won; report about it to Wine
Bugzilla (http://bugs.winehq.org/) or subscribe to wine-devel and post it there. There is a chance that
the author will jump in to suggest a fix; or there is always the possibility to look hard at the patch
until it is coerced to reveal where is the bug :-)

3.4. Which code has been tested?

Deciding what code should be tested next can be a difficult decision. And in any given project, there is
always code that isn’t tested where bugs could be lurking. This section goes over how to identify these
sections using a tool called gcov.

To use gcov on wine, do the following:

1. In order to activate code coverage in the wine source code, when runningmakesetCFLAGSlike so
make CFLAGS="-fprofile-arcs -ftest-coverage". Note that this can be done at any directory level.
Since compile and run time are significantly increased by these flags, you may want to only use
these flags inside a given dll directory.

2. Run any application or test suite.

3. Run gcov on the file which you would like to know more about code coverage.

The following is an example situation when using gcov to determine the coverage of a file could be
helpful. We’ll use thedlls/lzexpand/lzexpand_main.c. file. At one time the code in this file was
not fully tested (as it may still be). For example at the time of this writing, the functionLZOpenFileA

had the following lines in it:

if ((mode&~0x70)!=OF_READ)
return fd;

if (fd==HFILE_ERROR)
return HFILE_ERROR;

cfd=LZInit(fd);
if ((INT)cfd <= 0) return fd;
return cfd;

40

Chapter 3. Other debugging techniques

Currently there are a few tests written to test this function; however, these tests don’t check that
everything is correct. For instance,HFILE_ERRORmay be the wrong error code to return. Using gcov
and directed tests, we can validate the correctness of this line of code. First, we see what has been tested
already by running gcov on the file. To do this, do the following:

cvs checkout wine
mkdir build
cd build
../wine/configure
make depend && make CFLAGS="-fprofile-arcs -ftest-coverage"
cd dlls/lxexpand/tests
make test
cd ..
gcov ../../../wine/dlls/lzexpand/lzexpand_main.c

0.00% of 3 lines executed in file ../../../wine/include/wine/unicode.h
Creating unicode.h.gcov.
0.00% of 4 lines executed in file /usr/include/ctype.h
Creating ctype.h.gcov.
0.00% of 6 lines executed in file /usr/include/bits/string2.h
Creating string2.h.gcov.
100.00% of 3 lines executed in file ../../../wine/include/winbase.h
Creating winbase.h.gcov.
50.83% of 240 lines executed in file ../../../wine/dlls/lzexpand/lzexpand_main.c
Creating lzexpand_main.c.gcov.

less lzexpand_main.c.gcov

Note that there is more output, but only output of gcov is shown. The output file
lzexpand_main.c.gcov looks like this.

9: 545: if ((mode&~0x70)!=OF_READ)
6: 546: return fd;
3: 547: if (fd==HFILE_ERROR)

#####: 548: return HFILE_ERROR;
3: 549: cfd=LZInit(fd);
3: 550: if ((INT)cfd <= 0) return fd;
3: 551: return cfd;

gcovoutput consists of three components: the number of times a line was run, the line number, and the
actual text of the line. Note: If a line is optimized out by the compiler, it will appear as if it was never
run. The line of code which returnsHFILE_ERRORis never executed (and it is highly unlikely that it is
optimized out), so we don’t know if it is correct. In order to validate this line, there are two parts of this
process. First we must write the test. Please seeChapter 5to learn more about writing tests. We insert the
following lines into a test case:

INT file;

/* Check for nonexistent file. */
file = LZOpenFile("badfilename_", &test, OF_READ);
ok(file == LZERROR_BADINHANDLE,

"LZOpenFile succeeded on nonexistent file\n");

41

Chapter 3. Other debugging techniques

LZClose(file);

Once we add in this test case, we now want to know if the line in question is run by this test and works as
expected. You should be in the same directory as you left off in the previous command example. The
only difference is that we have to remove the*.da files in order to start the count over (if we leave the
files than the number of times the line is run is just added, e.g. line 545 below would be run 19 times) and
we remove the*.gcov files because they are out of date and need to be recreated.

rm *.da *.gcov
cd tests
make
make test
cd ..
gcov ../../../wine/dlls/lzexpand/lzexpand_main.c

0.00% of 3 lines executed in file ../../../wine/include/wine/unicode.h
Creating unicode.h.gcov.
0.00% of 4 lines executed in file /usr/include/ctype.h
Creating ctype.h.gcov.
0.00% of 6 lines executed in file /usr/include/bits/string2.h
Creating string2.h.gcov.
100.00% of 3 lines executed in file ../../../wine/include/winbase.h
Creating winbase.h.gcov.
51.67% of 240 lines executed in file ../../../wine/dlls/lzexpand/lzexpand_main.c
Creating lzexpand_main.c.gcov.

less lzexpand_main.c.gcov

Note that there is more output, but only output of gcov is shown. The output file
lzexpand_main.c.gcov looks like this.

10: 545: if ((mode&~0x70)!=OF_READ)
6: 546: return fd;
4: 547: if (fd==HFILE_ERROR)
1: 548: return HFILE_ERROR;
3: 549: cfd=LZInit(fd);
3: 550: if ((INT)cfd <= 0) return fd;
3: 551: return cfd;

Based on gcov, we now know thatHFILE_ERRORis returned once. And since all of our other tests have
remain unchanged, we can assume that the one time it is returned is to satisfy the one case we added
where we check for it. Thus we have validated a line of code. While this is a cursory example, it
demostrates the potential usefulness of this tool.

For a further in depth description of gcov, the official gcc compiler suite page for gcov is
http://gcc.gnu.org/onlinedocs/gcc-3.2.3/gcc/Gcov.html
(http://gcc.gnu.org/onlinedocs/gcc-3.2.3/gcc/Gcov.html). There is also an excellent article written by
Steve Best for Linux Magazine which describes and illustrates this process very well at

42

Chapter 3. Other debugging techniques

http://www.linux-mag.com/2003-07/compile_01.html
(http://www.linux-mag.com/2003-07/compile_01.html).

43

Chapter 4. Coding Practice

This chapter describes the relevant coding practices in Wine, that you should be aware of before doing
any serious development in Wine.

4.1. Patch Format

Patches are submitted via email to the Wine patches mailing list, <wine-patches@winehq.org >. Your
patch should include:

• A meaningful subject (very short description of patch)

• A long (paragraph) description of what was wrong and what is now better. (recommended)

• A change log entry (short description of what was changed).

• The patch indiff -u format

cvs diff -u works great for the common case where a file is edited. However, if you add or remove a file
cvs diff will not report that correctly so make sure you explicitly take care of this rare case.

For additions simply include them by appending thediff -u /dev/null /my/new/file output of them to any
cvs diff -u output you may have. Alternatively, usediff -Nu olddir/ newdir/ in case of multiple new files
to add.

For removals, clearly list the files in the description of the patch.

Since wine is constantly changing due to development it is strongly recommended that you use cvs for
patches, if you cannot use cvs for some reason, you can submit patches against the latest tarball. To do
this make a copy of the files that you will be modifying anddiff -u against the old file. I.E.

diff -u file.old file.c > file.txt

4.2. Some notes about style

There are a few conventions about coding style that have been adopted over the years of development.
The rational for these “rules” is explained for each one.

• No HTML mail, since patches should be in-lined and HTML turns the patch into garbage. Also it is
considered bad etiquette as it uglifies the message, and is not viewable by many of the subscribers.

44

Chapter 4. Coding Practice

• Only one change set per patch. Patches should address only one bug/problem at a time. If a lot of
changes need to be made then it is preferred to break it into a series of patches. This makes it easier to
find regressions.

• Tabs are not forbidden but discouraged. A tab is defined as 8 characters and the usual amount of
indentation is 4 characters.

• C++ style comments are discouraged since some compilers choke on them.

• Commenting out a block of code is usually done by enclosing it in#if 0 ... #endifStatements. For
example.

/* note about reason for commenting block */
#if 0
code
code /* comments */
code
#endif

The reason for using this method is that it does not require that you edit comments that may be inside
the block of code.

• Patches should be in-lined (if you can configure your email client to not wrap lines), or attached as
plain text attachments so they can be read inline. This may mean some more work for you. However it
allows others to review your patch easily and decreases the chances of it being overlooked or forgotten.

• Code is usually limited to 80 columns. This helps prevent mailers mangling patches by line wrap. Also
it generally makes code easier to read.

• If the patch fixes a bug in Bugzilla please provide a link to the bug in the comments of the patch. This
will make it easier for the maintainers of Bugzilla.

4.2.1. Inline attachments with Outlook Express

Outlook Express is notorious for mangling attachments. Giving the patch a.txt extension and attaching
will solve the problem for most mailers including Outlook. Also, there is a way to enable Outlook
Express to send.diff attachments.

You need the following two things to make it work.

1. Make sure that.diff files have \r\n line ends, because if OE detects that there is no \r\n line
endings it switches to quoted-printable format attachments.

2. Using regedit add key "Content Type" with value "text/plain" to the.diff extension under
HKEY_CLASSES_ROOT (same as for.txt extension). This tells OE to use
Content-Type: text/plain instead of application/octet-stream.

45

Chapter 4. Coding Practice

Item #1 is important. After you hit the "Send" button, go to "Outbox" and using "Properties" verify the
message source to make sure that the mail has the correct format. You might want to send several test
emails to yourself too.

4.2.2. Alexandre’s Bottom Line

“The basic rules are: no attachments, no MIME crap, no line wrapping, a single patch per mail. Basically
if I can’t do "cat raw_mail | patch -p0" it’s in the wrong format.”

4.3. Quality Assurance

(Or, "How do I get Alexandre to apply my patch quickly so I can build on it and it will not go stale?")

Make sure your patch applies to the current CVS head revisions. If a bunch of patches are committed to
CVS that may affect whether your patch will apply cleanly then verify that your patch does apply!cvs
update is your friend!

Save yourself some embarrassment and run your patched code against more than just your current test
example. Experience will tell you how much effort to apply here. If there are any conformance tests for
the code you’re working on, run them and make sure they still pass after your patch is applied. Running
tests can be done by runningmake test. You may need to runmake testcleanto undo the results of a
previous test run. See the “testing” guide for more details on Wine’s conformance tests.

4.4. Porting Wine to new Platforms

This document provides a few tips on porting Wine to your favorite (UNIX-based) operating system.

4.4.1. Why #ifdef MyOS is probably a mistake.

Operating systems change. Maybe yours doesn’t have thefoo.h header, but maybe a future version will
have it. If you want to #include<foo.h>, it doesn’t matter what operating system you are using; it only
matters whetherfoo.h is there.

Furthermore, operating systems change names or "fork" into several ones. An #ifdef MyOs will break
over time.

46

Chapter 4. Coding Practice

If you use the feature ofautoconf -- the Gnu auto-configuration utility -- wisely, you will help future
porters automatically because your changes will test forfeatures, not names of operating systems. A
feature can be many things:

• existence of a header file

• existence of a library function

• existence of libraries

• bugs in header files, library functions, the compiler, ...

You will need Gnu Autoconf, which you can get from your friendly Gnu mirror. This program takes
Wine’s configure.ac file and produces aconfigure shell script that users use to configure Wine to
their system.

Thereareexceptions to the "avoid #ifdef MyOS" rule. Wine, for example, needs the internals of the
signal stack -- that cannot easily be described in terms of features. Moreover, you cannot use
autoconf ’s HAVE_* symbols in Wine’s headers, as these may be used by Winelib users who may not
be using aconfigure script.

Let’s now turn to specific porting problems and how to solve them.

4.4.2. MyOS doesn’t have the foo.h header!

This first step is to makeautoconfcheck for this header. Inconfigure.in you add a segment like this
in the section that checks for header files (search for "header files"):

AC_CHECK_HEADER(foo.h, AC_DEFINE(HAVE_FOO_H))

If your operating system supports a header file with the same contents but a different name, saybar.h ,
add a check for that also.

Now you can change

#include <foo.h >

to

#ifdef HAVE_FOO_H
#include <foo.h >

#elif defined (HAVE_BAR_H)
#include <bar.h >

#endif

47

Chapter 4. Coding Practice

If your system doesn’t have a corresponding header file even though it has the library functions being
used, you might have to add an #else section to the conditional. Avoid this if you can.

You will also need to add #undef HAVE_FOO_H (etc.) toinclude/config.h.in

Finish up withmake configureand./configure.

4.4.3. MyOS doesn’t have the bar function!

A typical example of this is thememmovefunction. To solve this problem you would addmemmoveto the
list of functions thatautoconfchecks for. Inconfigure.in you search forAC_CHECK_FUNCSand add
memmove. (You will notice that someone already did this for this particular function.)

Secondly, you will also need to add #undef HAVE_BAR toinclude/config.h.in

The next step depends on the nature of the missing function.

Case 1:

It’s easy to write a complete implementation of the function. (memmovebelongs to this case.)

You add your implementation inmisc/port.c surrounded by #ifndef HAVE_MEMMOVE and
#endif.

You might have to add a prototype for your function. If so,include/miscemu.h might be the
place. Don’t forget to protect that definition by #ifndef HAVE_MEMMOVE and #endif also!

Case 2:

A general implementation is hard, but Wine is only using a special case.

An example is the variouswait calls used inSIGNAL_child from loader/signal.c . Here we
have a multi-branch case on features:

#ifdef HAVE_THIS
...
#elif defined (HAVE_THAT)
...
#elif defined (HAVE_SOMETHING_ELSE)
...
#endif

48

Chapter 4. Coding Practice

Note that this is very different from testing on operating systems. If a new version of your operating
systems comes out and adds a new function, this code will magically start using it.

Finish up withmake configureand./configure.

4.5. Adding New Languages

This file documents the necessary procedure for adding a new language to the list of languages that Wine
can display system menus and forms in. Adding new translations is not hard as it requires no
programming knowledge or special skills.

Language dependent resources reside in files namedsomefile_Xx.rc or Xx.rc , whereXx is your
language abbreviation (look for it ininclude/winnls.h). These are included in a master file named
somefile.rc or rsrc.rc , located in the same directory as the language files.

To add a new language to one of these resources you need to make a copy of the English resource
(located in thesomefile_En.rc file) over to yoursomefile_Xx.rc file, include this file in the master
somefile.rc file, and edit the new file to translate the English text. You may also need to rearrange
some of the controls to better fit the newly translated strings. Test your changes to make sure they
properly layout on the screen.

In menus, the character "&" means that the next character will be highlighted and that pressing that letter
will select the item. You should place these "&" characters suitably for your language, not just copy the
positions from English. In particular, items within one menu should have different highlighted letters.

To get a list of the files that need translating, run the following command in the root of your Wine tree:
find -name "*En.rc" .

When adding a new language, also make sure the parameters defined in./dlls/kernel/nls/*.nls

fit your local habits and language.

49

Chapter 5. Writing Conformance tests

5.1. Introduction

The Windows API follows no standard, it is itself a de facto standard, and deviations from that standard,
even small ones, often cause applications to crash or misbehave in some way.

The question becomes, "How do we ensure compliance with that standard?" The answer is, "By using
the API documentation available to us and backing that up with conformance tests." Furthermore, a
conformance test suite is the most accurate (if not necessarily the most complete) form of API
documentation and can be used to supplement the Windows API documentation.

Writing a conformance test suite for more than 10000 APIs is no small undertaking. Fortunately it can
prove very useful to the development of Wine way before it is complete.

• The conformance test suite must run on Windows. This is necessary to provide a reasonable way to
verify its accuracy. Furthermore the tests must pass successfully on all Windows platforms (tests not
relevant to a given platform should be skipped).

A consequence of this is that the test suite will provide a great way to detect variations in the API
between different Windows versions. For instance, this can provide insights into the differences
between the, often undocumented, Win9x and NT Windows families.

However, one must remember that the goal of Wine is to run Windows applications on Linux, not to be
a clone of any specific Windows version. So such variations must only be tested for when relevant to
that goal.

• Writing conformance tests is also an easy way to discover bugs in Wine. Of course, before fixing the
bugs discovered in this way, one must first make sure that the new tests do pass successfully on at least
one Windows 9x and one Windows NT version.

Bugs discovered this way should also be easier to fix. Unlike some mysterious application crashes,
when a conformance test fails, the expected behavior and APIs tested for are known thus greatly
simplifying the diagnosis.

• To detect regressions. Simply running the test suite regularly in Wine turns it into a great tool to detect
regressions. When a test fails, one immediately knows what was the expected behavior and which
APIs are involved. Thus regressions caught this way should be detected earlier, because it is easy to
run all tests on a regular basis, and be easier to fix because of the reduced diagnosis work.

50

Chapter 5. Writing Conformance tests

• Tests written in advance of the Wine development (possibly even by non Wine developers) can also
simplify the work of the future implementer by making it easier for him to check the correctness of his
code.

• Conformance tests will also come in handy when testing Wine on new (or not as widely used)
architectures such as FreeBSD, Solaris x86 or even non-x86 systems. Even when the port does not
involve any significant change in the thread management, exception handling or other low-level
aspects of Wine, new architectures can expose subtle bugs that can be hard to diagnose when
debugging regular (complex) applications.

5.2. What to test for?

The first thing to test for is the documented behavior of APIs and such as CreateFile. For instance one
can create a file using a long pathname, check that the behavior is correct when the file already exists, try
to open the file using the corresponding short pathname, convert the filename to Unicode and try to open
it using CreateFileW, and all other things which are documented and that applications rely on.

While the testing framework is not specifically geared towards this type of tests, it is also possible to test
the behavior of Windows messages. To do so, create a window, preferably a hidden one so that it does
not steal the focus when running the tests, and send messages to that window or to controls in that
window. Then, in the message procedure, check that you receive the expected messages and with the
correct parameters.

For instance you could create an edit control and use WM_SETTEXT to set its contents, possibly check
length restrictions, and verify the results using WM_GETTEXT. Similarly one could create a listbox and
check the effect of LB_DELETESTRING on the list’s number of items, selected items list, highlighted
item, etc. For concrete examples, seedlls/user/tests/win.c and the related tests.

However, undocumented behavior should not be tested for unless there is an application that relies on
this behavior, and in that case the test should mention that application, or unless one can strongly expect
applications to rely on this behavior, typically APIs that return the required buffer size when the buffer
pointer is NULL.

5.3. Running the tests in Wine

The simplest way to run the tests in Wine is to type ’make test’ in the Wine sources top level directory.
This will run all the Wine conformance tests.

The tests for a specific Wine library are located in a ’tests’ directory in that library’s directory. Each test
is contained in a file (e.g.dlls/kernel/tests/thread.c). Each file itself contains many checks
concerning one or more related APIs.

51

Chapter 5. Writing Conformance tests

So to run all the tests related to a given Wine library, go to the corresponding ’tests’ directory and type
’make test’. This will compile the tests, run them, and create an ’xxx .ok’ file for each test that passes
successfully. And if you only want to run the tests contained in thethread.c file of the kernel library,
you would do:

$ cd dlls/kernel/tests
$ make thread.ok

Note that if the test has already been run and is up to date (i.e. if neither the kernel library nor the
thread.c file has changed since thethread.ok file was created), then make will say so. To force the
test to be re-run, delete thethread.ok file, and run the make command again.

You can also run tests manually using a command similar to the following:

$../../../tools/runtest -q -M kernel32.dll -p kernel32_test.exe.so thread.c
$../../../tools/runtest -P wine -p kernel32_test.exe.so thread.c
thread.c: 86 tests executed, 5 marked as todo, 0 failures.

The ’-P wine’ option defines the platform that is currently being tested and is used in conjunction with
the ’todo’ statements (see below). Remove the ’-q’ option if you want the testing framework to report
statistics about the number of successful and failed tests. Runruntest -h for more details.

5.4. Cross-compiling the tests with MinGW

5.4.1. Setup of the MinGW cross-compiling environment

Here are some instructions to setup MinGW on different Linux distributions and *BSD.

5.4.1.1. Debian GNU/Linux

On Debian doapt-get install mingw32.

The standard MinGW libraries will probably be incomplete, causing ’undefined symbol’ errors. So get
the latest mingw-w32api RPM (http://mirzam.it.vu.nl/mingw/) and usealien to either convert it to a
.tar.gz file from which to extract just the relevant files, or to convert it to a Debian package that you will
install.

52

Chapter 5. Writing Conformance tests

5.4.1.2. Red Hat Linux like rpm systems

This includes Fedora Core, Red Hat Enterprise Linux, Mandrake, most probably SuSE Linux too, etc.
But this list isn’t exhaustive; the following steps should probably work on any rpm based system.

Download and install the latest rpm’s from MinGW RPM packages (http://mirzam.it.vu.nl/mingw/).
Alternatively you can follow the instructions on that page and build your own packages from the source
rpm’s listed there as well.

5.4.1.3. *BSD

The *BSD systems have in their ports collection a port for the MinGW cross-compiling environment.
Please see the documentation of your system about how to build and install a port.

5.4.2. Compiling the tests

Having the cross-compiling environment set up the generation of the Windows executables is easy by
using the Wine build system.

If you had already runconfigure, then deleteconfig.cache and re-runconfigure. You can then run
make crosstest. To sum up:

$ rm config.cache

$./configure

$ make crosstest

5.5. Building and running the tests on Windows

5.5.1. Using pre-compiled binaries

The simplest solution is to download the latest version of winetest
(http://www.astro.gla.ac.uk/users/paulm/WRT/CrossBuilt/winetest-latest.exe). This executable contains
all the Wine conformance tests, runs them and reports the results.

You can also get the older versions from Paul Millar’s website
(http://www.astro.gla.ac.uk/users/paulm/WRT/CrossBuilt/).

53

Chapter 5. Writing Conformance tests

5.5.2. With Visual C++

• If you are using Visual Studio 6, make sure you have the "processor pack" from
http://msdn.microsoft.com/vstudio/downloads/tools/ppack/default.aspx. The processor pack fixes
"error C2520: conversion from unsigned __int64 to double not implemented, use signed __int64".
However note that the "processor pack" is incompatible with Visual Studio 6.0 Standard Edition, and
with the Visual Studio 6 Service Pack 6. If you are using Visual Studio 7 or greater you do not need
the processor pack. In either case it is recommended to the most recent compatible Visual Studio
service pack (http://msdn.microsoft.com/vstudio/downloads/updates/sp/).

• get the Wine sources

• Run msvcmaker to generate Visual C++ project files for the tests. ’msvcmaker’ is a perl script so you
may be able to run it on Windows.

$./tools/winapi/msvcmaker --no-wine

• If the previous steps were done on your Linux development machine, make the Wine sources
accessible to the Windows machine on which you are going to compile them. Typically you would do
this using Samba but copying them altogether would work too.

• On the Windows machine, open thewinetest.dsw workspace. This will load each test’s project. For
each test there are two configurations: one compiles the test with the Wine headers, and the other uses
the Microsoft headers.

• If you choose the "Win32 MSVC Headers" configuration, most of the tests will not compile with the
regular Visual Studio headers. So to use this configuration, download and install a recent Platform
SDK (http://www.microsoft.com/msdownload/platformsdk/sdkupdate/) as well as the latest DirectX
SDK (http://msdn.microsoft.com/library/default.asp?url=/downloads/list/directx.asp). Then, configure
Visual Studio (http://msdn.microsoft.com/library/default.asp?url=/library/EN-
US/sdkintro/sdkintro/installing_the_platform_sdk_with_visual_studio.asp) to use these SDK’s
headers and libraries. Alternately you could go to theProject+Settings... menu and modify the
settings appropriately, but you would then have to redo this whenever you rerun msvcmaker.

• Open theBuild+Batch build... menu and select the tests and build configurations you want to build.
Then click onBuild.

• To run a specific test from Visual C++, go toProject+Settings.... There select that test’s project and
build configuration and go to theDebug tab. There type the name of the specific test to run (e.g.
’thread’) in theProgram arguments field. Validate your change by clicking onOk and start the test
by clicking the red exclamation mark (or hitting ’F5’ or any other usual method).

• You can also run the tests from the command line. You will find them in either
Output\Win32_Wine_Headers or Output\Win32_MSVC_Headers depending on the build
method. So to run the kernel ’path’ tests you would do:

C:\ >cd dlls\kernel\tests\Output\Win32_MSVC_Headers
C:\wine\dlls\kernel\tests\Output\Win32_MSVC_Headers > kernel32_test path

5.5.3. With MinGW

Wine’s build system already has support for building tests with a MinGW cross-compiler. See the section

54

Chapter 5. Writing Conformance tests

above called ’Setup of the MinGW cross-compiling environment’ for instructions on how to set things
up. When you have a MinGW environment installed all you need to do is rerun configure and it should
detect the MinGW compiler and tools. Then run ’make crosstest’ to start building the tests.

5.5.4. Standalone, using the Microsoft C++ Toolkit

Sometimes it’s nice to be able to build a new unit test on Windows without Wine, and without buying
Microsoft Visual C++. Here’s the simplest way to do that on a Windows system:

• Download and install the free-as-in-beer Microsoft C++ Toolkit
(http://msdn.microsoft.com/visualc/vctoolkit2003) and the Microsoft Platform SDK
(http://www.microsoft.com/msdownload/platformsdk/sdkupdate).

• Make a directorywine underneath your work directory, and copy the filewine/test.h from the
Wine source tree there. (You can download this file from the latest revision at
http://cvs.winehq.org/cvsweb/wine/include/wine/test.h).

• Copy some existing test from the Wine source tree, or create your test program (say,mytest.c) using
Notepad, being sure to begin it with#include <wine/test.h> following the usual Wine test style.

• Finally, in a command prompt window, compile the test with the command

C:\your\work\dir >cl -I. -DSTANDALONE -D_X86_ mytest.c

• Once that’s working, try running the program under Wine without recompiling it. See? No Wine
source required at all, save for that one header,wine/test.h .

• If you want to use the Microsoft C++ Toolkit under Wine, install it under Windows, then copy it to
your fake C drive; it’ll work fine there. See CL Howto (http://kegel.com/wine/cl-howto.html) for some
tips on making it easy to use from the Linux commandline.

5.6. Inside a test

When writing new checks you can either modify an existing test file or add a new one. If your tests are
related to the tests performed by an existing file, then add them to that file. Otherwise create a new .c file
in the tests directory and add that file to theCTESTSvariable inMakefile.in .

A new test file will look something like the following:

#include <wine/test.h >

#include <winbase.h >

/* Maybe auxiliary functions and definitions here */

START_TEST(paths)
{

55

Chapter 5. Writing Conformance tests

/* Write your checks there or put them in functions you will call from
* there
*/

}

The test’s entry point is the START_TEST section. This is where execution will start. You can put all
your tests in that section but it may be better to split related checks in functions you will call from the
START_TEST section. The parameter to START_TEST must match the name of the C file. So in the
above example the C file would be calledpaths.c .

Tests should start by including thewine/test.h header. This header will provide you access to all the
testing framework functions. You can then include the windows header you need, but make sure to not
include any Unix or Wine specific header: tests must compile on Windows.

You can usetrace to print informational messages. Note that these messages will only be printed if
’runtest -v’ is being used.

trace("testing GlobalAddAtomA\n");
trace("foo=%d\n",foo);

Then just call functions and useok to make sure that they behaved as expected:

ATOM atom = GlobalAddAtomA("foobar");
ok(GlobalFindAtomA("foobar") == atom, "could not find atom foobar\n");
ok(GlobalFindAtomA("FOOBAR") == atom, "could not find atom FOOBAR\n");

The first parameter ofok is an expression which must evaluate to true if the test was successful. The next
parameter is a printf-compatible format string which is displayed in case the test failed, and the following
optional parameters depend on the format string.

5.7. Writing good error messages

The message that is printed when a test fails isextremelyimportant.

Someone will take your test, run it on a Windows platform that you don’t have access to, and discover
that it fails. They will then post an email with the output of the test, and in particular your error message.
Someone, maybe you, will then have to figure out from this error message why the test failed.

56

Chapter 5. Writing Conformance tests

If the error message contains all the relevant information that will be easy. If not, then it will require
modifying the test, finding someone to compile it on Windows, sending the modified version to the
original tester and waiting for his reply. In other words, it will be long and painful.

So how do you write a good error message? Let’s start with an example of a bad error message:

ok(GetThreadPriorityBoost(curthread,&disabled)!=0,
"GetThreadPriorityBoost Failed\n");

This will yield:

thread.c:123: Test failed: GetThreadPriorityBoost Failed

Did you notice how the error message provides no information about why the test failed? We already
know from the line number exactly which test failed. In fact the error message gives strictly no
information that cannot already be obtained by reading the code. In other words it provides no more
information than an empty string!

Let’s look at how to rewrite it:

BOOL rc;
...

rc=GetThreadPriorityBoost(curthread,&disabled);
ok(rc!=0 && disabled==0,"rc=%d error=%ld disabled=%d\n",

rc,GetLastError(),disabled);

This will yield:

thread.c:123: Test failed: rc=0 error=120 disabled=0

When receiving such a message, one would check the source, see that it’s a call to
GetThreadPriorityBoost, that the test failed not because the API returned the wrong value, but because it
returned an error code. Furthermore we see that GetLastError() returned 120 which winerror.h defines as
ERROR_CALL_NOT_IMPLEMENTED. So the source of the problem is obvious: this Windows
platform (here Windows 98) does not support this API and thus the test must be modified to detect such a
condition and skip the test.

So a good error message should provide all the information which cannot be obtained by reading the
source, typically the function return value, error codes, and any function output parameter. Even if more
information is needed to fully understand a problem, systematically providing the above is easy and will
help cut down the number of iterations required to get to a resolution.

57

Chapter 5. Writing Conformance tests

It may also be a good idea to dump items that may be hard to retrieve from the source, like the expected
value in a test if it is the result of an earlier computation, or comes from a large array of test values (e.g.
index 112 of _pTestStrA in vartest.c). In that respect, for some tests you may want to define a macro such
as the following:

#define eq(received, expected, label, type) \
ok((received) == (expected), "%s: got " type " instead of " type "\n", (label),(received),(expected))

...

eq(b, curr_val, "SPI_{GET,SET}BEEP", "%d");

5.8. Handling platform issues

Some checks may be written before they pass successfully in Wine. Without some mechanism, such
checks would potentially generate hundred of known failures for months each time the tests are being
run. This would make it hard to detect new failures caused by a regression. or to detect that a patch fixed
a long standing issue.

Thus the Wine testing framework has the concept of platforms and groups of checks can be declared as
expected to fail on some of them. In the most common case, one would declare a group of tests as
expected to fail in Wine. To do so, use the following construct:

todo_wine {
SetLastError(0xdeadbeef);
ok(GlobalAddAtomA(0) == 0 && GetLastError() == 0xdeadbeef, "failed to add atom 0\n");

}

On Windows the above check would be performed normally, but on Wine it would be expected to fail,
and not cause the failure of the whole test. However. If that check were to succeed in Wine, it would
cause the test to fail, thus making it easy to detect when something has changed that fixes a bug. Also
note that todo checks are accounted separately from regular checks so that the testing statistics remain
meaningful. Finally, note that todo sections can be nested so that if a test only fails on the cygwin and
reactos platforms, one would write:

todo("cygwin") {
todo("reactos") {

...
}

}

But specific platforms should not be nested inside a todo_wine section since that would be redundant.

When writing tests you will also encounter differences between Windows 9x and Windows NT
platforms. Such differences should be treated differently from the platform issues mentioned above. In

58

Chapter 5. Writing Conformance tests

particular you should remember that the goal of Wine is not to be a clone of any specific Windows
version but to run Windows applications on Unix.

So, if an API returns a different error code on Windows 9x and Windows NT, your check should just
verify that Wine returns one or the other:

ok (GetLastError() == WIN9X_ERROR || GetLastError() == NT_ERROR, ...);

If an API is only present on some Windows platforms, then use LoadLibrary and GetProcAddress to
check if it is implemented and invoke it. Remember, tests must run on all Windows platforms. Similarly,
conformance tests should nor try to correlate the Windows version returned by GetVersion with whether
given APIs are implemented or not. Again, the goal of Wine is to run Windows applications (which do
not do such checks), and not be a clone of a specific Windows version.

59

Chapter 6. Documenting Wine

This chapter describes how you can help improve Wine’s documentation.

Like most large scale volunteer projects, Wine is strongest in areas that are rewarding for its volunteers
to work in. The majority of contributors send code patches either fixing bugs, adding new functionality
or otherwise improving the software components of the distribution. A lesser number contribute in other
ways, such as reporting bugs and regressions, creating tests, providing organizational assistance, or
helping to document Wine.

Documentation is important for many reasons, and is often the key to the end user having a successful
experience in installing, setting up and using software. Because Wine is a complicated, evolving entity,
providing quality up to date documentation is vital to encourage more people to persevere with using and
contributing to the project. The following sections describe in detail how to go about adding to or
updating Wine’s existing documentation.

6.1. An Overview Of Wine Documentation

The Wine source code tree comes with a large amount of documentation in thedocumentation/

subdirectory. This used to be a collection of text files culled from various places such as the Wine
Weekly News and the wine-devel mailing list, but was reorganized some time ago into a number of
books, each of which is marked up using SGML. You are reading one of these books (theWine
Developer’s Guide) right now.

Since being reorganized, the books have been updated and extended regularly. In their current state they
provide a good framework which over time can be expanded and kept up to date. This means that most of
the time when further documentation is added, it is a simple matter of updating the content of an already
existing file. The books available at the time of writing are:

• TheWine User Guide. This book contains information for end users on installing, configuring and
running Wine.

• TheWine Developer’s Guide. This book contains information and guidelines for developers and
contributors to the Wine project.

• TheWinelib User’s Guide. This book contains information for developers using Winelib to port Win32
applications to Unix.

• TheWine Packager’s Guide. This book contains information for anyone who will be distributing Wine
to end users in a prepackaged format. It is also the exception to the rule as it has intentionally been
kept in text format.

• TheWine FAQ. This book contains frequently asked questions about Wine with their answers.

60

Chapter 6. Documenting Wine

Another source of documentation is theWine API Guide. This is generated information taken from
special comments placed in the Wine source code. When you update or add new API calls to Wine you
should consider documenting them so that developers can determine what the API does and how it
should be used.

The next sections describe how to create Wine API documentation and how to work with SGML so you
can add to the existing books.

6.2. Writing Wine API Documentation

6.2.1. Introduction to API Documentation

Wine includes a large amount of documentation on the API functions it implements. There are several
reasons to want to document the Win32 API:

• To allow Wine developers to know what each function should do, should they need to update or fix it.

• To allow Winelib users to understand the functions that are available to their applications.

• To provide an alternative source of free documentation on the Win32 API.

• To provide more accurate documentation where the existing documentation is accidentally or
deliberately vague or misleading.

To this end, a semi formalized way of producing documentation from the Wine source code has evolved.
Since the primary users of API documentation are Wine developers themselves, documentation is usually
inserted into the source code in the form of comments and notes. Good things to include in the
documentation of a function include:

• The purpose of the function.

• The parameters of the function and their purpose.

• The return value of the function, in success as well as failure cases.

• Additional notes such as interaction with other parts of the system, differences between Wine’s
implementation and Win32s, errors in MSDN documentation, undocumented cases and bugs that
Wine corrects or is compatible with.

Good documentation helps developers be aware of the effects of making changes. It also allows good
tests to be written which cover all of the documented cases.

Note that you do not need to be a programmer to update the documentation in Wine. If you would like to
contribute to the project, patches that improve the API documentation are welcome. The following

61

Chapter 6. Documenting Wine

describes how to format any documentation that you write so that the Wine documentation generator can
extract it and make it available to other developers and users.

In general, if you did not write the function in question, you should be wary of adding comments to other
peoples code. It is quite possible you may misunderstand or misrepresent what the original author
intended! Adding API documentation on the other hand can be done by anybody, since in most cases
there is plenty of information about what a function is supposed to do (if it isn’t obvious) available in
books and articles on the internet.

A final warning concerns copyright and must be noted. If you read MSDN or any publication in order to
find out what an API call does, you must be aware that the text you are reading is copyrighted and in
most cases cannot legally be reproduced without the authors permission. If you copy verbatim any
information from such sources and submit it for inclusion into Wine, you open yourself up to potential
legal liability. You must ensure that anything you submit is your own work, although it can be based on
your understanding gleaned from reading other peoples work.

6.2.2. Basic API Documentation

The general form of an API comment in Wine is a block comment immediately before a function is
implemented in the source code. General comments within a function body or at the top of an
implementation file are ignored by the API documentation generator. Such comments are for the benefit
of developers only, for example to explain what the source code is doing or to describe something that
may not be obvious to the person reading the source code.

The following text uses the functionPathRelativePathToA()from SHLWAPI.DLL as an example. You can
find this function in the Wine source code tree in the filedlls/shlwapi/path.c .

The first line of the comment gives the name of the function, the DLL that the function is exported from,
and its export ordinal number. This is the simplest (and most common type of) comment:

/***
* PathRelativePathToW [SHLWAPI.@]
*/

The functions name and the DLL name are obvious. The ordinal number takes one of two forms: Either
@ as in the above, or a number if the export is exported by ordinal. You can see which to use by looking
at the DLL’s .spec file. If the line on which the function is listed begins with a number, use it, otherwise
use the@ symbol, which indicates that this function is imported only by name.

Note also that round or square brackets can be used, and whitespace between the name and the
DLL/ordinal is free form. Thus the following is equally valid:

/***

62

Chapter 6. Documenting Wine

* PathRelativePathToW (SHLWAPI.@)
*/

This basic comment will not get processed into documentation, since it contains no information. In order
to produce documentation for the function, We must add some of the information listed above.

First we add a description of the function. This can be as long as you like, but typically contains only a
brief description of what the function is meant to do in general terms. It is free form text:

/***
* PathRelativePathToW [SHLWAPI.@]
*
* Create a relative path from one path to another.
*/

To be truly useful however we must document the parameters to the function. There are two methods for
doing this: In the comment, or in the function prototype.

Parameters documented in the comment should be formatted as follows:

/***
* PathRelativePathToW [SHLWAPI.@]
*
* Create a relative path from one path to another.
*
* PARAMS
* lpszPath [O] Destination for relative path
* lpszFrom [I] Source path
* dwAttrFrom [I] File attribute of source path
* lpszTo [I] Destination path
* dwAttrTo [I] File attributes of destination path
*
*/

The parameters section starts withPARAMS on its own line. Each parameter is listed in the order they
appear in the functions prototype, first with the parameters name, followed by its input/output status,
followed by a free form text description of the comment.

The input/output status tells the programmer whether the value will be modified by the function (an
output parameter), or only read (an input parameter). The status must be enclosed in square brackets to
be recognized, otherwise, or if it is absent, anything following the parameter name is treated as the
parameter description. This field is case insensitive and can be any of the following:[I] , [In] , [O] , [Out] ,
[I/O] , [In/Out] .

63

Chapter 6. Documenting Wine

Following the description and parameters come a number of optional sections, all in the same format. A
section is defined as the section name, which is an all upper case section name on its own line, followed
by free form text. You can create any sections you like, however for consistency it is recommended you
use the following section names:

1. NOTES. Anything that needs to be noted about the function such as special cases and the effects of
input arguments.

2. BUGS. Any bugs in the function that exist ’by design’, i.e. those that will not be fixed or exist for
compatibility with Windows.

3. TODO. Any unhandled cases or missing functionality in the Wine implementation of the function.

4. FIXME . Things that should be updated or addressed in the implementation of the function at some
future date (perhaps dependent on other parts of Wine). Note that if this information is only relevant
to Wine developers then it should probably be placed in the relevant code section instead.

Following or before the optional sections comes theRETURNS section which describes the return value
of the function. This is free form text but should include what is returned on success as well as possible
error return codes. Note that this section must be present for documentation to be generated for your
comment.

Our final documentation looks like the following:

/***
* PathRelativePathToW [SHLWAPI.@]
*
* Create a relative path from one path to another.
*
* PARAMS
* lpszPath [O] Destination for relative path
* lpszFrom [I] Source path
* dwAttrFrom [I] File attribute of source path
* lpszTo [I] Destination path
* dwAttrTo [I] File attributes of destination path
*
* RETURNS
* TRUE If a relative path can be formed. lpszPath contains the new path
* FALSE If the paths are not relative or any parameters are invalid
*
* NOTES
* lpszTo should be at least MAX_PATH in length.
* Calling this function with relative paths for lpszFrom or lpszTo may
* give erroneous results.
*
* The Win32 version of this function contains a bug where the lpszTo string
* may be referenced 1 byte beyond the end of the string. As a result random
* garbage may be written to the output path, depending on what lies beyond
* the last byte of the string. This bug occurs because of the behaviour of
* PathCommonPrefix() (see notes for that function), and no workaround seems

64

Chapter 6. Documenting Wine

* possible with Win32.
* This bug has been fixed here, so for example the relative path from "\\"
* to "\\" is correctly determined as "." in this implementation.
*/

6.2.3. Advanced API Documentation

There is no markup language for formatting API comments, since they should be easily readable by any
developer working on the source file. A number of constructs are treated specially however, and are
noted here. You can use these constructs to enhance the usefulness of the generated documentation by
making it easier to read and referencing related documents.

Any valid c identifier that ends with() is taken to be an API function and is formatted accordingly. When
generating documentation, this text will become a link to that API call, if the output type supports
hyperlinks or their equivalent.

Similarly, any interface name starting with a capital I and followed by the words "reference" or "object"
become a link to that objects documentation.

Where an Ascii and Unicode version of a function are available, it is recommended that you document
only the Unicode version and have the Ascii version refer to the Unicode one, as follows:

/***
* PathRelativePathToA [SHLWAPI.@]
*
* See PathRelativePathToW.
*/

Alternately you may use the following form:

/***
* PathRelativePathToA [SHLWAPI.@]
*
* Unicode version of PathRelativePathToW.
*/

You may also use this construct in any other section, such asNOTES.

Any numbers and text in quotes ("") are highlighted.

65

Chapter 6. Documenting Wine

Words in all uppercase are assumed to be API constants and are highlighted. If you want to emphasize
something in the documentation, put it in a section by itself rather than making it upper case.

Blank lines in a section cause a new paragraph to be started. Blank lines at the start and end of sections
are ignored.

Any comment line starting with ("*|") is treated as raw text and is not pre-processed before being output.
This should be used for code listings, tables and any text that should remain unformatted.

Any line starting with a single word followed by a colon (:) is assumed to be case listing and is
emphasized and put in its own paragraph. This is most often used for return values, as in the example
section below.

* RETURNS
* Success: TRUE. Something happens that is documented here.
* Failure: FALSE. The reasons why this call can fail are listed here.

Any line starting with a (-) is put into a paragraph by itself. this allows lists to avoid being run together.

If you are in doubt as to how your comment will look, try generating the API documentation and
checking the output.

6.2.4. Extra API Documentation

Simply documenting the API calls available provides a great deal of information to developers working
with the Win32 API. However additional documentation is needed before the API Guide can be
considered truly useful or comprehensive. For example, COM objects that are available for developers
use should be documented, along with the interface(s) that those objects export. Also, it would be helpful
to document each dll, to provide some structure to the documentation.

To facilitate providing extra documentation, you can create comments that provide extra documentation
on functions, or on keywords such as the name of a COM interface or a type definition.

These items are generated using the same formatting rules as described earlier. The only difference is the
first line of the comment, which indicates to the generator that the documentation is supplemental and
does not describe an export from the dll being processed.

Lets assume you have implemented a COM interface that you want to document; we’ll use the name
IExample as an example here. Your comment would look like the following (assuming you are
exporting this object fromEXAMPLE.DLL):

/***

66

Chapter 6. Documenting Wine

* IExample {EXAMPLE}
*
* The IExample object provides lots of interesting functionality.
* ...
*/

Format this documentation exactly as you would a standard export. The only difference is the use of
curly brackets to mark this documentation as supplemental. The generator will output this documentation
using the name given before the DLL name, and will link to it from the main DLL page. In addition, if
you have referred to the comment name in other documentation using "IExample interface", "IExample
object", or "IExample()", those references will point to this documentation.

If you document you COM interfaces this way then all following extra comments that follow in the same
source file that begin with the same document title will be added as references to this comment before it
is output. For an example of this seedlls/oleaut32/safearray.c . This uses an extra comment to
document The SafeArray functions and link them together under one heading.

As a special case, if you use the DLL name as the comment name, the comment will be treated as
documentation on the DLL itself. When the documentation for the DLL is processed, the contents of the
comment will be placed before the generated statistics, exports and other information that makes up a
DLL’s documentation page.

6.2.5. Generating API Documentation

Having edited or added new API documentation to a source code file, you should generate the
documentation to ensure that the result is what you expected. Wine includes a tool (slightly
misleadingly) calledc2man.pl in the tools/ directory which is used to generate the documentation
from the source code.

You can runc2man.plmanually for testing purposes; it is a fairly simple perl script which parses.c files
to create output in several formats. If you wish to try this you may want to run it with no arguments,
which will cause it to print usage information.

An easier way is to use Wine’s build system. To create man pages for a given dll, just typemake man
from within the dlls directory or typemake manpagesin the root directory of the Wine source tree. You
can then check that a man page was generated for your function, it should be present in the
documentation/man3w directory with the same name as the function.

Once you have generated the man pages from the source code, runningmake install will install them for
you. By default they are installed in section 3w of the manual, so they don’t conflict with any existing

67

Chapter 6. Documenting Wine

man page names. So, to read the man page you should useman -S 3w {name}. Alternately you can edit
/etc/man.config and add 3w to the list of search paths given in the variableMANSECT.

You can also generate HTML output for the API documentation, in this case the make command ismake
doc-html in the dll directory, ormake htmlpagesfrom the root. The output will be placed by default
underdocumentation/html . Similarly you can create SGML source code to produce theWine Api
Guidewith the commandmake sgmlpages.

6.3. The Wine DocBook System

6.3.1. Writing Documentation with DocBook

DocBook is a flavour of SGML (Standard Generalized Markup Language), a syntax for marking up the
contents of documents. HTML is another very common flavour of SGML; DocBook markup looks very
similar to HTML markup, although the names of the markup tags differ.

6.3.1.1. Getting Started

Why SGML?: The simple answer to that is that SGML allows you to create multiple formats of a
given document from a single source. Currently it is used to create HTML, PDF, PS (PostScript) and
Text versions of the Wine books.

What do I need?: You need the SGML tools. There are various places where you can get them. The
most generic way of getting them is from their source as discussed below.

Quick instructions: These are the basic steps to create the Wine books from the SGML source.

1. Go to http://www.sgmltools.org

2. Download all of the sgmltools packages

3. Install them all and build them (./configure; make; make install)

4. Switch to your toplevel Wine directory

5. Run./configure (or make distclean && ./configure)

6. Switch to thedocumentation/ directory

7. runmake html

68

Chapter 6. Documenting Wine

8. View wineusr-guide.html , winedev-guide.html , etc. in your favorite browser

6.3.1.2. Getting SGML for various distributions

Most Linux distributions have everything you need already bundled up in package form. Unfortunately,
each distribution seems to handle its SGML environment differently, installing it into different paths, and
naming its packages according to its own whims.

6.3.1.2.1. SGML on Red Hat

The following packages seem to be sufficient for Red Hat 7.1. You will want to be careful about the order
in which you install the RPMs.

• sgml-common-*.rpm

• openjade-*.rpm

• perl-SGMLSpm-*.rpm

• docbook-dtd*.rpm

• docbook-style-dsssl-*.rpm

• tetex-*.rpm

• jadetex-*.rpm

• docbook-utils-*.rpm

You can also use ghostscript to view the ps format output and Adobe Acrobat 4 to view the pdf file.

6.3.1.2.2. SGML on Debian

This is not a definitive list yet, but it seems you might need the following packages:

• docbook

• docbook-dsssl

• docbook-utils

• docbook-xml

• docbook-xsl

• sgml-base

• sgml-data

• tetex-base

• tetex-bin

• jade

• jadetex

69

Chapter 6. Documenting Wine

6.3.1.3. Terminology

SGML markup contains a number of syntactical elements that serve different purposes in the markup.
We’ll run through the basics here to make sure we’re on the same page when we refer to SGML
semantics.

The basic currency of SGML is thetag. A simple tag consists of a pair of angle brackets and the name of
the tag. For example, thepara tag would appear in an SGML document as<para> . This start tag
indicates that the immediately following text should be classified according to the tag. In regular SGML,
each opening tag must have a matching end tag to show where the start tag’s contents end. End tags
begin with “</ ” markup, e.g.,</para> .

The combination of a start tag, contents, and an end tag is called anelement. SGML elements can be
nested inside of each other, or contain only text, or may be a combination of both text and other
elements, although in most cases it is better to limit your elements to one or the other.

The XML (eXtensible Markup Language) specification, a modern subset of the SGML specification,
adds a so-calledempty tag, for elements that contain no text content. The entire element is a single tag,
ending with “/ >”, e.g.,<xref/ >. However, use of this tag style restricts you to XML DocBook
processing, and your document may no longer compile with SGML-only processing systems.

Often a processing system will need more information about an element than you can provide with just
tags. SGML allows you to add extra “hints” in the form of SGMLattributesto pass along this
information. The most common use of attributes in DocBook is giving specific elements a name, or an
ID, so you can refer to it from elsewhere. This ID can be used for many things, including file-naming for
HTML output, hyper-linking to specific parts of the document, and even pulling text from that element
(see the<xref> tag).

An SGML attribute appears inside the start tag, between the< and> brackets. For example, if you
wanted to set theid attribute of the<book> element to “mybook”, you would create a start tag like this:

<book id="mybook">

Notice that the contents of the attribute are enclosed in quote marks. These quotes are optional in SGML,
but mandatory in XML. It’s a good habit to use quotes, as it will make it much easier to migrate your
documents to an XML processing system later on.

You can also specify more than one attribute in a single tag:

70

Chapter 6. Documenting Wine

<book id="mybook" status="draft">

Another commonly used type of SGML markup is theentity. An entity lets you associate a block of text
with a name. You declare the entity once, at the beginning of your document, and can invoke it as many
times as you like throughout the document. You can use entities as shorthand, or to make it easier to
maintain certain phrases in a central location, or even to insert the contents of an entire file into your
document.

An entity in your document is always surrounded by the “&” and “;” characters. One entity you’ll need
sooner or later is the one for the “<” character. Since SGML expects all tags to begin with a “<”, the
“<” is a reserved character. To use it in your document (as I am doing here), you must insert it with the
< entity. Each time the SGML processor encounters< , it will place a literal “<” in the output
document. Similarly you must use the> and& entities for the “>” and “&” characters.

The final term you’ll need to know when writing simple DocBook documents is the DTD (Document
Type Declaration). The DTD defines the flavour of SGML a given document is written in. It lists all the
legal tag names, like<book> , <para> , and so on, and declares how those tags are allowed to be used
together. For example, it doesn’t make sense to put a<book> element inside a<para> paragraph
element -- only the reverse makes sense.

The DTD thus defines the legal structure of the document. It also declares which attributes can be used
with which tags. The SGML processing system can use the DTD to make sure the document is laid out
properly before attempting to process it. SGML-aware text editors like Emacs can also use the DTD to
guide you while you write, offering you choices about which tags you can add in different places in the
document, and beeping at you when you try to add a tag where it doesn’t belong.

Generally, you will declare which DTD you want to use as the first line of your SGML document. In the
case of DocBook, you will use something like this:

<!doctype book PUBLIC "-//OASIS//DTD
DocBook V3.1//EN" []> <book> ...
</book>

Note that you must specify your toplevel element inside the doctype declaration. If you were writing an
article rather than a book, you might use this declaration instead:

<!doctype article PUBLIC "-//OASIS//DTD DocBook V3.1//EN" []>
<article>
...
</article>

71

Chapter 6. Documenting Wine

6.3.1.4. The Document

Once you’re comfortable with SGML, creating a DocBook document is quite simple and
straightforward. Even though DocBook contains over 300 different tags, you can usually get by with
only a small subset of those tags. Most of them are for inline formatting, rather than for document
structuring. Furthermore, the common tags have short, intuitive names.

Below is a (completely nonsensical) example to illustrate how a simple document might be laid out.
Notice that all<chapter> and<sect1> elements haveid attributes. This is not mandatory, but is a
good habit to get into, as DocBook is commonly converted into HTML, with a separate generated file for
each<book> , <chapter> , and/or<sect1> element. If the given element has anid attribute, the
processor will typically name the file accordingly. Thus, the below document might result in
index.html , chapter-one.html , blobs.html , and so on.

Also notice the text marked off with “<!-- ” and “ -->” characters. These denote SGML comments.
SGML processors will completely ignore anything between these markers, similar to “/*” and “*/”
comments in C source code.

<!doctype book PUBLIC "-//OASIS//DTD DocBook V3.1//EN" []>
<book id="index">

<bookinfo>
<title>A Poet’s Guide to Nonsense</title>

</bookinfo>

<chapter id="chapter-one">
<title>Blobs and Gribbles</title>

<!-- This section contains only one major topic -->
<sect1 id="blobs">

<title>The Story Behind Blobs</title>
<para>

Blobs are often mistaken for ice cubes and rain
puddles...

</para>
</sect1>

<!-- This section contains embedded sub-sections -->
<sect1 id="gribbles">

<title>Your Friend the Gribble</title>
<para>

A Gribble is a cute, unassuming little fellow...
</para>

<sect2 id="gribble-temperament">
<title>Gribble Temperament</title>
<para>

When left without food for several days...
</para>

</sect2>

72

Chapter 6. Documenting Wine

<sect2 id="gribble-appearance">
<title>Gribble Appearance</title>
<para>

Most Gribbles have a shock of white fur running from...
</para>

</sect2>
</sect1>

</chapter>

<chapter id="chapter-two">
<title>Phantasmagoria</title>

<sect1 id="dretch-pools">
<title>Dretch Pools</title>

<para>
When most poets think of Dretch Pools, they tend to...

</para>
</sect>

</chapter>
</book>

6.3.1.5. Common Elements

Once you get used to the syntax of SGML, the next hurdle in writing DocBook documentation is to learn
the many DocBook-specific tag names, and when to use them. DocBook was created for technical
documentation, and as such, the tag names and document structure are slanted towards the needs of such
documentation.

To cover its target audience, DocBook declares a wide variety of specialized tags, including tags for
formatting source code (with somewhat of a C/C++ bias), computer prompts, GUI application features,
keystrokes, and so on. DocBook also includes tags for universal formatting needs, like headers,
footnotes, tables, and graphics.

We won’t cover all of these elements here (over 300 DocBook tags exist!), but we will cover the basics.
To learn more about the other tags, check out the official DocBook guide, at http://docbook.org. To see
how they are used in practice, download the SGML source for this manual (the Wine Developer Guide)
and browse through it, comparing it to the generated HTML (or PostScript or PDF).

There are often many correct ways to mark up a given piece of text, and you may have to make guesses
about which tag to use. Sometimes you’ll have to make compromises. However, remember that it is
possible to further customize the output of the SGML processors. If you don’t like the way a certain tag
looks in HTML, that doesn’t mean you should choose a different tag based on its output formatting. The
processing stylesheets can be altered to fix the formatting of that same tag everywhere in the document
(not just in the place you’re working on). For example, if you’re frustrated that the<systemitem> tag

73

Chapter 6. Documenting Wine

doesn’t produce any formatting by default, you should fix the stylesheets, not change the valid
<systemitem> tag to, for example, an<emphasis> tag.

Here are the common SGML elements:

Structural Elements

<book>

The book is the most common toplevel element, and is probably the one you should use for your
document.

<set>

If you want to group more than one book into a single unit, you can place them all inside a set. This
is useful when you want to bundle up documentation in alternate ways. We do this with the Wine
documentation, using<book> to put each Wine guide into a separate directory (see
documentation/wine-devel.sgml , etc.).

<chapter>

A <chapter> element includes a single entire chapter of the book.

<part>

If the chapters in your book fall into major categories or groupings (as in the Wine Developer
Guide), you can place each collection of chapters into a<part> element.

<sect?>

DocBook has many section elements to divide the contents of a chapter into smaller chunks. The
encouraged approach is to use the numbered section tags,<sect1> , <sect2> , <sect3> , <sect4> ,
and<sect5> (if necessary). These tags must be nested in order: you can’t place a<sect3> directly
inside a<sect1> . You have to nest the<sect3> inside a<sect2> , and so forth. Documents with
these explicit section groupings are easier for SGML processors to deal with, and lead to better
organized documents. DocBook also supplies a<section> element which you can nest inside
itself, but its use is discouraged in favor of the numbered section tags.

<title>

The title of a book, chapter, part, section, etc. In most of the major structural elements, like
<chapter> , <part> , and the various section tags,<title> is mandatory. In other elements like
<book> and<note> , it’s optional.

<para>

The basic unit of text is the paragraph, represented by the<para> tag. This is probably the tag
you’ll use most often. In fact, in a simple document, you can probably get away with using only
<book> , <chapter> , <title> , and<para> .

<article>

For shorter, more targeted documents, like topic pieces and whitepapers, you can use<article> as
your toplevel element.

74

Chapter 6. Documenting Wine

Inline Formatting Elements

<filename>

The name of a file. You can optionally set theclass attribute toDirectory , HeaderFile , and
SymLink to further classify the filename.

<userinput>

Literal text entered by the user.

<computeroutput>

Literal text output by the computer.

<literal>

A catch-all element for literal computer data. Its use is somewhat vague; try to use a more specific
tag if possible, like<userinput> or <computeroutput> .

<quote>

An inline quotation. This tag typically inserts quotation marks for you, so you would write
<quote> This is a quote</quote> rather than "This is a quote". This usage may be a little bulkier,
but it does allow for automated formatting of all quoted material in the document. Thus, if you
wanted all quotations to appear in italic, you could make the change once in your stylesheet, rather
than doing a search and replace throughout the document. For larger chunks of quoted text, you can
use<blockquote> .

<note>

Insert a side note for the reader. By default, the SGML processor usually prefixes the content with
"Note:". You can change this text by adding a<title> element. Thus, to add a visible FIXME
comment to the documentation, you might write:

<note>
<title>EXAMPLE</title>
<para>This is an example note...</para>

</note>

The results will look something like this:

EXAMPLE: This is an example note...

<sgmltag>

Used for inserting SGML tags, etc., into a SGML document without resorting to a lot of entity
quoting, e.g., <. You can change the appearance of the text with theclass attribute. Some
common values of this arestarttag , endtag , attribute , attvalue , and evensgmlcomment .
See this SGML file,documentation/documentation.sgml , for examples.

75

Chapter 6. Documenting Wine

<prompt>

The text used for a computer prompt, for example a shell prompt, or command-line application
prompt.

<replaceable>

Meta-text that should be replaced by the user, not typed in literally, e.g., in command descriptions
and--help outputs.

<constant>

A programming constant, e.g.,MAX_PATH.

<symbol>

A symbolic value replaced, for example, by a pre-processor. This applies primarily to C macros, but
may have other uses. Use the<constant> tag instead of<symbol> where appropriate.

<function>

A programming function name.

<parameter>

Programming language parameters you pass with a function.

<option>

Parameters you pass to a command-line executable.

<varname>

Variable name, typically in a programming language.

<type>

Programming language types, e.g., from a typedef definition. May have other uses, too.

<structname>

The name of a C-language struct declaration, e.g., sockaddr.

<structfield>

A field inside a C struct.

<command>

An executable binary, e.g.,wine or ls.

<envar>

An environment variable, e.g, $PATH.

<systemitem>

A generic catch-all for system-related things, like OS names, computer names, system resources,
etc.

76

Chapter 6. Documenting Wine

<email>

An email address. The SGML processor will typically add extra formatting characters, and even a
mailto: link for HTML pages. Usage:<email> user@host.com</email>

<firstterm>

Special emphasis for introducing a new term. Can also be linked to a<glossary> entry, if desired.

Item Listing Elements

<itemizedlist>

For bulleted lists, no numbering. You can tweak the layout with SGML attributes.

<orderedlist>

A numbered list; the SGML processor will insert the numbers for you. You can suggest numbering
styles with thenumeration attribute.

<simplelist>

A very simple list of items, often inlined. Control the layout with thetype attribute.

<variablelist>

A list of terms with definitions or descriptions, like this very list!

Block Text Quoting Elements

<programlisting>

Quote a block of source code. Typically highlighted in the output and set off from normal text.

<screen>

Quote a block of visible computer output, like the output of a command or chunks of debug logs.

Hyperlink Elements

<link>

Generic hypertext link, used for pointing to other sections within the current document. You supply
the visible text for the link, plus the name of theid attribute of the element that you want to link to.
For example:

<link linkend="configuring-wine">the section on configuring wine </link>
...
<sect2 id="configuring-wine">
...

<xref>

In-document hyperlink that can generate its own text. Similar to the<link> tag, you use the
linkend attribute to specify which target element you want to jump to:

77

Chapter 6. Documenting Wine

<xref linkend="configuring-wine">
...
<sect2 id="configuring-wine">
...

By default, most SGML processors will auto generate some generic text for the<xref> link, like
“Section 2.3.1”. You can use theendterm attribute to grab the visible text content of the hyperlink
from another element:

<xref linkend="configuring-wine" endterm="config-title">
...
<sect2 id="configuring-wine">

<title id="config-title">Configuring Wine </title>
...

This would create a link to the configuring-wine element, displaying the text of the config-title
element for the hyperlink. Most often, you’ll add anid attribute to the<title> of the section
you’re linking to, as above, in which case the SGML processor will use the target’s title text for the
link text.

Alternatively, you can use anxreflabel attribute in the target element tag to specify the link text:

<sect1 id="configuring-wine" xreflabel="Configuring Wine">

Note: <xref> is an empty element. You don’t need a closing tag for it (this is defined in the
DTD). In SGML documents, you should use the form <xref> , while in XML documents you
should use <xref/> .

<anchor>

An invisible tag, used for insertingid attributes into a document to link to arbitrary places (i.e.,
when it’s not close enough to link to the top of an element).

<ulink>

Hyperlink in URL form, e.g., http://www.winehq.org.

<olink>

Indirect hyperlink; can be used for linking to external documents. Not often used in practice.

78

Chapter 6. Documenting Wine

6.3.2. Editing SGML Documents

You can write SGML/DocBook documents in any text editor you might find although some editors are
more friendly for this task than others.

The most commonly used open source SGML editor is Emacs, with the PSGMLmode, or extension.
Emacs does not supply a GUI or WYSIWYG (What You See Is What You Get) interface, but it does
provide many helpful shortcuts for creating SGML, as well as automatic formatting, validity checking,
and the ability to create your own macros to simplify complex, repetitive actions.

79

II. Wine Architecture

Chapter 7. Overview

Brief overview of Wine’s architecture...

7.1. Wine Overview

With the fundamental architecture of Wine stabilizing, and people starting to think that we might soon be
ready to actually release this thing, it may be time to take a look at how Wine actually works and
operates.

7.1.1. Foreword

Wine is often used as a recursive acronym, standing for "Wine Is Not an Emulator". Sometimes it is also
known to be used for "Windows Emulator". In a way, both meanings are correct, only seen from different
perspectives. The first meaning says that Wine is not a virtual machine, it does not emulate a CPU, and
you are not supposed to install Windows nor any Windows device drivers on top of it; rather, Wine is an
implementation of the Windows API, and can be used as a library to port Windows applications to Unix.
The second meaning, obviously, is that to Windows binaries (.exe files), Wine does look like Windows,
and emulates its behaviour and quirks rather closely.

"Emulator": The "Emulator" perspective should not be thought of as if Wine is a typical inefficient
emulation layer that means Wine can’t be anything but slow - the faithfulness to the badly designed
Windows API may of course impose a minor overhead in some cases, but this is both balanced out
by the higher efficiency of the Unix platforms Wine runs on, and that other possible abstraction
libraries (like Motif, GTK+, CORBA, etc) has a runtime overhead typically comparable to Wine’s.

7.1.2. Executables

Wine’s main task is to run Windows executables under non Windows operating systems. It supports
different types of executables:

• DOS executable. Those are even older programs, using the DOS format (either.com or .exe (the
later being also called MZ)).

• Windows NE executable, also called 16 bit. They were the native processes run by Windows 2.x and
3.x. NE stands for New Executable<g>.

• Windows PE executable. These are programs were introduced in Windows 95 (and became the native
formats for all later Windows version), even if 16 bit applications were still supported. PE stands for
Portable Executable, in a sense where the format of the executable (as a file) is independent of the
CPU (even if the content of the file - the code - is CPU dependent).

81

Chapter 7. Overview

• Winelib executable. These are applications, written using the Windows API, but compiled as a Unix
executable. Wine provides the tools to create such executables.

Let’s quickly review the main differences for the supported executables:

Table 7-1. Wine executables

DOS (.COM or
.EXE)

Win16 (NE) Win32 (PE) Winelib

Multitasking Only one application
at a time (except for
TSR)

Cooperative Preemptive Preemptive

Address space One MB of
memory, where each
application is loaded
and unloaded.

All 16 bit
applications share a
single address space,
protected mode.

Each application
has it’s own address
space. Requires
MMU support from
CPU.

Each application
has it’s own address
space. Requires
MMU support from
CPU.

Windows API No Windows API
but the DOS API
(like Int 21h

traps).

Will call the 16 bit
Windows API.

Will call the 32 bit
Windows API.

Will call the 32 bit
Windows API, and
possibly also the
Unix APIs.

Code (CPU level) Only available on
x86 in real mode.
Code and data are in
segmented forms,
with 16 bit offsets.
Processor is in real
mode.

Only available on
IA-32 architectures,
code and data are in
segmented forms,
with 16 bit offsets
(hence the 16 bit
name). Processor is
in protected mode.

Available (with NT)
on several CPUs,
including IA-32. On
this CPU, uses a flat
memory model with
32 bit offsets (hence
the 32 bit name).

Flat model, with 32
bit addresses.

Multi-threading Not available. Not available. Available. Available, but must
use the Win32 APIs
for threading and
synchronization, not
the Unix ones.

Wine deals with this issue by launching a separate Wine process (which is in fact a Unix process) for
each Win32 process, but not for Win16 tasks. Win16 tasks are run as different intersynchronized
Unix-threads in the same dedicated Wine process; this Wine process is commonly known as aWOW
process (Windows on Windows), referring to a similar mechanism used by Windows NT.

Synchronization between the Win16 tasks running in the WOW process is normally done through the
Win16 mutex - whenever one of them is running, it holds the Win16 mutex, keeping the others from
running. When the task wishes to let the other tasks run, the thread releases the Win16 mutex, and one of

82

Chapter 7. Overview

the waiting threads will then acquire it and let its task run.

winevdm is the Wine process dedicated to running the Win16 processes. Note that several instances of
this process could exist, has Windows has support for different VDM (Virtual Dos Machines) in order to
have Win16 processes running in different address spaces. Wine also uses the same architecture to run
DOS programs (in this case, the DOS emulation is provided by a Wine only DLL calledwinedos .

7.2. Standard Windows Architectures

7.2.1. Windows 9x architecture

The windows architecture (Win 9x way) looks like this:

+---------------------+ \
| Windows EXE | } application
+---------------------+ /

+---------+ +---------+ \
| Windows | | Windows | \ application & system DLLs
| DLL | | DLL | /
+---------+ +---------+ /

+---------+ +---------+ \
| GDI32 | | USER32 | \
| DLL | | DLL | \
+---------+ +---------+ } core system DLLs
+---------------------+ /
| Kernel32 DLL | /
+---------------------+ /

+---------------------+ \
| Win9x kernel | } kernel space
+---------------------+ /

+---------------------+ \
| Windows low-level | \ drivers (kernel space)
| drivers | /
+---------------------+ /

83

Chapter 7. Overview

7.2.2. Windows NT architecture

The windows architecture (Windows NT way) looks like the following drawing. Note the new DLL
(NTDLL) which allows implementing different subsystems (as win32);kernel32 in NT architecture
implements the Win32 subsystem on top ofNTDLL.

+---------------------+ \
| Windows EXE | } application
+---------------------+ /

+---------+ +---------+ \
| Windows | | Windows | \ application & system DLLs
| DLL | | DLL | /
+---------+ +---------+ /

+---------+ +---------+ +-----------+ \
| GDI32 | | USER32 | | | \
| DLL | | DLL | | | \
+---------+ +---------+ | | \ core system DLLs
+---------------------+ | | / (on the left side)
| Kernel32 DLL | | Subsystem | /
| (Win32 subsystem) | |Posix, OS/2| /
+---------------------+ +-----------+ /

+---------------------------------------+
| NTDLL.DLL |
+---------------------------------------+

+---------------------------------------+ \
| NT kernel | } NT kernel (kernel space)
+---------------------------------------+ /
+---------------------------------------+ \
| Windows low-level drivers | } drivers (kernel space)
+---------------------------------------+ /

Note also (not depicted in schema above) that the 16 bit applications are supported in a specific
subsystem. Some basic differences between the Win9x and the NT architectures include:

• Several subsystems (Win32, Posix...) can be run on NT, while not on Win 9x

• Win 9x roots its architecture in 16 bit systems, while NT is truly a 32 bit system.

• The drivers model and interfaces in Win 9x and NT are different (even if Microsoft tried to bridge the
gap with some support of WDM drivers in Win 98 and above).

84

Chapter 7. Overview

7.3. Wine architecture

7.3.1. Global picture

Wine implementation is closer to the Windows NT architecture, even if several subsystems are not
implemented yet (remind also that 16bit support is implemented in a 32-bit Windows EXE, not as a
subsystem). Here’s the overall picture:

+---------------------+ \
| Windows EXE | } application
+---------------------+ /

+---------+ +---------+ \
| Windows | | Windows | \ application & system DLLs
| DLL | | DLL | /
+---------+ +---------+ /

+---------+ +---------+ +-----------+ +--------+ \
| GDI32 | | USER32 | | | | | \
| DLL | | DLL | | | | Wine | \
+---------+ +---------+ | | | Server | \ core system DLLs
+---------------------+ | | | | / (on the left side)
| Kernel32 DLL | | Subsystem | | NT-like| /
| (Win32 subsystem) | |Posix, OS/2| | Kernel | /
+---------------------+ +-----------+ | | /

| |
+---------------------------------------+ | |
| NTDLL | | |
+---------------------------------------+ +--------+

+---------------------------------------+ \
| Wine executable (wine-?thread) | } unix executable
+---------------------------------------+ /
+---+ \
| Wine drivers | } Wine specific DLLs
+---+ /

+------------+ +------------+ +--------------+ \
| libc | | libX11 | | other libs | } unix shared libraries
+------------+ +------------+ +--------------+ / (user space)

+---+ \
| Unix kernel (Linux,*BSD,Solaris,OS/X) | } (Unix) kernel space
+---+ /
+---+ \
| Unix device drivers | } Unix drivers (kernel space)
+---+ /

85

Chapter 7. Overview

Wine must at least completely replace the "Big Three" DLLs (KERNEL/KERNEL32, GDI/GDI32 , and
USER/USER32), which all other DLLs are layered on top of. But since Wine is (for various reasons)
leaning towards the NT way of implementing things, theNTDLL is another core DLL to be implemented
in Wine, and manyKERNEL32andADVAPI32 features will be implemented through theNTDLL.

As of today, no real subsystem (apart the Win32 one) has been implemented in Wine.

The Wine server provides the backbone for the implementation of the core DLLs. It mainly
implementents inter-process synchronization and object sharing. It can be seen, from a functional point
of view, as a NT kernel (even if the APIs and protocols used between Wine’s DLL and the Wine server
are Wine specific).

Wine uses the Unix drivers to access the various hardware pieces on the box. However, in some cases,
Wine will provide a driver (in Windows sense) to a physical hardware device. This driver will be a proxy
to the Unix driver (this is the case, for example, for the graphical part with X11 or SDL drivers, audio
with OSS or ALSA drivers...).

All DLLs provided by Wine try to stick as much as possible to the exported APIs from the Windows
platforms. There are rare cases where this is not the case, and have been propertly documented (Wine
DLLs export some Wine specific APIs). Usually, those are prefixed with__wine .

Let’s now review in greater details all of those components.

7.3.2. The Wine server

The Wine server is among the most confusing concepts in Wine. What is its function in Wine? Well, to
be brief, it provides Inter-Process Communication (IPC), synchronization, and process/thread
management. When the Wine server launches, it creates a Unix socket for the current host based on (see
below) your home directory’s.wine subdirectory (or wherever the WINEPREFIX environment variable
points to) - all Wine processes launched later connects to the Wine server using this socket. If a Wine
server was not already running, the first Wine process will start up the Wine server in auto-terminate
mode (i.e. the Wine server will then terminate itself once the last Wine process has terminated).

In earlier versions of Wine the master socket mentioned above was actually created in the configuration
directory; either your home directory’s/wine subdirectory or wherever the WINEPREFIX environment
variable points>. Since that might not be possible the socket is actually created within the/tmp directory
with a name that reflects the configuration directory. This means that there can actually be several
separate copies of the Wine server running; one per combination of user and configuration directory.
Note that you should not have several users using the same configuration directory at the same time; they
will have different copies of the Wine server running and this could well lead to problems with the
registry information that they are sharing.

86

Chapter 7. Overview

Every thread in each Wine process has its own request buffer, which is shared with the Wine server.
When a thread needs to synchronize or communicate with any other thread or process, it fills out its
request buffer, then writes a command code through the socket. The Wine server handles the command
as appropriate, while the client thread waits for a reply. In some cases, like with the variousWaitFor???

synchronization primitives, the server handles it by marking the client thread as waiting and does not
send it a reply before the wait condition has been satisfied.

The Wine server itself is a single and separate Unix process and does not have its own threading -
instead, it is built on top of a largepoll() loop that alerts the Wine server whenever anything happens,
such as a client having sent a command, or a wait condition having been satisfied. There is thus no
danger of race conditions inside the Wine server itself - it is often called upon to do operations that look
completely atomic to its clients.

Because the Wine server needs to manage processes, threads, shared handles, synchronization, and any
related issues, all the clients’ Win32 objects are also managed by the Wine server, and the clients must
send requests to the Wine server whenever they need to know any Win32 object handle’s associated Unix
file descriptor (in which case the Wine server duplicates the file descriptor, transmits it back to the client,
and leaves it to the client to close the duplicate when the client has finished with it).

7.3.3. Wine builtin DLLs: about Relays, Thunks, and DLL
descriptors

This section mainly applies to builtin DLLs (DLLs provided by Wine). See sectionSection 7.3.4for the
details on native vs. builtin DLL handling.

Loading a Windows binary into memory isn’t that hard by itself, the hard part is all those various DLLs
and entry points it imports and expects to be there and function as expected; this is, obviously, what the
entire Wine implementation is all about. Wine contains a range of DLL implementations. You can find
the DLLs implementation in thedlls/ directory.

Each DLL (at least, the 32 bit version, see below) is implemented in a Unix shared library. The file name
of this shared library is the module name of the DLL with a.dll.so suffix (or .drv.so or any other
relevant extension depending on the DLL type). This shared library contains the code itself for the DLL,
as well as some more information, as the DLL resources and a Wine specific DLL descriptor.

The DLL descriptor, when the DLL is instanciated, is used to create an in-memory PE header, which will
provide access to various information about the DLL, including but not limited to its entry point, its
resources, its sections, its debug information...

The DLL descriptor and entry point table is generated by thewinebuild tool (previously just named
build), taking DLL specification files with the extension.spec as input. Resources (after compilation
by wrc) or message tables (after compilation bywmc) are also added to the descriptor bywinebuild.

87

Chapter 7. Overview

Once an application module wants to import a DLL, Wine will look at:

• through its list of registered DLLs (in fact, both the already loaded DLLs, and the already loaded
shared libraries which has registered a DLL descriptor). Since, the DLL descriptor is automatically
registered when the shared library is loaded - remember, registration call is put inside a shared library
constructor - using the PRELOAD environment variable when running a Wine process can force the
registration of some DLL descriptors.

• If it’s not registered, Wine will look for it on disk, building the shared library name from the DLL
module name. Directory searched for are specified by the WINEDLLPATH environment variable.

• Failing that, it will look for a real Windows.DLL file to use, and look through its imports, etc) and use
the loading of native DLLs.

After the DLL has been identified (assuming it’s still a native one), it’s mapped into memory using a
dlopen() call. Note, that Wine doesn’t use the shared library mechanisms for resolving and/or
importing functions between two shared libraries (for two DLLs). The shared library is only used for
providing a way to load a piece of code on demand. This piece of code, thanks the DLL descriptor, will
provide the same type of information a native DLL would. Wine can then use the same code for native
and builtin DLL to handle imports/exports.

Wine also relies on the dynamic loading features of the Unix shared libraries to relocate the DLLs if
needed (the same DLL can be loaded at different address in two different processes, and even in two
consecutive run of the same executable if the order of loading the DLLs differ).

The DLL descriptor is registered in the Wine realm using some tricks. Thewinebuild tool, while
creating the code for DLL descriptor, also creates a constructor, that will be called when the shared
library is loaded into memory. This constructor will actually register the descriptor to the Wine DLL
loader. Hence, before thedlopen call returns, the DLL descriptor will be known and registered. This
also helps to deal with the cases where there’s still dependencies (at the ELF shared lib level, not at the
embedded DLL level) between different shared libraries: the embedded DLLs will be properly
registered, and even loaded (from a Windows point of view).

Since Wine is 32-bit code itself, and if the compiler supports Windows’ calling convention, stdcall (gcc
does), Wine can resolve imports into Win32 code by substituting the addresses of the Wine handlers
directly without any thunking layer in between. This eliminates the overhead most people associate with
"emulation", and is what the applications expect anyway.

However, if the user specifiedWINEDEBUG=+relay , a thunk layer is inserted between the application
imports and the Wine handlers (actually the export table of the DLL is modified, and a thunk is inserted
in the table); this layer is known as "relay" because all it does is print out the arguments/return values (by
using the argument lists in the DLL descriptor’s entry point table), then pass the call on, but it’s
invaluable for debugging misbehaving calls into Wine code. A similar mechanism also exists between
Windows DLLs - Wine can optionally insert thunk layers between them, by usingWINEDEBUG=+snoop,

88

Chapter 7. Overview

but since no DLL descriptor information exists for non-Wine DLLs, this is less reliable and may lead to
crashes.

For Win16 code, there is no way around thunking - Wine needs to relay between 16-bit and 32-bit code.
These thunks switch between the app’s 16-bit stack and Wine’s 32-bit stack, copies and converts
arguments as appropriate (an int is 16 bit 16-bit and 32 bits in 32-bit, pointers are segmented in 16 bit
(and also near or far) but are 32 bit linear values in 32 bit), and handles the Win16 mutex. Some finer
control can be obtained on the conversion, seewinebuild reference manual for the details. Suffice to say
that the kind of intricate stack content juggling this results in, is not exactly suitable study material for
beginners.

A DLL descriptor is also created for every 16 bit DLL. However, this DLL normally paired with a 32 bit
DLL. Either, it’s the 16 bit counterpart of the 16 bit DLL (KRNL386.EXE for KERNEL32, USERfor
USER32...), or a 16 bit DLL directly linked to a 32 bit DLL (likeSYSTEMfor KERNEL32, or DDEMLfor
USER32). In those cases, the 16 bit descriptor(s) is (are) inserted in the same shared library as the the
corresponding 32 bit DLL. Wine will also create symbolic links between kernel32.dll.so and
system.dll.so so that loading of eitherKERNEL32.DLL or SYSTEM.DLLwill end up on the same shared
library.

7.3.4. Wine/Windows DLLs

This document mainly deals with the status of current DLL support by Wine. The Wine ini file currently
supports settings to change the load order of DLLs. The load order depends on several issues, which
results in different settings for various DLLs.

7.3.4.1. Pros of Native DLLs

Native DLLs of course guarantee 100% compatibility for routines they implement. For example, using
the nativeUSERDLL would maintain a virtually perfect and Windows 95-like look for window borders,
dialog controls, and so on. Using the built-in Wine version of this library, on the other hand, would
produce a display that does not precisely mimic that of Windows 95. Such subtle differences can be
engendered in other important DLLs, such as the common controls libraryCOMMCTRLor the common
dialogs libraryCOMMDLG, when built-in Wine DLLs outrank other types in load order.

More significant, less aesthetically-oriented problems can result if the built-in Wine version of theSHELL

DLL is loaded before the native version of this library.SHELLcontains routines such as those used by
installer utilities to create desktop shortcuts. Some installers might fail when using Wine’s built-in
SHELL.

7.3.4.2. Cons of Native DLLs

Not every application performs better under native DLLs. If a library tries to access features of the rest of

89

Chapter 7. Overview

the system that are not fully implemented in Wine, the native DLL might work much worse than the
corresponding built-in one, if at all. For example, the native WindowsGDI library must be paired with a
Windows display driver, which of course is not present under Intel Unix and Wine.

Finally, occasionally built-in Wine DLLs implement more features than the corresponding native
Windows DLLs. Probably the most important example of such behavior is the integration of Wine with
X provided by Wine’s built-inUSERDLL. Should the native WindowsUSERlibrary take load-order
precedence, such features as the ability to use the clipboard or drag-and-drop between Wine windows
and X windows will be lost.

7.3.4.3. Deciding Between Native and Built-In DLLs

Clearly, there is no one rule-of-thumb regarding which load-order to use. So, you must become familiar
with what specific DLLs do and which other DLLs or features a given library interacts with, and use this
information to make a case-by-case decision.

7.3.4.4. Load Order for DLLs

Using the DLL sections from the wine configuration file, the load order can be tweaked to a high degree.
In general it is advised not to change the settings of the configuration file. The default configuration
specifies the right load order for the most important DLLs.

The default load order follows this algorithm: for all DLLs which have a fully-functional Wine
implementation, or where the native DLL is known not to work, the built-in library will be loaded first.
In all other cases, the native DLL takes load-order precedence.

TheDefaultLoadOrder from the [DllDefaults] section specifies for all DLLs which version to try first.
See manpage for explanation of the arguments.

The [DllOverrides] section deals with DLLs, which need a different-from-default treatment.

The [DllPairs] section is for DLLs, which must be loaded in pairs. In general, these are DLLs for either
16-bit or 32-bit applications. In most cases in Windows, the 32-bit version cannot be used without its
16-bit counterpart. For Wine, it is customary that the 16-bit implementations rely on the 32-bit
implementations and cast the results back to 16-bit arguments. Changing anything in this section is
bound to result in errors.

For the future, the Wine implementation of Windows DLL seems to head towards unifying the 16 and 32
bit DLLs wherever possible, resulting in larger DLLs. They are stored in thedlls/ subdirectory using
the 32-bit name.

90

Chapter 7. Overview

7.3.5. Memory management

Every Win32 process in Wine has its own dedicated native process on the host system, and therefore its
own address space. This section explores the layout of the Windows address space and how it is
emulated.

Firstly, a quick recap of how virtual memory works. Physical memory in RAM chips is split intoframes,
and the memory that each process sees is split intopages. Each process has its own 4 gigabytes of
address space (4gig being the maximum space addressable with a 32 bit pointer). Pages can be mapped
or unmapped: attempts to access an unmapped page cause anEXCEPTION_ACCESS_VIOLATIONwhich
has the easily recognizable code of0xC0000005 . Any page can be mapped to any frame, therefore you
can have multiple addresses which actually "contain" the same memory. Pages can also be mapped to
things like files or swap space, in which case accessing that page will cause a disk access to read the
contents into a free frame.

7.3.5.1. Initial layout (in Windows)

When a Win32 process starts, it does not have a clear address space to use as it pleases. Many pages are
already mapped by the operating system. In particular, the EXE file itself and any DLLs it needs are
mapped into memory, and space has been reserved for the stack and a couple of heaps (zones used to
allocate memory to the app from). Some of these things need to be at a fixed address, and others can be
placed anywhere.

The EXE file itself is usually mapped at address0x400000 and up: indeed, most EXEs have their
relocation records stripped which means they must be loaded at their base address and cannot be loaded
at any other address.

DLLs are internally much the same as EXE files but they have relocation records, which means that they
can be mapped at any address in the address space. Remember we are not dealing with physical memory
here, but rather virtual memory which is different for each process. ThereforeOLEAUT32.DLL may be
loaded at one address in one process, and a totally different one in another. Ensuring all the functions
loaded into memory can find each other is the job of the Windows dynamic linker, which is a part of
NTDLL.

So, we have the EXE and its DLLs mapped into memory. Two other very important regions also exist:
the stack and the process heap. The process heap is simply the equivalent of the libcmalloc arena on
UNIX: it’s a region of memory managed by the OS whichmalloc /HeapAlloc partitions and hands out
to the application. Windows applications can create several heaps but the process heap always exists.

Windows 9x also implements another kind of heap: the shared heap. The shared heap is unusual in that
anything allocated from it will be visible in every other process.

91

Chapter 7. Overview

7.3.5.2. Comparison

So far we’ve assumed the entire 4 gigs of address space is available for the application. In fact that’s not
so: only the lower 2 gigs are available, the upper 2 gigs are on Windows NT used by the operating
system and hold the kernel (from0x80000000). Why is the kernel mapped into every address space?
Mostly for performance: while it’s possible to give the kernel its own address space too - this is what
Ingo Molnars 4G/4G VM split patch does for Linux - it requires that every system call into the kernel
switches address space. As that is a fairly expensive operation (requires flushing the translation lookaside
buffers etc) and syscalls are made frequently it’s best avoided by keeping the kernel mapped at a constant
position in every processes address space.

Basically, the comparison of memory mappings looks as follows:

Table 7-2. Memory layout (Windows and Wine)

Address Windows 9x Windows NT Linux

00000000-7fffffff User User User

80000000-bfffffff Shared User User

c0000000-ffffffff Kernel Kernel Kernel

On Windows 9x, in fact only the upper gigabyte (0xC0000000 and up) is used by the kernel, the region
from 2 to 3 gigs is a shared area used for loading system DLLs and for file mappings. The bottom 2 gigs
on both NT and 9x are available for the programs memory allocation and stack.

7.3.6. Wine drivers

Wine will not allow running native Windows drivers under Unix. This comes mainly because (look at the
generic architecture schemas) Wine doesn’t implement the kernel features of Windows (kernel here
really means the kernel, not theKERNEL32DLL), but rather sets up a proxy layer on top of the Unix
kernel to provide theNTDLLandKERNEL32features. This means that Wine doesn’t provide the inner
infrastructure to run native drivers, either from the Win9x family or from the NT family.

In other words, Wine will only be able to provide access to a specific device, if and only if, 1/ this device
is supported in Unix (there is Unix-driver to talk to it), 2/ Wine has implemented the proxy code to make
the glue between the API of a Windows driver, and the Unix interface of the Unix driver.

Wine, however, tries to implement in the various DLLs needing to access devices to do it through the
standard Windows APIs for device drivers in user space. This is for example the case for the multimedia
drivers, where Wine loads Wine builtin DLLs to talk to the OSS interface, or the ALSA interface. Those
DLLs implement the same interface as any user space audio driver in Windows.

92

Chapter 8. Kernel modules

This section covers the kernel modules. As already stated, Wine implements the NT architecture, hence
providesNTDLL for the core kernel functions, andKERNEL32, which is the implementation of the basis
of the Win32 subsystem, on top ofNTDLL.

This chapter is made of two types of material (depending of their point of view). Some items will be
tackled from a global point of view and then, when needed, explaining the split of work betweenNTDLL

andKERNEL32; some others will be tackled from a DLL point of view (NTDLLor KERNEL32). The
choice is made so that the output is more readable and understantable. At least, that’s the intend (sigh).

8.1. The Wine initialization process

Wine has a rather complex startup procedure, so unlike many programs the best place to begin exploring
the code-base isnot in fact at themain() function but instead at some of the more straightforward DLLs
that exist on the periphery such as MSI, the widget library (inUSERandCOMCTL32) etc. The purpose of
this section is to document and explain how Wine starts up from the moment the user runs "wine
myprogram.exe" to the point at whichmyprogram gets control.

8.1.1. First Steps

The actual wine binary that the user runs does not do very much, in fact it is only responsible for
checking the threading model in use (NPTL vs LinuxThreads) and then invoking a new binary which
performs the next stage in the startup sequence. See the beginning of this chapter for more information
on this check and why it’s necessary. You can find this code inloader/glibc.c . The result of this
check is an exec of eitherwine-pthread or wine-kthread, potentially (on Linux) via thepreloader. We
need to use separate binaries here because overriding the native pthreads library requires us to exploit a
property of ELF symbol fixup semantics: it’s not possible to do this without starting a new process.

The Wine preloader is found inloader/preloader.c , and is required in order to impose a Win32 style
address space layout upon the newly created Win32 process. The details of what this does is covered in
the address space layout chapter. The preloader is a statically linked ELF binary which is passed the
name of the actual Wine binary to run (eitherwine-kthread or wine-pthread) along with the arguments
the user passed in from the command line. The preloader is an unusual program: it does not have a
main() function. In standard ELF applications, the entry point is actually at a symbol named_start() :
this is provided by the standardgcc infrastructure and normally jumps to__libc_start_main()

which initializes glibc before passing control to the main function as defined by the programmer.

The preloader takes control direct from the entry point for a few reasons. Firstly, it is required that glibc
is not initialized twice: the result of such behaviour is undefined and subject to change without notice.
Secondly, it’s possible that as part of initializing glibc, the address space layout could be changed - for

93

Chapter 8. Kernel modules

instance, any call tomalloc() will initialize a heap arena which modifies the VM mappings. Finally,
glibc does not return to_start() at any point, so by reusing it we avoid the need to recreate the ELF
bootstrap stack (env , argv , auxiliary array etc).

The preloader is responsible for two things: protecting important regions of the address space so the
dynamic linker does not map shared libraries into them, and once that is done loading the real Wine
binary off disk, linking it and starting it up. Normally all this is automatically by glibc and the kernel but
as we intercepted this process by using a static binary it’s up to us to restart the process. The bulk of the
code in the preloader is about loadingwine-[pk]thread andld-linux.so.2 off disk, linking them
together, then starting the dynamic linking process.

One of the last things the preloader does before jumping into the dynamic linker is scan the symbol table
of the loaded Wine binary and set the value of a global variable directly: this is a more efficient way of
passing information to the main Wine program than flattening the data structures into an environment
variable or command line parameter then unpacking it on the other side, but it achieves pretty much the
same thing. The global variable set points to the preload descriptor table, which contains the VMA
regions protected by the preloader. This allows Wine to unmap them once the dynamic linker has been
run, so leaving gaps we can initialize properly later on.

8.1.2. Starting the emulator

The process of starting up the emulator itself is mostly one of chaining through various initializer
functions defined in the core libraries and DLLs:libwine , thenNTDLL, thenKERNEL32.

Both thewine-pthread andwine-kthread binaries share a commonmain() function, defined in
loader/main.c , so no matter which binary is selected after the preloader has run we start here. This
passes the information provided by the preloader intolibwine and then callswine_init() , defined in
libs/wine/loader.c . This is where the emulation really starts:wine_init() can, with the correct
preparation, be called from programs other than the wine loader itself.

wine_init() does some very basic setup tasks such as initializing the debugging infrastructure, yet
more address space manipulation (see the information on the 4G/4G VM split in the address space
chapter), before loadingNTDLL- the core of both Wine and the Windows NT series - and jumping to the
__wine_process_init() function defined indlls/ntdll/loader.c

This function is responsible for initializing the primary Win32 environment. Inthread_init() , it sets
up the TEB, thewineserverconnection for the main thread and the process heap. See the beginning of
this chapter for more information on this.

Finally, it loads and jumps to__wine_kernel_init() in KERNEL32.DLL: this is defined in
dlls/kernel32/process.c . This is where the bulk of the work is done. TheKERNEL32initialization
code retrieves the startup info for the process from the server, initializes the registry, sets up the drive
mapping system and locale data, then begins loading the requested application itself. Each process has a

94

Chapter 8. Kernel modules

STARTUPINFO block that can be passed intoCreateProcess specifying various things like how the
first window should be displayed: this is sent to the new process via thewineserver.

After determining the type of file given to Wine by the user (a Win32 EXE file, a Win16 EXE, a Winelib
app etc), the program is loaded into memory (which may involve loading and initializing other DLLs, the
bulk of Wines startup code), before control reaches the end of__wine_kernel_init() . This function
ends with the new process stack being initialized, and start_process being called on the new stack. Nearly
there!

The final element of initializing Wine is starting the newly loaded program itself.start_process()

sets up the SEH backstop handler, callsLdrInitializeThunk() which performs the last part of the
process initialization (such as performing relocations and calling theDllMain() with
PROCESS_ATTACH), grabs the entry point of the executable and then on this line:

ExitProcess(entry(peb));

... jumps to the entry point of the program. At this point the users program is running and the API
provided by Wine is ready to be used. When entry returns, theExitProcess() API will be used to
initialize a graceful shutdown.

8.2. Detailed memory management

As already explained in previous chapter (seeSection 7.3.5for the details), Wine creates every 32-bit
Windows process in its own 32 address space. Wine also tries to map at the relevant addresses what
Windows would do. There are however a few nasty bits to look at.

8.2.1. Implementation

Wine (with a bit of black magic) is able to map the main module at it’s desired address (likely
0x400000), to create the process heap, its stack (as a Windows executable can ask for a specific stack
size), Wine simply use the initial stack of the ELF executable for its initialisation, but creates a new stack
(as a Win32 one) for the main thread of the executable. Wine also tries to map all native DLLs at their
desired address, so that no relocation has to be performed.

Wine also implements the shared heap so native win9x DLLs can be used. This heap is always created at
theSYSTEM_HEAP_BASEaddress or0x80000000 and defaults to 16 megabytes in size.

There are a few other magic locations. The bottom 64k of memory is deliberately left unmapped to catch
null pointer dereferences. The region from 64k to 1mb+64k are reserved for DOS compatibility and
contain various DOS data structures. Finally, the address space also contains mappings for the Wine
binary itself, any native libaries Wine is using, the glibc malloc arena and so on.

95

Chapter 8. Kernel modules

8.2.2. Laying out the address space

Up until about the start of 2004, the Linux address space very much resembled the Windows 9x layout:
the kernel sat in the top gigabyte, the bottom pages were unmapped to catch null pointer dereferences,
and the rest was free. The kernels mmap algorithm was predictable: it would start by mapping files at low
addresses and work up from there.

The development of a series of new low level patches violated many of these assumptions, and resulted
in Wine needing to force the Win32 address space layout upon the system. This section looks at why and
how this is done.

The exec-shield patch increases security by randomizing the kernels mmap algorithms. Rather than
consistently choosing the same addresses given the same sequence of requests, the kernel will now
choose randomized addresses. Because the Linux dynamic linker (ld-linux.so.2) loads DSOs into
memory by using mmap, this means that DSOs are no longer loaded at predictable addresses, so making
it harder to attack software by using buffer overflows. It also attempts to relocate certain binaries into a
special low area of memory known as the ASCII armor so making it harder to jump into them when
using string based attacks.

Prelink is a technology that enhances startup times by precalculating ELF global offset tables then saving
the results inside the native binaries themselves. By grid fitting each DSO into the address space, the
dynamic linker does not have to perform as many relocations so allowing applications that heavily rely
on dynamic linkage to be loaded into memory much quicker. Complex C++ applications such as Mozilla,
OpenOffice and KDE can especially benefit from this technique.

The 4G VM split patch was developed by Ingo Molnar. It gives the Linux kernel its own address space,
thereby allowing processes to access the maximum addressable amount of memory on a 32-bit machine:
4 gigabytes. It allows people with lots of RAM to fully utilise that in any given process at the cost of
performance: the reason behind giving the kernel a part of each processes address space was to avoid the
overhead of switching on each syscall.

Each of these changes alter the address space in a way incompatible with Windows. Prelink and
exec-shield mean that the libraries Wine uses can be placed at any point in the address space: typically
this meant that a library was sitting in the region that the EXE you wanted to run had to be loaded
(remember that unlike DLLs, EXE files cannot be moved around in memory). The 4G VM split means
that programs could receive pointers to the top gigabyte of address space which some are not prepared
for (they may store extra information in the high bits of a pointer, for instance). In particular, in
combination with exec-shield this one is especially deadly as it’s possible the process heap could be
allocated beyondADDRESS_SPACE_LIMITwhich causes Wine initialization to fail.

The solution to these problems is for Wine to reserve particular parts of the address space so that areas
that we don’t want the system to use will be avoided. We later on (re/de)allocate those areas as needed.
One problem is that some of these mappings are put in place automatically by the dynamic linker: for
instance any libraries that Wine is linked to (likelibc , libwine , libpthread etc) will be mapped into

96

Chapter 8. Kernel modules

memory before Wine even gets control. In order to solve that, Wine overrides the default ELF
initialization sequence at a low level and reserves the needed areas by using direct syscalls into the kernel
(ie without linking against any other code to do it) before restarting the standard initialization and letting
the dynamic linker continue. This is referred to as the preloader and is found inloader/preloader.c .

Once the usual ELF boot sequence has been completed, some native libraries may well have been
mapped above the 3gig limit: however, this doesn’t matter as 3G is a Windows limit, not a Linux limit.
We still have to prevent the system from allocating anything else above there (like the heap or other
DLLs) though so Wine performs a binary search over the upper gig of address space in order to
iteratively fill in the holes withMAP_NORESERVEmappings so the address space is allocated but the
memory to actually back it is not. This code can be found inlibs/wine/mmap.c :reserve_area .

8.3. Multi-processing in Wine

Let’s take a closer look at the way Wine loads and run processes in memory.

8.3.1. Starting a process from command line

When starting a Wine process from command line (we’ll get later on to the differences between NE, PE
and Winelib executables), there are a couple of things Wine need to do first. A first executable is run to
check the threading model of the underlying OS (seeSection 8.4for the details) and will start the real
Wine loader corresponding to the choosen threading model.

Then Wine graps a few elements from the Unix world: the environment, the program arguments. Then
thentdll.dll.so is loaded into memory using the standard shared library dynamic loader. When
loaded,NTDLLwill mainly first create a decent Windows environment:

• create a PEB (Process Environment Block) and a TEB (Thread Environment Block).

• set up the connection to the Wine server - and eventually launching the Wine server if none runs

• create the process heap

ThenKernel32 is loaded (but now using the Windows dynamic loading capabilities) and a Wine
specific entry point is called__wine_kernel_init . This function will actually handle all the logic of
the process loading and execution, and will never return from it’s call.

__wine_kernel_init will undergo the following tasks:

• initialization of program arguments from Unix program arguments

• lookup of executable in the file system

97

Chapter 8. Kernel modules

• If the file is not found, then an error is printed and the Wine loader stops.

• We’ll cover the non-PE file type later on, so assume for now it’s a PE file. The PE module is loaded in
memory using the same mechanisms as for a native DLLs (mainly mapping the file data and code
sections into memory, and handling relocation if needed). Note that the dependencies on the module
are not resolved at this point.

• A new stack is created, which size is given in the PE header, and this stack is made the one of the
running thread (which is still the only one in the process). The stack used at startup will no longer be
used.

• Which this new stack,ntdll.LdrInitializeThunk is called which performs the remaining
initialization parts, including resolving all the DLL imports on the PE module, and doing the init of
the TLS slots.

• Control can now be passed to theEntryPoint of the PE module, which will let the executable run.

8.3.2. Creating a child process from a running process

The steps used are closely link to what is done in the previous case.

There are however a few points to look at a bit more closely. The inner implementation creates the child
process using thefork() andexec() calls. This means that we don’t need to check again for the
threading model, we can use what the parent (or the grand-parent process...) started from command line
has found.

The Win32 process creation allows to pass a lot of information between the parent and the child. This
includes object handles, windows title, console parameters, environment strings... Wine makes use of
both the standard Unix inheritance mechanisms (for environment for example) and the Wine server (to
pass from parent to child a chunk of data containing the relevant information).

The previously described loading mechanism will check in the Wine server if such a chunk exists, and, if
so, will perform the relevant initialization.

Some further synchronization is also put in place: a parent will wait until the child has started, or has
failed. The Wine server is also used to perform those tasks.

8.3.3. Starting a Winelib process

Before going into the gory details, let’s first go back to what a Winelib application is. It can be either a
regular Unix executable, or a more specific Wine beast. This later form in fact creates two files for a
given executable (sayfoo.exe). The first one, namedfoo will be a symbolic link to the Wine loader
(wine). The second one, namedfoo.exe.so , is the equivalent of the.dll.so files we’ve already

98

Chapter 8. Kernel modules

described for DLLs. As in Windows, an executable is, among other things, a module with its import and
export information, as any DLL, it makes sense Wine uses the same mechanisms for loading native
executables and DLLs.

When starting a Winelib application from the command line (say withfoo arg1 arg2), the Unix shell
will executefoo as a Unix executable. Since this is in fact the Wine loader, Wine will fire up. However,
will notice that it hasn’t been started aswine but asfoo, and hence, will try to load (using Unix shared
library mechanism) the second filefoo.exe.so . Wine will recognize a 32 bit module (with its
descriptor) embedded in the shared library, and once the shared library loaded, it will proceed the same
path as when loading a standard native PE executable.

Wine needs to implement this second form of executable in order to maintain the order of initialization of
some elements in the executable. One particular issue is when dealing with global C++ objects. In
standard Unix executable, the call of the constructor to such objects is stored in the specific section of the
executable (.init not to name it). All constructors in this section are called before themain() or
WinMain function is called. Creating a Wine executable using the first form mentionned above will let
those constructors being called before Wine gets a chance to initialize itself. So, any constructor using a
Windows API will fail, because Wine infrastructure isn’t in place. The use of the second form for
Winelib executables ensures that we do the initialization using the following steps:

• initialize the Wine infrastructure

• load the executable into memory

• handle the import sections for the executable

• call the global object constructors (if any). They now can properly call the Windows APIs

• call the executable entry point

The attentive reader would have noted that the resolution of imports for the executable is done, as for a
DLL, when the executable/DLL descriptor is registered. However, this is done also by adding a specific
constructor in the.init section. For the above describe scheme to function properly, this constructor
must be the first constructor to be called, before all the other constructors, generated by the executable
itself. The Wine build chain takes care of that, and also generating the executable/DLL descriptor for the
Winelib executable.

8.4. Multi-threading in Wine

This section will assume you understand the basics of multithreading. If not there are plenty of good
tutorials available on the net to get you started.

Threading in Wine is somewhat complex due to several factors. The first is the advanced level of
multithreading support provided by Windows - there are far more threading related constructs available

99

Chapter 8. Kernel modules

in Win32 than the Linux equivalent (pthreads). The second is the need to be able to map Win32 threads
to native Linux threads which provides us with benefits like having the kernel schedule them without our
intervention. While it’s possible to implement threading entirely without kernel support, doing so is not
desirable on most platforms that Wine runs on.

8.4.1. Threading support in Win32

Win32 is an unusually thread friendly API. Not only is it entirely thread safe, but it provides many
different facilities for working with threads. These range from the basics such as starting and stopping
threads, to the extremely complex such as injecting threads into other processes and COM inter-thread
marshalling.

One of the primary challenges of writing Wine code therefore is ensuring that all our DLLs are thread
safe, free of race conditions and so on. This isn’t simple - don’t be afraid to ask if you aren’t sure
whether a piece of code is thread safe or not!

Win32 provides many different ways you can make your code thread safe however the most common are
critical sectionand theinterlocked functions. Critical sections are a type of mutex designed to protect a
geographic area of code. If you don’t want multiple threads running in a piece of code at once, you can
protect them with calls toEnterCriticalSection() andLeaveCriticalSection() . The first call
to EnterCriticalSection() by a thread will lock the section and continue without stopping. If
another thread calls it then it will block until the original thread callsLeaveCriticalSection() again.

It is therefore vitally important that if you use critical sections to make some code thread-safe, that you
check every possible codepath out of the code to ensure that any held sections are left. Code like this:

if (res != ERROR_SUCCESS) return res;

is extremely suspect in a function that also contains a call toEnterCriticalSection() . Be careful.

If a thread blocks while waiting for another thread to leave a critical section, you will see an error from
theRtlpWaitForCriticalSection() function, along with a note of which thread is holding the lock.
This only appears after a certain timeout, normally a few seconds. It’s possible the thread holding the
lock is just being really slow which is why Wine won’t terminate the app like a non-checked build of
Windows would, but the most common cause is that for some reason a thread forgot to call
LeaveCriticalSection() , or died while holding the lock (perhaps because it was in turn waiting for
another lock). This doesn’t just happen in Wine code: a deadlock while waiting for a critical section
could be due to a bug in the app triggered by a slight difference in the emulation.

Another popular mechanism available is the use of functions likeInterlockedIncrement() and
InterlockedExchange() . These make use of native CPU abilities to execute a single instruction
while ensuring any other processors on the system cannot access memory, and allow you to do common

100

Chapter 8. Kernel modules

operations like add/remove/check a variable in thread-safe code without holding a mutex. These are
useful for reference counting especially in free-threaded (thread safe) COM objects.

Finally, the usage of TLS slots are also popular. TLS stands for thread-local storage, and is a set of slots
scoped local to a thread which you can store pointers in. Look on MSDN for theTlsAlloc() function
to learn more about the Win32 implementation of this. Essentially, the contents of a given slot will be
different in each thread, so you can use this to store data that is only meaningful in the context of a single
thread. On recent versions of Linux the __thread keyword provides a convenient interface to this
functionality - a more portable API is exposed in the pthread library. However, these facilities are not
used by Wine, rather, we implement Win32 TLS entirely ourselves.

8.4.2. POSIX threading vs. kernel threading

Wine runs in one of two modes: either pthreads (posix threading) or kthreads (kernel threading). This
section explains the differences between them. The one that is used is automatically selected on startup
by a small test program which then execs the correct binary, eitherwine-kthread or wine-pthread. On
NPTL-enabled systems pthreads will be used, and on older non-NPTL systems kthreads is selected.

Let’s start with a bit of history. Back in the dark ages when Wine’s threading support was first
implemented a problem was faced - Windows had much more capable threading APIs than Linux did.
This presented a problem - Wine works either by reimplementing an API entirely or by mapping it onto
the underlying systems equivalent. How could Win32 threading be implemented using a library which
did not have all the needed features? The answer, of course, was that it couldn’t be.

On Linux the pthreads interface is used to start, stop and control threads. The pthreads library in turn is
based on top of so-called "kernel threads" which are created using theclone(2) syscall. Pthreads
provides a nicer (more portable) interface to this functionality and also provides APIs for controlling
mutexes. There is a good tutorial on pthreads (http://www.llnl.gov/computing/tutorials/pthreads/)
available if you want to learn more.

As pthreads did not provide the necessary semantics to implement Win32 threading, the decision was
made to implement Win32 threading on top of the underlying kernel threads by using syscalls like
clone() directly. This provided maximum flexibility and allowed a correct implementation but caused
some bad side effects. Most notably, all the userland Linux APIs assumed that the user was utilising the
pthreads library. Some only enabled thread safety when they detected that pthreads was in use - this is
true of glibc, for instance. Worse, pthreads and pure kernel threads had strange interactions when run in
the same process yet some libraries used by Wine used pthreads internally. Throw in source code porting
using Winelib - where you have both UNIX and Win32 code in the same process - and chaos was the
result.

The solution was simple yet ingenious: Wine would provide its own implementation of the pthread
library insideits own binary. Due to the semantics of ELF symbol scoping, this would cause Wine’s own
implementation to override any implementation loaded later on (like the real libpthread.so). Therefore,

101

Chapter 8. Kernel modules

any calls to the pthread APIs in external libraries would be linked to Wine’s instead of the system’s
pthreads library, and Wine implemented pthreads by using the standard Windows threading APIs it in
turn implemented itself.

As a result, libraries that only became thread-safe in the presence of a loaded pthreads implementation
would now do so, and any external code that used pthreads would actually end up creating Win32 threads
that Wine was aware of and controlled. This worked quite nicely for a long time, even though it required
doing some extremely un-kosher things like overriding internal libc structures and functions. That is, it
worked until NPTL was developed at which point the underlying thread implementation on Linux
changed dramatically.

The fake pthread implementation can be found inloader/kthread.c , which is used to produce the
wine-kthread binary. In contrast,loader/pthread.c produces thewine-pthread binary which is
used on newer NPTL systems.

NPTL is a new threading subsystem for Linux that hugely improves its performance and flexibility. By
allowing threads to become much more scalable and adding new pthread APIs, NPTL made Linux
competitive with Windows in the multi-threaded world. Unfortunately it also broke many assumptions
made by Wine (as well as other applications such as the Sun JVM and RealPlayer) in the process.

There was, however, some good news. NPTL made Linux threading powerful enough that Win32 threads
could now be implemented on top of pthreads like any other normal application. There would no longer
be problems with mixing win32-kthreads and pthreads created by external libraries, and no need to
override glibc internals. As you can see from the relative sizes of theloader/kthread.c and
loader/pthread.c files, the difference in code complexity is considerable. NPTL also made several
other semantic changes to things such as signal delivery so changes were required in many different
places in Wine.

On non-Linux systems the threading interface is typically not powerful enough to replicate the semantics
Win32 applications expect and so kthreads with the pthread overrides are used.

8.4.3. The Win32 thread environment

All Win32 code, whether from a native EXE/DLL or in Wine itself, expects certain constructs to be
present in its environment. This section explores what those constructs are and how Wine sets them up.
The lack of this environment is one thing that makes it hard to use Wine code directly from standard
Linux applications - in order to interact with Win32 code a thread must first be "adopted" by Wine.

The first thing Win32 code requires is theTEBor "Thread Environment Block". This is an internal
(undocumented) Windows structure associated with every thread which stores a variety of things such as
TLS slots, a pointer to the threads message queue, the last error code and so on. You can see the
definition of the TEB ininclude/thread.h , or at least what we know of it so far. Being internal and
subject to change, the layout of the TEB has had to be reverse engineered from scratch.

102

Chapter 8. Kernel modules

A pointer to the TEB is stored in the %fs register and can be accessed usingNtCurrentTeb() from
within Wine code. %fs actually stores a selector, and setting it therefore requires modifying the processes
local descriptor table (LDT) - the code to do this is inlib/wine/ldt.c .

The TEB is required by nearly all Win32 code run in the Wine environment, as anywineserverRPC will
use it, which in turn implies that any code which could possibly block for instance by using a critical
section) needs it. The TEB also holds the SEH exception handler chain as the first element, so if
disassembling you see code like this:

movl %esp, %fs:0

... then you are seeing the program set up an SEH handler frame. All threads must have at least one SEH
entry, which normally points to the backstop handler which is ultimately responsible for popping up the
all-too-familiar This program has performed an illegal operation and will be terminated" message. On
Wine we just drop straight into the debugger. A full description of SEH is out of the scope of this section,
however there are some good articles in MSJ if you are interested.

All Win32-aware threads must have awineserverconnection. Many different APIs require the ability to
communicate with thewineserver. In turn, thewineservermust be aware of Win32 threads in order to
be able to accurately report information to other parts of the program and do things like route inter-thread
messages, dispatch APCs (asynchronous procedure calls) and so on. Therefore a part of thread
initialization is initializing the thread server-side. The result is not only correct information in the server,
but a set of file descriptors the thread can use to communicate with the server - the request fd, reply fd
and wait fd (used for blocking).

8.5. Structured Exception Handling

Structured Exception Handling (or SEH) is an implementation of exceptions inside the Windows core. It
allows code written in different languages to throw exceptions across DLL boundaries, and Windows
reports various errors like access violations by throwing them. This section looks at how it works, and
how it’s implemented in Wine.

8.5.1. How SEH works

SEH is based on embedding EXCEPTION_REGISTRATION_RECORD structures in the stack.
Together they form a linked list rooted at offset zero in the TEB (see the threading section if you don’t
know what this is). A registration record points to a handler function, and when an exception is thrown
the handlers are executed in turn. Each handler returns a code, and they can elect to either continue
through the handler chain or it can handle the exception and then restart the program. This is referred to
as unwinding the stack. After each handler is called it’s popped off the chain.

103

Chapter 8. Kernel modules

Before the system begins unwinding the stack, it runs vectored handlers. This is an extension to SEH
available in Windows XP, and allows registered functions to get a first chance to watch or deal with any
exceptions thrown in the entire program, from any thread.

A thrown exception is represented by an EXCEPTION_RECORD structure. It consists of a code, flags,
an address and an arbitrary number of DWORD parameters. Language runtimes can use these parameters
to associate language-specific information with the exception.

Exceptions can be triggered by many things. They can be thrown explicitly by using the RaiseException
API, or they can be triggered by a crash (ie, translated from a signal). They may be used internally by a
language runtime to implement language-specific exceptions. They can also be thrown across DCOM
connections.

Visual C++ has various extensions to SEH which it uses to implement, eg, object destruction on stack
unwind as well as the ability to throw arbitrary types. The code for this is indlls/msvcrt/except.c

8.5.2. Translating signals to exceptions

In Windows, compilers are expected to use the system exception interface, and the kernel itself uses the
same interface to dynamically insert exceptions into a running program. By contrast on Linux the
exception ABI is implemented at the compiler level (inside GCC and the linker) and the kernel tells a
thread of exceptional events by sendingsignals. The language runtime may or may not translate these
signals into native exceptions, but whatever happens the kernel does not care.

You may think that if an app crashes, it’s game over and it really shouldn’t matter how Wine handles this.
It’s what you might intuitively guess, but you’d be wrong. In fact some Windows programs expect to be
able to crash themselves and recover later without the user noticing, some contain buggy binary-only
components from third parties and use SEH to swallow crashes, and still others execute priviledged
(kernel-level) instructions and expect it to work. In fact, at least one set of APIs (theIsBad*Ptr()

series) can only be implemented by performing an operation that may crash and returningTRUEif it
does, andFALSE if it doesn’t! So, Wine needs to not only implement the SEH infrastructure but also
translate Unix signals into SEH exceptions.

The code to translate signals into exceptions is a part ofNTDLL, and can be found in
dlls/ntdll/signal_i386.c . This file sets up handlers for various signals during Wine startup, and
for the ones that indicate exceptional conditions translates them into exceptions. Some signals are used
by Wine internally and have nothing to do with SEH.

Signal handlers in Wine run on their own stack. Each thread has its own signal stack which resides 4k
after the TEB. This is important for a couple of reasons. Firstly, because there’s no guarantee that the app
thread which triggered the signal has enough stack space for the Wine signal handling code. In Windows,
if a thread hits the limits of its stack it triggers a fault on the stack guard page. The language runtime can
use this to grow the stack if it wants to. However, because a guard page violation is just a regular segfault

104

Chapter 8. Kernel modules

to the kernel, that would lead to a nested signal handler and that gets messy really quick so we disallow
that in Wine. Secondly, setting up the exception to throw requires modifying the stack of the thread
which triggered it, which is quite hard to do when you’re still running on it.

Windows exceptions typically contain more information than the Unix standard APIs provide. For
instance, aSTATUS_ACCESS_VIOLATIONexception (0xC0000005) structure contains the faulting
address, whereas a standard UnixSIGSEGVjust tells the app that it crashed. Usually this information is
passed as an extra parameter to the signal handler, however its location and contents vary between
kernels (BSD, Solaris, etc). This data is provided in a SIGCONTEXT structure, and on entry to the
signal handler it contains the register state of the CPU before the signal was sent. Modifying it will cause
the kernel to adjust the context before restarting the thread.

8.6. File management

With time, Windows API comes closer to the old Unix paradigm "Everything is a file". Therefore, this
whole section dedicated to file management will cover firstly the file management, but also some other
objects like directories, and even devices, which are manipulated in Windows in a rather coherent way.
We’ll see later on some other objects fitting (more or less) in this picture (pipes or consoles to name a
few).

First of all, Wine, while implementing the file interface from Windows, needs to maps a file name
(expressed in the Windows world) onto a file name in the Unix world. This encompasses several aspects:
how to map the file names, how to map access rights (both on files and directories), how to map physical
devices (hardisks, but also other devices - like serial or parallel interfaces - and even VxDs).

8.6.1. Various Windows formats for file names

Let’s first review a bit the various forms Windows uses when it comes to file names.

8.6.1.1. The DOS inheritance

At the beginning was DOS, where each file has to sit on a drive, called from a single letter. For separating
device names from directory or file names, a ’:’ was appended to this single letter, hence giving the
(in)-famousC: drive designations. Another great invention was to use some fixed names for accessing
devices: not only where these named fixed, in a way you couldn’t change the name if you’d wish to, but
also, they were insensible to the location where you were using them. For example, it’s well known that
COM1designates the first serial port, but it’s also true thatc:\foo\bar\com1 also designates the first
serial port. It’s still true today: on XP, you still cannot name a fileCOM1, whatever the directory!!!

105

Chapter 8. Kernel modules

Well later on (with Windows 95), Microsoft decided to overcome some little details in file names: this
included being able to get out of the 8+3 format (8 letters for the name, 3 letters for the extension), and
so being able to use "long names" (that’s the "official" naming; as you can guess, the 8+3 format is a
short name), and also to use very strange characters in a file name (like a space, or even a ’.’). You could
then name a fileMy File V0.1.txt , instead ofmyfile01.txt . Just to keep on the fun side of things,
for many years the format used on the disk itself for storing the names has been the short name as the
real one and to use some tricky aliasing techniques to store the long name. When some newer disk file
systems have been introduced (NTFS with NT), in replacement of the old FAT system (which had little
evolved since the first days of DOS), the long name became the real name while the short name took the
alias role.

Windows also started to support mounting network shares, and see them as they were a local disk
(through a specific drive letter). The way it has been done changed along the years, so we won’t go into
all the details (especially on the DOS and Win9x side).

8.6.1.2. The NT way

The introduction of NT allowed a deep change in the ways DOS had been handling devices:

• There’s no longer a forest of DOS drive letters (even if theassignwas a way to create symbolic links
in the forest), but a single hierarchical space.

• This hierarchy includes several distinct elements. For example,\Device\Hardisk0\Partition0

refers to the first partition on the first physical hard disk of the system.

• This hierarchy covers way more than just the files and drives related objects, but most of the objects in
the system. We’ll only cover here the file related part.

• This hierarchy is not directly accessible for the Win32 API, but only theNTDLLAPI. The Win32 API
only allows to manipulate part of this hierarchy (the rest being hidden from the Win32 API). Of
course, the part you see from Win32 API looks very similar to the one that DOS provided.

• Mounting a disk is performed by creating a symbol link in this hierarchy from\Global??\C: (the
name seen from the Win32 API) to\Device\Harddiskvolume1 which determines the partition on a
physical disk where C: is going to be seen.

• Network shares are also accessible through a symbol link. However in this case, a symbol link is
created from\Global??\UNC\host\share\ for the shareshare on the machinehost) to what’s
called a network redirector, and which will take care of 1/ the connection to the remote share, 2/
handling with that remote share the rest of the path (after the name of the server, and the name of the
share on that server).

Note: In NT naming convention, \Global?? can also be called \?? to shorten the access.

106

Chapter 8. Kernel modules

All of these things, make the NT system pretty much more flexible (you can add new types of filesystems
if you want), you provide a unique name space for all objects, and most operations boil down to creating
relationship between different objects.

8.6.1.3. Wrap up

Let’s end this chapter about files in Windows with a review of the different formats used for file names:

• c:\foo\bar is a full path.

• \foo\bar is an absolute path; the full path is created by appending the default drive (ie. the drive of
the current directory).

• bar is a relative path; the full path is created by adding the current directory.

• c:bar is a drive relative path. Note that the case wherec: is the drive of the current directory is rather
easy; it’s implemented the same way as the case just below (relative path). In the rest of this chapter,
drive relative path will only cover the case where the drive in the path isn’t the drive of the default
directory. The resolution of this to a full pathname defers according to the version of Windows, and
some parameters. Let’s take some time browsing through these issues. On Windows 9x (as well as on
DOS), the system maintains a process wide set of default directories per drive. Hence, in this case, it
will resolvec:bar to the default directory on drivec: plus filebar . Of course, the default per drive
directory is updated each time a new current directory is set (only the current directory of the drive
specified is modified). On Windows NT, things differ a bit. Since NT implements a namespace for file
closer to a single tree (instead of 26 drives), having a current directory per drive is a bit ackward.
Hence, Windows NT default behavior is to have only one current directory across all drives (in fact, a
current directory expressed in the global tree) - this directory is of course related to a given process -,
c:bar is resolved this way:

• If c: is the drive of the default directory, the final path is the current directory plusbar .

• Otherwise it’s resolved intoc:\bar .

• In order to bridge the gap between the two implementations (Windows 9x and NT), NT adds a bit of
complexity on the second case. If the =C: environment variable is defined, then it’s value is used as
a default directory for driveC: . This is handy, for example, when writing a DOS shell, where
having a current drive per drive is still implemented, even on NT. This mechanism (through
environment variables) is implemented onCMD.EXE , where those variables are set when you
change directories with thecd. Since environment variables are inherited at process creation, the
current directories settings are inherited by child processes, hence mimicing the behavior of the old
DOS shell. There’s no mechanism (inNTDLLor KERNEL32) to set up, when current directory
changes, the relevant environment variables. This behavior is clearly band-aid, not a full featured
extension of current directory behavior.

Wine fully implements all those behaviors (the Windows 9x vs NT ones are triggered by the version
flag in Wine).

• \\host\share is UNC (Universal Naming Convention) path, ie. represents a file on a remote share.

• \\.\device denotes a physical device installed in the system (as seen from the Win32 subsystem). A
standard NT system will map it to the\??\device NT path. Then, as a standard configuration,

107

Chapter 8. Kernel modules

\??\device is likely to be a link to in a physical device described and hooked into the\Device\

tree. For example,COM1is a link to \Device\Serial0 .

• On some versions of Windows, paths were limited toMAX_PATHcharacters. To circumvent this,
Microsoft allowed paths to be32,767 characters long, under the conditions that the path is expressed
in Unicode (no Ansi version), and that the path is prefixed with\\?\ . This convention is applicable to
any of the cases described above.

To summarize, what we’ve discussed so, let’s put everything into a single table...

Table 8-1. DOS, Win32 and NT paths equivalences

Type of path Win32 example NT equivalent Rule to construct

Full path c:\foo\bar.txt \Global??\C:\foo\bar.txt Simple concatenation

Absolute path \foo\bar.txt \Global??\J:\foo\bar.txt Simple concatenation using the drive of the default directory (here J:)

Relative path gee\bar.txt

\Global??\J:\mydir\mysubdir\gee\bar.txt

Simple concatenation using the default directory (hereJ:\mydir\mysubdir)

Drive relative path j:gee\bar.txt • On Windows 9x (and DOS),
J:\toto\gee\bar.txt .

• On Windows NT,
J:\gee\bar.txt .

• On Windows NT,
J:\tata\titi\bar.txt .

• On Windows NT (and DOS),\toto is the default directory on driveJ: . • On Windows NT, if =J: isn’t set. • On Windows NT, if =J: is set toJ:\tata\titi .

UNC (Uniform Naming
Convention) path

\\host\share\foo\bar.txt

\Global??\UNC\host\share\foo\bar.txt

Simple concatenation.

Device path \\.\device \Global??\device Simple concatenation

Long paths \\?\... With this prefix, paths can take up to32,767 characters, instead ofMAX_PATHfor all the others). Once the prefix stripped, to be handled like one of the previous ones, just providing internal buffers large enough).

8.6.2. Wine implementation

We’ll mainly cover in this section the way Wine opens a file (in the Unix sense) when given a Windows
file name. This will include mapping the Windows path onto a Unix path (including the devices case),
handling the access rights, the sharing attribute if any...

108

Chapter 8. Kernel modules

8.6.2.1. Mapping a Windows path into an absolute Windows path

First of all, we described in previous section the way to convert any path in an absolute path. Wine
implements all the previous algorithms in order to achieve this. Note also, that this transformation is
done with information local to the process (default directory, environment variables...). We’ll assume in
the rest of this section that all paths have now been transformed into absolute from.

8.6.2.2. Mapping a Windows (absolute) path onto a Unix path

When Wine is requested to map a path name (in DOS form, with a drive letter, e.g.
c:\foo\bar\myfile.txt), Wine converts this into the following Unix path
$(WINEPREFIX)/dosdevices/c:/foo/bar/myfile.txt . The Wine configuration process is
responsible for setting$(WINEPREFIX)/dosdevices/c: to be a symbolic link pointing to the
directory in Unix hierarchy the user wants to expose as theC: drive in the DOS forest of drives.

This scheme allows:

• a very simple algorithm to map a DOS path name into a Unix one (no need of Wine server calls)

• a very configurable implementation: it’s very easy to change a drive mapping

• a rather readable configuration: no need of sophisticated tools to read a drive mapping, als -l
$(WINEPREFIX)/dosdevicessays it all.

This scheme is also used to implement UNC path names. For example, Wine maps
\\host\share\foo\bar\MyRemoteFile.txt into
$(WINEPREFIX)/dosdevices/unc/host/share/foo/bar/MyRemoteFile.txt . It’s then up to
the user to decide where$(WINEPREFIX)/dosdevices/unc/host/share shall point to (or be). For
example, it can either be a symbolic link to a directory inside the local machine (just for emulation
purpose), or a symbolic link to the mount point of a remote disk (done through Samba or NFS), or even
the real mount point. Wine will not do any checking here, nor will help in actually mounting the remote
drive.

We’ve seen how Wine maps a drive letter or a UNC path onto the Unix hierarchy, we now have to look
on a the filename is searched within this hierarchy. The main issue is about case sensivity. Here’s a
reminder of the various properties for the file systems in the field.

Table 8-2. File systems’ properties

FS Name Length of elements Case sensitivity (on
disk)

Case sensitivity for
lookup

FAT, FAT16 or FAT32 Short name (8+3) Names are always stored
in upper-case

Case insensitive

109

Chapter 8. Kernel modules

FS Name Length of elements Case sensitivity (on
disk)

Case sensitivity for
lookup

VFAT Short name (8+3) + alias
on long name

Short names are always
stored in upper-case.
Long names are stored
with case preservation.

Case insensitive

NTFS Long name + alias on
short name (8+3).

Long names are stored
with case preservation.
Short names are always
stored in upper-case.

Case insentivite

Linux FS (ext2fs, ext3fs,
reiserfs...)

Long name Case preserving Case sensitive

Case sensitivity vs. preservation: When we say that most systems in NT are case insensitive, this
has to be understood for looking up for a file, where the matches are made in a case insensitive
mode. This is different from VFAT or NTFS "case preservation" mechanism, which stores the file
names as they are given when creating the file, while doing case insensitive matches.

Since most file systems used in NT are case insensitive and since most Unix file systems are case
sensitive, Wine undergo a case insensitive search when it has found the Unix path is has to look for. This
means, for example, that for opening the$(WINEPREFIX)/dosdevices/c:/foo/bar/myfile.txt ,
Wine will recursively open all directories in the path, and check, in this order, for the existence of the
directory entry in the form given in the file name (ie. case sensitive), and if it’s not found, in a case
insensitive form. This allows to also pass, in most Win32 file API also a Unix path (instead of a DOS or
NT path), but we’ll come back to this later. This also means that the algorithm described doesn’t
correctly handle the case of two files in the same directory, which names only differ on the case of the
letters. This means, that if, in the same directory, two files (which names match in a case sensitive
comparison), Wine will pick-up the right one if the filename given matches on of the name (in a case
sensitive way), but will pickup one of the two (without defining the one it’s going to pickup) if the
filename given matches none of the two names in a case sensitive way (but in a case insensitive way). For
example, if the two filenames aremy_neat_file.txt andMy_Neat_File.txt , Wine’s behavior
when openingMY_neat_FILE.txt is undefined.

As Windows, at the early days, didn’t support the notion of symbolic links on directories, lots of
applications (and some old native DLLs) are not ready for this feature. Mainly, they imply that the
directory structure is a tree, which has lots of consequences on navigating in the forest of directories (ie:
there cannot be two ways for going from directory to another, there cannot be cycles...). In order to
prevent some bad behavior for such applications, Wine sets up an option. By default, symbolic links on
directories are not followed by Wine. There’s an options to follow them (see the Wine User Guide), but
this could be harmful.

Wine considers that Unix file namesare long filename. This seems a reasonable approach; this is also the

110

Chapter 8. Kernel modules

approach followed by most of the Unix OSes while mounting Windows partitions (with filesystems like
FAT, FAT32 or NTFS). Therefore, Wine tries to support short names the best it can. Basically, they are
two options:

• The filesystem on which the inspected directory lies in a real Windows FS (like FAT, or FAT32, or
NTFS) and the OS has support to access the short filename (for example, Linux does this on FAT,
FAT32 or VFAT). In this case, Wine makes full use of this information and really mimics the Windows
behavior: the short filename used for any file is the same than on Windows.

• If conditions listed above are not met (either, FS has no physical short name support, or OS doesn’t
provide the access access to the short name), Wine decides and computes on its own the short filename
for a given long filename. We cannot ensure that the generated short name is the same than on
Windows (because the algorithm on Windows takes into account the order of creation of files, which
cannot be implemented in Wine: Wine would have to cache the short names of every directory it
uses!). The short name is made up of part of the long name (first characters) and the rest with a hashed
value. This has several advantages:

• The algorithm is rather simple and low cost.

• The algorithm is stateless (doesn’t depend of the other files in the directory).

But, it also has the drawbacks (of the advantages):

• The algorithm isn’t the same as on Windows, which means a program cannot use short names
generated on Windows. This could happen when copying an existing installed program from
Windows (for example, on a dual boot machine).

• Two long file names can end up with the same short name (Windows handles the collision in this
case, while Wine doesn’t). We rely on our hash algorithm to lower at most this possibility (even if it
exists).

Wine also allows in most file API to give as a parameter a full Unix path name. This is handy when
running a Wine (or Winelib) program from the command line, and one doesn’t need to convert the path
into the Windows form. However, Wine checks that the Unix path given can be accessed from one of the
defined drives, insuring that only part of the Unix/ hierarchy can be accessed.

As a side note, as Unix doesn’t widely provide a Unicode interface to the filenames, and that Windows
implements filenames as Unicode strings (even on the physical layer with NTFS, the FATs variant are
ANSI), we need to properly map between the two. At startup, Wine defines what’s called the Unix Code
Page, that’s is the code page the Unix kernel uses as a reference for the strings. Then Wine uses this code
page for all the mappings it has to do between a Unicode path (on the Windows side) and a Ansi path to
be used in a Unix path API. Note, that this will work as long as a disk isn’t mounted with a different code
page than the one the kernel uses as a default.

We describe below how Windows devices are mapped to Unix devices. Before that, let’s finish the pure
file round-up with some basic operations.

111

Chapter 8. Kernel modules

8.6.2.3. Access rights and file attributes

Now that we have looked how Wine converts a Windows pathname into a Unix one, we need to cover the
various meta-data attached to a file or a directory.

In Windows, access rights are simplistic: a file can be read-only or read-write. Wine sets the read-only
flag if the file doesn’t have the Unix user-write flag set. As a matter of fact, there’s no way Wine can
return that a file cannot be read (that doesn’t exist under Windows). The file will be seen, but trying to
open it will return an error. The Unix exec-flag is never reported. Wine doesn’t use this information to
allow/forbid running a new process (as Unix does with the exec-flag). Last but not least: hidden files.
This exists on Windows but not really on Unix! To be exact, in Windows, the hidden flag is a metadata
associated to any file or directoy; in Unix, it’s a convention based on the syntax of the file name (whether
it starts with a ’.’ or not). Wine implements two behaviors (chosen by configuration). This impacts file
names and directory names starting by a ’.’. In first mode (ShowDotFile is FALSE), every file or
directory starting by ’.’ is returned with the hidden flag turned on. This is the natural behavior on Unix
(for ls or even file explorer). In the second mode (ShowDotFile is TRUE), Wine never sets the hidden
flag, hence every file will be seen.

Last but not least, before opening a file, Windows makes use of sharing attributes in order to check
whether the file can be opened; for example, a process, being the first in the system to open a given file,
could forbid, while it maintains the file opened, that another process opens it for write access, whereas
open for read access would be granted. This is fully supported in Wine by moving all those checks in the
Wine server for a global view on the system. Note also that what’s moved in the Wine server is the
check, when the file is opened, to implement the Windows sharing semantics. Further operation on the
file (like reading and writing) will not require heavy support from the server.

The other good reason for putting the code for actually opening a file in the server is that an opened files
in Windows is managed through a handle, and handles can only be created in Wine server!

Just a note about attributes on directories: while we can easily map the meaning of Windows’
FILE_ATTRIBUTE_READONLYon a file, we cannot do it for a directory. Windows’ semantic (when this
flag is set) means do not delete the directory, while thew attribute in Unix means don’t write nor delete it.
Therefore, Wine uses an asymetric mapping here: if the directory (in Unix) isn’t writable, then Wine
reports theFILE_ATTRIBUTE_READONLYattribute; on the other way around, when asked to set a
directory withFILE_ATTRIBUTE_READONLYattribute, Wine simply does nothing.

8.6.2.4. Operations on file

8.6.2.4.1. Reading and writing

Reading and writing are the basic operations on files. Wine of course implements this, and bases the
implementation on client side calls to Unix equivalents (likeread() or write()). Note, that the Wine

112

Chapter 8. Kernel modules

server is involved in any read or write operation, as Wine needs to transform the Windows-handle to the
file into a Unix file descriptor it can pass to any Unix file function.

8.6.2.4.2. Getting a Unix fd

This is major operation in any file related operation. Basically, each file opened (at the Windows level), is
first opened in the Wine server, where the fd is stored. Then, Wine (on client side) usesrecvmsg() to
pass the fd from the wine server process to the client process. Since this operation could be lengthy,
Wine implement some kind of cache mechanism to send it only once, but getting a fd from a handle on a
file (or any other Unix object which can be manipulated through a file descriptor) still requires a round
trip to the Wine server.

8.6.2.4.3. Locking

Windows provides file locking capabilities. When a lock is set (and a lock can be set on any contiguous
range in a file), it controls how other processes in the system will have access to the range in the file.
Since locking range on a file are defined on a system wide manner, its implementation resides in
wineserver. It tries to make use Unix file locking (if the underlying OS and the mounted disk where the
file sits support this feature) withfcntl() and theF_SETLKcommand. If this isn’t supported, then
wineserver just pretends it works.

8.6.2.4.4. I/O control

There’s no need (so far) to implement support (for files and directories) forDeviceIoControl() , even
if this is supported by Windows, but for very specific needs (like compression management, or file
system related information). This isn’t the case for devices (including disks), but we’ll cover this in the
hereafter section related to devices.

8.6.2.4.5. Buffering

Wine doesn’t do any buffering on file accesses but rely on the underlying Unix kernel for that (when
possible). This scheme is needed because it’s easier to implement multiple accesses on the same file at
the kernel level, rather than at Wine levels. Doing lots of small reads on the same file can turn into a
performance hog, because each read operation needs a round trip to the server in order to get a file
descriptor (see above).

8.6.2.4.6. Overlapped I/O

Windows introduced the notion of overlapped I/O. Basically, it just means that an I/O operation (think
read / write to start with) will not wait until it’s completed, but rather return to the caller as soon as
possible, and let the caller handle the wait operation and determine when the data is ready (for a read

113

Chapter 8. Kernel modules

operation) or has been sent (for a write operation). Note that the overlapped operation is linked to a
specific thread.

There are several interests to this: a server can handle several clients without requiring multi-threading
techniques; you can handle an event driven model more easily (ie how to kill properly a server while
waiting in the lengthyread() operation).

Note that Microsoft’s support for this feature evolved along the various versions of Windows. For
example, Windows 95 or 98 only supports overlapped I/O for serial and parallel ports, while NT supports
also files, disks, sockets, pipes, or mailslots.

Wine implements overlapped I/O operations. This is mainly done by queueing in the server a request that
will be triggered when something the current state changes (like data available for a read operation). This
readiness is signaled to the calling processing by queueing a specific APC, which will be called within
the next waiting operation the thread will have. This specific APC will then do the hard work of the I/O
operation. This scheme allows to put in place a wait mechanism, to attach a routine to be called (on the
thread context) when the state changes, and to be done is a rather transparent manner (embedded any the
generic wait operation). However, it isn’t 100% perfect. As the heavy operations are done in the context
of the calling threads, if those operations are lengthy, there will be an impact on the calling thread,
especially its latency. In order to provide an effective support for this overlapped I/O operations, we
would need to rely on Unix kernel features (AIO is a good example).

8.6.2.5. Devices & volume management

We’ve covered so far the ways file names are mapped into Unix paths. There’s still need to cover it for
devices. As a regular file, devices are manipulated in Windows with both read / write operations, but also
control mechanisms (speed or parity of a serial line; volume name of a hard disk...). Since, this is also
supported in Linux, there’s also a need to open (in a Unix sense) a device when given a Windows device
name. This section applies to DOS device names, which are seen in NT as nicknames to other devices.

Firstly, Wine implements the Win32 to NT mapping as described above, hence every device path (in NT
sense) is of the following form:/??/devicename (or /DosDevices/devicename). As Windows
device names are case insensitive, Wine also converts them to lower case before any operation. Then, the
first operation Wine tries is to check whether$(WINEPREFIX)/dosdevices/devicename exists. If
so, it’s used as the final Unix path for the device. The configuration process is in charge of creating for
example, a symbolic link between$(WINEPREFIX)/dosdevices/PhysicalDrive0 and/dev/hda0 .
If such a link cannot be found, and the device name looks like a DOS disk name (likeC:), Wine first tries
to get the Unix device from the path$(WINEPREFIX)/dosdevices/c: (i.e. the device which is
mounted on the target of the symbol link); if this doesn’t give a Unix device, Wine tries whether
$(WINEPREFIX)/dosdevices/c:: exists. If so, it’s assumed to be a link to the actual Unix device.
For example, for a CD Rom,$(WINEPREFIX)/dosdevices/e:: would be a symbolic link to
/dev/cdrom . If this doesn’t exist (we’re still handling the a device name of theC: form), Wine tries to
get the Unix device from the system information (/etc/mtab and/etc/fstab on Linux). We cannot

114

Chapter 8. Kernel modules

apply this method in all the cases, because we have no insurance that the directory can actually be found.
One could have, for example, a CD Rom which he/she want only to use as audio CD player (ie never
mounted), thus not having any information of the device itself. If all of this doesn’t work either, some
basic operations are checked: if the devicename isNUL, then/dev/null is returned. If the device name
is a default serial name (COM1up toCOM9) (resp. printer nameLPT1 up toLPT9), then Wine tries to open
the Nth serial (resp. printer) in the system. Otherwise, some basic old DOS name support is doneAUXis
transformed intoCOM1andPRNinto LPT1), and the whole process is retried with those new names.

To sum up:

Table 8-3. Mapping of Windows device names into Unix device names

Windows device name NT device name Mapping to Unix device name

<any_path >AUX >\Global??\AUX Treated as an alias toCOM1

<any_path >PRN \Global??\PRN Treated as an alias toLPT1

<any_path >COM1 \Global??\COM1

$(WINEPREFIX)/dosdevices/com1

(if the symbol link exists) or the
Nth serial line in the system (on
Linux, /dev/ttyS0).

<any_path >LPT1 \Global??\LPT1

$(WINEPREFIX)/dosdevices/lpt1

(if the symbol link exists) or the
Nth printer in the system (on
Linux, /dev/lp0).

<any_path >NUL \Global??\NUL /dev/null

\\.\E: \Global??\E:

$(WINEPREFIX)/dosdevices/e::

(if the symbolic link exists) or
guessing the device from
/etc/mtab or /etc/fstab .

\\.\ <device_name > \Global??\ <device_name >

$(WINEPREFIX)/dosdevices/ <device_name >

(if the symbol link exists).

Now that we know which Unix device to open for a given Windows device, let’s cover the operation on
it. Those operations can either be read / write, io control (and even others).

Read and write operations are supported on Real disks & CDROM devices, under several conditions:

• Foremost, as theReadFile() andWriteFile() calls are mapped onto the Unixread() and
write() calls, the user (from the Unix perspective of the one running the Wine executable) must have
read (resp. write) access to the device. It wouldn’t be wise to let a user write directly to a hard disk!!!

115

Chapter 8. Kernel modules

• Blocks’ size for read and write but be of the size of a physical block (generally 512 for a hard disk,
depends on the type of CD used), and offsets must also be a multiple of the block size.

Wine also reads (if the first condition above about access rights is met) the volume information from a
hard disk or a CD ROM to be displayed to a user.

Wine also recognizes VxD as devices. But those VxD must be the Wine builtin ones (Wine will never
allow to load native VxD). Those are configured with symbolic links in the
$(WINEPREFIX)/dosdevices/ directory, and point to the actual builtin DLL. This DLL exports a
single entry point, that Wine will use when a call toDeviceIoControl is made, with a handle opened
to this VxD. This allows to provide some kind of compatibility for old Win9x apps, still talking directly
to VxD. This is no longer supported on Windows NT, newest programs are less likely to make use of this
feature, so we don’t expect lots of development in this area, even though the framework is there and
working. Note also that Wine doesn’t provide support for native VxDs (as a game, report how many
times this information is written in the documentation; as an advanced exercise, find how many more
occurrences we need in order to stop questions whether it’s possible or not).

8.7. NTDLLmodule

NTDLLprovides most of the services you’d expect from a kernel. In lots of cases,KERNEL32APIs are
just wrappers toNTDLLAPIs. There are however, some difference in the APIs (theNTDLLones have
quite often a bit wider semantics than theirKERNEL32counterparts). All the detailed functions we’ve
described since the beginning of this chapter are in fact implemented inNTDLL, plus a great numbers of
others we haven’s written about yet.

8.8. KERNEL32Module

As already explained,KERNEL32maps quite a few of its APIs toNTDLL. There are however a couple of
things which are handled directly inKERNEL32. Let’s cover a few of them...

8.8.1. Console

8.8.1.1. NT implementation

Windows implements console solely in the Win32 subsystem. Under NT, the real implementation uses a
dedicated subsystemcsrss.exe Client/Server Run-time SubSystem) which is in charge, amont other
things, of animating the consoles. Animating includes for example handling several processes on the

116

Chapter 8. Kernel modules

same console (write operations must be atomic, but also a character keyed on the console must be read
by a single process), or sending some information back to the processes (changing the size or attributes
of the console, closing the console). Windows NT uses a dedicated (RPC based) protocol between each
process being attached to a console and thecsrss.exesubsystem, which is in charge of the UI of every
console in the system.

8.8.1.2. Wine implementation

Wine tries to integrate as much as possible into the Unix consoles, but the overall situation isn’t perfect
yet. Basically, Wine implements three kinds of consoles:

• the first one is a direct mapping of the Unix console into the Windows environment. From the windows
program point of view, it won’t run in a Windows console, but it will see its standard input and output
streams redirected to files; thoses files are hooked into the Unix console’s output and input streams
respectively. This is handy for running programs from a Unix command line (and use the result of the
program as it was a Unix programs), but it lacks all the semantics of the Windows consoles.

• the second and third ones are closer to the NT scheme, albeit different from what NT does. The
wineserverplays the role of thecsrss.exe subsystem (all requests are sent to it), and are then
dispatched to a dedicated wine process, called (surprise!)wineconsolewhich manages the UI of the
console. There is a running instance ofwineconsolefor every console in the system. Two flavors of
this scheme are actually implemented: they vary on the backend for thewineconsole. The first one,
dubbeduser , creates a real GUI window (hence the USER name) and renders the console in this
window. The second one uses the(n)curses library to take full control of an existing Unix console;
of course, interaction with other Unix programs will not be as smooth as the first solution.

The following table describes the main implementation differences between the three approaches.

Table 8-4. Function consoles implementation comparison

Function Bare streams Wineconsole & user
backend

Wineconsole &
curses backend

Console as a Win32
Object (and associated
handles)

No specific Win32 object
is used in this case. The
handles manipulated for
the standard Win32
streams are in fact "bare
handles" to their
corresponding Unix
streams. The mode
manipulation functions
(GetConsoleMode() /
SetConsoleMode()) are
not supported.

Implemented in server,
and a specific Winelib
program (wineconsole) is
in charge of the rendering
and user input. The mode
manipulation functions
behave as expected.

Implemented in server,
and a specific Winelib
program (wineconsole) is
in charge of the rendering
and user input. The mode
manipulation functions
behave as expected.

117

Chapter 8. Kernel modules

Function Bare streams Wineconsole & user
backend

Wineconsole &
curses backend

Inheritance (including
handling in
CreateProcess() of
CREATE_DETACHED,
CREATE_NEW_CONSOLE

flags).

Not supported. Every
process child of a process
will inherit the Unix
streams, so will also
inherit the Win32
standard streams.

Fully supported (each
new console creation will
be handled by the
creation of a newUSER32

window)

Fully supported, except
for the creation of a new
console, which will be
rendered on the same
Unix terminal as the
previous one, leading to
unpredictable results.

ReadFile() /
WriteFile() operations

Fully supported Fully supported Fully supported

Screen-buffer
manipulation (creation,
deletion, resizing...)

Not supported Fully supported Partly supported (this
won’t work too well as
we don’t control (so far)
the size of underlying
Unix terminal

APIs for reading/writing
screen-buffer content,
cursor position

Not supported Fully supported Fully supported

APIs for manipulating the
rendering window size

Not supported Fully supported Partly supported (this
won’t work too well as
we don’t control (so far)
the size of underlying
Unix terminal

Signaling (in particular,
Ctrl-C handling)

Nothing is done, which
means that Ctrl-C will
generate (as usual) a
SIGINT which will
terminate the program.

Partly supported (Ctrl-C
behaves as expected,
however the other Win32
CUI signaling isn’t
properly implemented).

Partly supported (Ctrl-C
behaves as expected,
however the other Win32
CUI signaling isn’t
properly implemented).

The Win32 objects behind a console can be created in several occasions:

• When the program is started fromwineconsole, a new console object is created and will be used
(inherited) by the process launched fromwineconsole.

• When a program, which isn’t attached to a console, callsAllocConsole() , Wine then launches
wineconsole, and attaches the current program to this console. In this mode, theUSER32mode is
always selected as Wine cannot tell the current state of the Unix console.

Please also note, that starting a child process with theCREATE_NEW_CONSOLEflag, will end-up calling
AllocConsole() in the child process, hence creating awineconsolewith theUSER32backend.

118

Chapter 8. Kernel modules

Another interesting point to note is that Windows implements handles to console objects (input and
screen buffers) only in theKERNEL32DLL, and those are not sent nor seen from theNTDLL level, albeit,
for example, console are waitable on input. How is this possible? Well, Windows NT is a bit tricky here.
Regular handles have an interesting property: their integral value is always a multiple of four (they are
likely to be offsets from the beginning of a table). Console handles, on the other hand, are not multiple of
four, but have the two lower bit set (being a multiple of four means having the two lower bits reset).
WhenKERNEL32sees a handle with the two lower bits set, it then knows it’s a console handle and takes
appropriate decisions. For example, in the variouskernel32!WaitFor*() functions, it transforms any
console handle (input andoutput- strangely enough handles to console’s screen buffers are waitable)
into a dedicated wait event for the targetted console. There’s an (undocumented)KERNEL32function
GetConsoleInputWaitHandle() which returns the handle to this event in case you need it. Another
interesting handling of those console’s handles is inReadFile() (resp.WriteFile()), which
behavior, for console’s handles, is transferred toReadConsole() (resp.WriteConsole()). Note that’s
always the ANSI version ofReadConsole() / WriteConsole() which is called, hence using the
default console’s code page. There are some other spots affected, but you can look indlls/kernel to
find them all. All of this is implemented in Wine.

Wine also implements the same layout of the registry for storing the preferences of the console as
Windows does. Those settings can either be defined globally, or on a per process name basis.
wineconsoleprovides the choice to the user to pick you which registry part (global, current running
program) it wishes to modify the settings for.

Table 8-5. Console registry settings

Name Default value Purpose

CursorSize 25 Percentage of cell height to which
the cursor extents

CursorVisible 1 Whether the cursor is visible or
not

EditionMode 0 The way the edition takes place in
the console: 0 is insertion mode, 1
is overwrite mode.

ExitOnDie 1 Whether the console should close
itself when last running program
attached to it dies

FaceName No default Name of the font to be used for
display. When none is given,
wineconsoletries its best to pick
up a decent font

FontSize 0x0C08 The high word in the font’s cell
height, and the low word is the
font cell’s width. The default value
is 12 pixels in height and 8 pixels
in width.

119

Chapter 8. Kernel modules

Name Default value Purpose

FontWeight 0 Weigth of the font. If none is
given (or 0)wineconsolepicks up
a decent font size

HistoryBufferSize 50 Number of entries in history
buffer (not actually used)

HistoryNoDup 0 Whether the history should store
twice the same entry

MenuMask 0 This mask only exists for Wine
console handling. It allows to
know which combination of extra
keys are need to open the
configuration window on right
click. The mask can include
MK_CONTROLor MK_SHIFTbits.
This can be needed when
programs actually need the right
click to be passed to them instead
of being intercepted by
wineconsole.

QuickEdit 0 If null, mouse events are sent to
the application. If non null, mouse
events are used to select text on
the window. This setting must
really be set on a application per
application basis, because it deals
with the fact the CUI application
will use or not the mouse events.

ScreenBufferSize 0x1950 The high word is the number of
font cells in the height of the
screen buffer, while the low word
is the number of font cells in the
width of the screen buffer.

ScreenColors 0x000F Default color attribute for the
screen buffer (low char is the
foreground color, and high char is
the background color)

120

Chapter 8. Kernel modules

Name Default value Purpose

WindowSize 0x1950 The high word is the number of
font cells in the height of the
window, while the low word is the
number of font cells in the width
of the window. This window is the
visible part of the screen buffer:
this implies that a screen buffer
must always be bigger than its
window, and that the screen buffer
can be scrolled so that every cell
of the screen buffer can be seen in
the window.

8.8.2. Win16 processes support

8.8.2.1. Starting a NE (Win16) process

Wine is also able to run 16 bit processes, but this feature is only supported on Intel IA-32 architectures.

When Wine is requested to run a NE (Win 16 process), it will in fact hand over the execution of it to a
specific executablewinevdm. VDM stands for Virtual DOS Machine. Thiswinevdm is a Winelib
application, but will in fact set up the correct 16 bit environment to run the executable. We will get back
later on in details to what this means.

Any new 16 bit process created by this executable (or its children) will run into the samewinevdm
instance. Among one instance, several functionalities will be provided to those 16 bit processes,
including the cooperative multitasking, sharing the same address space, managing the selectors for the 16
bit segments needed for code, data and stack.

Note that severalwinevdm instances can run in the same Wine session, but the functionalities described
above are only shared among a given instance, not among all the instances.winevdm is built as Winelib
application, and hence has access to any facility a 32 bit application has.

Each Win16 application is implemented inwinevdm as a Win32 thread.winevdm then implements its
own scheduling facilities (in fact, the code for this feature is in thekrnl386.exe DLL). Since the
required Win16 scheduling is non pre-emptive, this doesn’t require any underlying OS kernel support.

121

Chapter 8. Kernel modules

8.8.2.2. SysLevels

SysLevels are an undocumented Windows-internal thread-safety system dedicated to 16 bit applications
(or 32 bit applications that call - directly or indirectly - 16 bit code). They are basically critical sections
which must be taken in a particular order. The mechanism is generic but there are always three syslevels:

• level 1 is the Win16 mutex,

• level 2 is theUSERmutex,

• level 3 is theGDI mutex.

When entering a syslevel, the code (indlls/kernel/syslevel.c) will check that a higher syslevel is
not already held and produce an error if so. This is because it’s not legal to enter level 2 while holding
level 3 - first, you must leave level 3.

Throughout the code you may see calls to_ConfirmSysLevel() and_CheckNotSysLevel() . These
functions are essentially assertions about the syslevel states and can be used to check that the rules have
not been accidentally violated. In particular,_CheckNotSysLevel() will break probably into the
debugger) if the check fails. If this happens the solution is to get a backtrace and find out, by reading the
source of the wine functions called along the way, how Wine got into the invalid state.

8.8.2.3. Memory management

Every Win16 address is expressed in the form of selector:offset. The selector is an entry in the LDT, but
a 16 bit entry, limiting each offset to 64 KB. Hence, the maximum available memory to a Win16 process
is 512 MB. Note, that the processor runs in protected mode, but using 16 bit selectors.

Windows, for a 16 bit process, defines a few selectors to access the "real" memory (the one provided) by
DOS. Basically, Wine also provides this area of memory.

8.8.3. DOS processes support

The behaviour we just described also applies to DOS executables, which are handled the same way by
winevdm. This is only supported on Intel IA-32 architectures.

Wine implements also most of the DOS support in a Wine specific DLL (winedos). This DLL is called
under certain conditions, like:

• In winevdm, when trying to launch a DOS application (.EXE or .COM, .PIF).

122

Chapter 8. Kernel modules

• In kernel32 , when an attempt is made in the binary code to call some DOS or BIOS interrupts (like
Int 21h for example).

Whenwinevdm runs a DOS program, this one runs in real mode (in fact in V86 mode from the IA-32
point of view).

Wine also supports part of the DPMI (DOS Protected Mode Interface).

Wine, when running a DOS programs, needs to map the 1 MB of virtual memory to the real memory (as
seen by the DOS program). When this is not possible (like when someone else is already using this area),
the DOS support is not possible. Not also that by doing so, access to linear address 0 is enabled (as it’s
also real mode address 0 which is valid). Hence, NULL pointer derefence faults are no longer catched.

123

Chapter 9. Graphical modules

9.1. GDI Module

9.1.1. X Windows System interface

The X libraries used to implement X clients (such as Wine) do not work properly if multiple threads
access the same display concurrently. It is possible to compile the X libraries to perform their own
synchronization (initiated by callingXInitThreads()). However, Wine does not use this approach.
Instead Wine performs its own synchronization using thewine_tsx11_lock() /
wine_tsx11_unlock() functions. This locking protects library access with a critical section, and also
arranges things so that X libraries compiled without-D_REENTRANT(eg. with globalerrno variable)
will work with Wine.

In the past, all calls to X used to go through a wrapper calledTSX...() (for "Thread Safe X ..."). While
it is still being used in the code, it’s inefficient as the lock is potentially aquired and released
unnecessarily. New code should explicitly aquire the lock.

124

Chapter 10. Windowing system

10.1. USER Module

USER implements windowing and messaging subsystems. It also contains code for common controls
and for other miscellaneous stuff (rectangles, clipboard, WNet, etc). Wine USER code is located in
windows/ , controls/ , andmisc/ directories.

10.1.1. Windowing subsystem

windows/win.c

windows/winpos.c

Windows are arranged into parent/child hierarchy with one common ancestor for all windows (desktop
window). Each window structure contains a pointer to the immediate ancestor (parent window if
WS_CHILDstyle bit is set), a pointer to the sibling (returned byGetWindow(..., GW_NEXT)), a pointer
to the owner window (set only for popup window if it was created with validhwndParent parameter),
and a pointer to the first child window (GetWindow(.., GW_CHILD)). All popup and non-child
windows are therefore placed in the first level of this hierarchy and their ancestor link (wnd- >parent)
points to the desktop window.

Desktop window - root window
| \ ‘-.
| \ ‘-.

popup - > wnd1 - > wnd2 - top level windows
| \ ‘-. ‘-.
| \ ‘-. ‘-.

child1 child2 - > child3 child4 - child windows

Horizontal arrows denote sibling relationship, vertical lines - ancestor/child. To summarize, all windows
with the same immediate ancestor are sibling windows, all windows which do not have desktop as their
immediate ancestor are child windows. Popup windows behave as topmost top-level windows unless
they are owned. In this case the only requirement is that they must precede their owners in the top-level
sibling list (they are not topmost). Child windows are confined to the client area of their parent windows
(client area is where window gets to do its own drawing, non-client area consists of caption, menu,
borders, intrinsic scrollbars, and minimize/maximize/close/help buttons).

Another fairly important concept isz-order. It is derived from the ancestor/child hierarchy and is used to
determine "above/below" relationship. For instance, in the example above, z-order is

child1- >popup- >child2- >child3- >wnd1- >child4- >wnd2- >desktop.

125

Chapter 10. Windowing system

Current active window ("foreground window" in Win32) is moved to the front of z-order unless its
top-level ancestor owns popup windows.

All these issues are dealt with (or supposed to be) inwindows/winpos.c with SetWindowPos() being
the primary interface to the window manager.

Wine specifics: in default and managed mode each top-level window gets its own X counterpart with
desktop window being basically a fake stub. In desktop mode, however, only desktop window has an X
window associated with it. Also,SetWindowPos() should eventually be implemented via
Begin/End/DeferWindowPos() calls and not the other way around.

10.1.1.1. Visible region, clipping region and update region

windows/dce.c

windows/winpos.c

windows/painting.c

|_________ | A and B are child windows of C
A	______	
---------’		
	B	
‘------------’		
C		
‘------------------------’

Visible region determines which part of the window is not obscured by other windows. If a window has
theWS_CLIPCHILDRENstyle then all areas below its children are considered invisible. Similarly, if the
WS_CLIPSIBLINGS bit is in effect then all areas obscured by its siblings are invisible. Child windows
are always clipped by the boundaries of their parent windows.

B has aWS_CLIPSIBLINGS style:

. ______
: | |
| ,-----’ |
| | B | - visible region of B
| | |
: ‘------------’

126

Chapter 10. Windowing system

When the program requests adisplay context(DC) for a window it can specify an optional clipping
region that further restricts the area where the graphics output can appear. This area is calculated as an
intersection of the visible region and a clipping region.

Program asked for a DC with a clipping region:

,--|--. | . ,--.

,--+--’ | | : _: |
| | B | | = > | | | - DC region where the painting will
| | | | | | | be visible
‘--|-----|---’ : ‘----’

‘-----’

When the window manager detects that some part of the window became visible it adds this area to the
update region of this window and then generatesWM_ERASEBKGNDandWM_PAINTmessages. In addition,
WM_NCPAINTmessage is sent when the uncovered area intersects a nonclient part of the window.
Application must reply to theWM_PAINTmessage by calling theBeginPaint() /EndPaint() pair of
functions.BeginPaint() returns a DC that uses accumulated update region as a clipping region. This
operation cleans up invalidated area and the window will not receive anotherWM_PAINTuntil the
window manager creates a new update region.

A was moved to the left:

________________________ ... / C update region
|______ | : .___ /
| A |_________ | = > | ...|___|..
| | | | | : | |
|------’ | | | : ’---’
| | B | | | : \
| | | | : \
| ‘------------’ | B update region
| C |
‘------------------------’

Windows maintains a display context cache consisting of entries that include the DC itself, the window
to which it belongs, and an optional clipping region (visible region is stored in the DC itself). When an
API call changes the state of the window tree, window manager has to go through the DC cache to
recalculate visible regions for entries whose windows were involved in the operation. DC entries (DCE)
can be either private to the window, or private to the window class, or shared between all windows
(Windows 3.1 limits the number of shared DCEs to 5).

127

Chapter 10. Windowing system

10.1.2. Messaging subsystem

windows/queue.c

windows/message.c

Each Windows task/thread has its own message queue - this is where it gets messages from. Messages
can be:

1. generated on the fly (WM_PAINT, WM_NCPAINT, WM_TIMER)

2. created by the system (hardware messages)

3. posted by other tasks/threads (PostMessage)

4. sent by other tasks/threads (SendMessage)

Message priority:

First the system looks for sent messages, then for posted messages, then for hardware messages, then it
checks if the queue has the "dirty window" bit set, and, finally, it checks for expired timers. See
windows/message.c .

From all these different types of messages, only posted messages go directly into the private message
queue. System messages (even in Win95) are first collected in the system message queue and then they
either sit there untilGet/PeekMessage gets to process them or, as in Win95, if system queue is getting
clobbered, a special thread ("raw input thread") assigns them to the private queues. Sent messages are
queued separately and the sender sleeps until it gets a reply. Special messages are generated on the fly
depending on the window/queue state. If the window update region is not empty, the system sets the
QS_PAINTbit in the owning queue and eventually this window receives aWM_PAINTmessage
(WM_NCPAINTtoo if the update region intersects with the non-client area). A timer event is raised when
one of the queue timers expire. Depending on the timer parametersDispatchMessage either calls the
callback function or the window procedure. If there are no messages pending the task/thread sleeps until
messages appear.

There are several tricky moments (open for discussion) -

• System message order has to be honored and messages should be processed within correct task/thread
context. Therefore whenGet/PeekMessage encounters unassigned system message and this message
appears not to be for the current task/thread it should either skip it (or get rid of it by moving it into the
private message queue of the target task/thread - Win95, AFAIK) and look further or roll back and
then yield until this message gets processed when system switches to the correct context (Win16). In
the first case we lose correct message ordering, in the second case we have the infamous synchronous
system message queue. Here is a post to one of the OS/2 newsgroup I found to be relevant:

128

Chapter 10. Windowing system

" Here’s the problem in a nutshell, and there is no good solution. Every possible solution creates a different
problem.

With a windowing system, events can go to many different windows. Most are sent by applications or by the
OS when things relating to that window happen (like repainting, timers, etc.)

Mouse input events go to the window you click on (unless some window captures the mouse).

So far, no problem. Whenever an event happens, you put a message on the target window’s message queue.
Every process has a message queue. If the process queue fills up, the messages back up onto the system
queue.

This is the first cause of apps hanging the GUI. If an app doesn’t handle messages and they back up into the
system queue, other apps can’t get any more messages. The reason is that the next message in line can’t go
anywhere, and the system won’t skip over it.

This can be fixed by making apps have bigger private message queues. The SIQ fix does this. PMQSIZE
does this for systems without the SIQ fix. Applications can also request large queues on their own.

Another source of the problem, however, happens when you include keyboard events. When you press a key,
there’s no easy way to know what window the keystroke message should be delivered to.

Most windowing systems use a concept known as "focus". The window with focus gets all incoming
keyboard messages. Focus can be changed from window to window by apps or by users clicking on
windows.

This is the second source of the problem. Suppose window A has focus. You click on window B and start
typing before the window gets focus. Where should the keystrokes go? On the one hand, they should go to A
until the focus actually changes to B. On the other hand, you probably want the keystrokes to go to B, since
you clicked there first.

OS/2’s solution is that when a focus-changing event happens (like clicking on a window), OS/2 holds all
messages in the system queue until the focus change actually happens. This way, subsequent keystrokes go
to the window you clicked on, even if it takes a while for that window to get focus.

The downside is that if the window takes a real long time to get focus (maybe it’s not handling events, or
maybe the window losing focus isn’t handling events), everything backs up in the system queue and the
system appears hung.

There are a few solutions to this problem.

One is to make focus policy asynchronous. That is, focus changing has absolutely nothing to do with the
keyboard. If you click on a window and start typing before the focus actually changes, the keystrokes go to
the first window until focus changes, then they go to the second. This is what X-windows does.

129

Chapter 10. Windowing system

Another is what NT does. When focus changes, keyboard events are held in the system message queue, but
other events are allowed through. This is "asynchronous" because the messages in the system queue are
delivered to the application queues in a different order from that with which they were posted. If a bad app
won’t handle the "lose focus" message, it’s of no consequence - the app receiving focus will get its "gain
focus" message, and the keystrokes will go to it.

The NT solution also takes care of the application queue filling up problem. Since the system delivers
messages asynchronously, messages waiting in the system queue will just sit there and the rest of the
messages will be delivered to their apps.

The OS/2 SIQ solution is this: When a focus-changing event happens, in addition to blocking further
messages from the application queues, a timer is started. When the timer goes off, if the focus change has
not yet happened, the bad app has its focus taken away and all messages targeted at that window are
skipped. When the bad app finally handles the focus change message, OS/2 will detect this and stop
skipping its messages.

As for the pros and cons:

The X-windows solution is probably the easiest. The problem is that users generally don’t like having to
wait for the focus to change before they start typing. On many occasions, you can type and the characters
end up in the wrong window because something (usually heavy system load) is preventing the focus change
from happening in a timely manner.

The NT solution seems pretty nice, but making the system message queue asynchronous can cause similar
problems to the X-windows problem. Since messages can be delivered out of order, programs must not
assume that two messages posted in a particular order will be delivered in that same order. This can break
legacy apps, but since Win32 always had an asynchronous queue, it is fair to simply tell app designers
"don’t do that". It’s harder to tell app designers something like that on OS/2 - they’ll complain "you changed
the rules and our apps are breaking."

The OS/2 solution’s problem is that nothing happens until you try to change window focus, and then wait
for the timeout. Until then, the bad app is not detected and nothing is done."

—by David Charlap

• Intertask/interthreadSendMessage . The system has to inform the target queue about the forthcoming
message, then it has to carry out the context switch and wait until the result is available. Win16 stores
necessary parameters in the queue structure and then callsDirectedYield() function. However, in
Win32 there could be several messages pending sent by preemptively executing threads, and in this
caseSendMessage has to build some sort of message queue for sent messages. Another issue is what
to do with messages sent to the sender when it is blocked inside its ownSendMessage .

10.1.3. Accelerators

There arethreedifferently sized accelerator structures exposed to the user:

1. Accelerators in NE resources. This is also the internal layout of the global handle HACCEL (16 and
32) in Windows 95 and Wine. Exposed to the user as Win16 global handles HACCEL16 and

130

Chapter 10. Windowing system

HACCEL32 by the Win16/Win32 API. These are 5 bytes long, with no padding:

BYTE fVirt;
WORD key;
WORD cmd;

2. Accelerators in PE resources. They are exposed to the user only by direct accessing PE resources.
These have a size of 8 bytes:

BYTE fVirt;
BYTE pad0;
WORD key;
WORD cmd;
WORD pad1;

3. Accelerators in the Win32 API. These are exposed to the user by theCopyAcceleratorTable and
CreateAcceleratorTable functions in the Win32 API. These have a size of 6 bytes:

BYTE fVirt;
BYTE pad0;
WORD key;
WORD cmd;

Why two types of accelerators in the Win32 API? We can only guess, but my best bet is that the Win32
resource compiler can/does not handle struct packing. Win32 ACCEL is defined using#pragma(2) for
the compiler but without any packing for RC, so it will assume#pragma(4) .

10.2. X Windows System interface

10.2.1. Keyboard mapping

Wine now needs to know about your keyboard layout. This requirement comes from a need from many
apps to have the correct scancodes available, since they read these directly, instead of just taking the
characters returned by the X server. This means that Wine now needs to have a mapping from X keys to
the scancodes these programs expect.

On startup, Wine will try to recognize the active X layout by seeing if it matches any of the defined
tables. If it does, everything is alright. If not, you need to define it.

To do this, open the filedlls/x11drv/keyboard.c and take a look at the existing tables. Make a
backup copy of it, especially if you don’t use CVS.

131

Chapter 10. Windowing system

What you really would need to do, is find out which scancode each key needs to generate. Find it in the
main_key_scan table, which looks like this:

static const int main_key_scan[MAIN_LEN] =
{
/* this is my (102-key) keyboard layout, sorry if it doesn’t quite match yours */
0x29,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,
0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x2B,
0x2C,0x2D,0x2E,0x2F,0x30,0x31,0x32,0x33,0x34,0x35,
0x56 /* the 102nd key (actually to the right of l-shift) */
};

Next, assign each scancode the characters imprinted on the keycaps. This was done (sort of) for the US
101-key keyboard, which you can find near the top inkeyboard.c . It also shows that if there is no
102nd key, you can skip that.

However, for most international 102-key keyboards, we have done it easy for you. The scancode layout
for these already pretty much matches the physical layout in themain_key_scan , so all you need to do
is to go through all the keys that generate characters on your main keyboard (except spacebar), and stuff
those into an appropriate table. The only exception is that the 102nd key, which is usually to the left of
the first key of the last line (usuallyZ), must be placed on a separate line after the last line.

For example, my Norwegian keyboard looks like this

§ ! " # ¤ % & / () = ? ‘ Back-
| 1 2@ 3£ 4$ 5 6 7{ 8[9] 0} + \´ space

Tab Q W E R T Y U I O P Å ^
¨~

Enter
Caps A S D F G H J K L Ø Æ *
Lock ’

Sh- > Z X C V B N M ; : _ Shift
ift < , . -

Ctrl Alt Spacebar AltGr Ctrl

Note the 102nd key, which is the<> key, to the left ofZ. The character to the right of the main character
is the character generated byAltGr .

This keyboard is defined as follows:

static const char main_key_NO[MAIN_LEN][4] =
{
"|§","1!","2\"@","3#£","4¤$","5%","6&","7/{","8([","9)]","0=}","+?","\\´",
"qQ","wW","eE","rR","tT","yY","uU","iI","oO","pP","åÅ","¨^~",

132

Chapter 10. Windowing system

"aA","sS","dD","fF","gG","hH","jJ","kK","lL","øØ","æÆ","’*",
"zZ","xX","cC","vV","bB","nN","mM",",;",".:","-_",
" <>"
};

Except that " and \ needs to be quoted with a backslash, and that the 102nd key is on a separate line, it’s
pretty straightforward.

After you have written such a table, you need to add it to themain_key_tab[] layout index table. This
will look like this:

static struct {
WORD lang, ansi_codepage, oem_codepage;
const char (*key)[MAIN_LEN][4];
} main_key_tab[]={
...
...
{MAKELANGID(LANG_NORWEGIAN,SUBLANG_DEFAULT), 1252, 865, &main_key_NO},
...

After you have added your table, recompile Wine and test that it works. If it fails to detect your table, try
running

WINEDEBUG=+key,+keyboard wine > key.log 2>&1

and look in the resultingkey.log file to find the error messages it gives for your layout.

Note that theLANG_* andSUBLANG_*definitions are ininclude/winnls.h , which you might need to
know to find out which numbers your language is assigned, and find it in the WINEDEBUG output. The
numbers will be(SUBLANG * 0x400 + LANG) , so, for example the combinationLANG_NORWEGIAN

(0x14) andSUBLANG_DEFAULT (0x1)will be (in hex)14 + 1*400 = 414 , so since I’m Norwegian,
I could look for0414 in the WINEDEBUG output to find out why my keyboard won’t detect.

133

Chapter 11. COM in Wine

11.1. Writing COM Components for Wine

This section describes how to create your own natively compiled COM components.

11.1.1. Macros to define a COM interface

The goal of the following set of definitions is to provide a way to use the same header file definitions to
provide both a C interface and a C++ object oriented interface to COM interfaces. The type of interface
is selected automatically depending on the language but it is always possible to get the C interface in
C++ by defining CINTERFACE.

It is based on the following assumptions:

• all COM interfaces derive from IUnknown, this should not be a problem.

• the header file only defines the interface, the actual fields are defined separately in the C file
implementing the interface.

The natural approach to this problem would be to make sure we get a C++ class and virtual methods in
C++ and a structure with a table of pointer to functions in C. Unfortunately the layout of the virtual table
is compiler specific, the layout of g++ virtual tables is not the same as that of an egcs virtual table which
is not the same as that generated by Visual C++. There are work arounds to make the virtual tables
compatible via padding but unfortunately the one which is imposed to the Wine emulator by the
Windows binaries, i.e. the Visual C++ one, is the most compact of all.

So the solution I finally adopted does not use virtual tables. Instead I use in-line non virtual methods that
dereference the method pointer themselves and perform the call.

Let’s take Direct3D as an example:

#define ICOM_INTERFACE IDirect3D
#define IDirect3D_METHODS \

ICOM_METHOD1(HRESULT,Initialize, REFIID,) \
ICOM_METHOD2(HRESULT,EnumDevices, LPD3DENUMDEVICESCALLBACK„ LPVOID,) \
ICOM_METHOD2(HRESULT,CreateLight, LPDIRECT3DLIGHT*„ IUnknown*,) \
ICOM_METHOD2(HRESULT,CreateMaterial,LPDIRECT3DMATERIAL*„ IUnknown*,) \
ICOM_METHOD2(HRESULT,CreateViewport,LPDIRECT3DVIEWPORT*„ IUnknown*,) \
ICOM_METHOD2(HRESULT,FindDevice, LPD3DFINDDEVICESEARCH„ LPD3DFINDDEVICERESULT,)

#define IDirect3D_IMETHODS \
IUnknown_IMETHODS \
IDirect3D_METHODS

ICOM_DEFINE(IDirect3D,IUnknown)

134

Chapter 11. COM in Wine

#undef ICOM_INTERFACE

#ifdef ICOM_CINTERFACE
// *** IUnknown methods *** //
#define IDirect3D_QueryInterface(p,a,b) ICOM_CALL2(QueryInterface,p,a,b)
#define IDirect3D_AddRef(p) ICOM_CALL (AddRef,p)
#define IDirect3D_Release(p) ICOM_CALL (Release,p)
// *** IDirect3D methods *** //
#define IDirect3D_Initialize(p,a) ICOM_CALL1(Initialize,p,a)
#define IDirect3D_EnumDevices(p,a,b) ICOM_CALL2(EnumDevice,p,a,b)
#define IDirect3D_CreateLight(p,a,b) ICOM_CALL2(CreateLight,p,a,b)
#define IDirect3D_CreateMaterial(p,a,b) ICOM_CALL2(CreateMaterial,p,a,b)
#define IDirect3D_CreateViewport(p,a,b) ICOM_CALL2(CreateViewport,p,a,b)
#define IDirect3D_FindDevice(p,a,b) ICOM_CALL2(FindDevice,p,a,b)
#endif

Comments:

The ICOM_INTERFACE macro is used in the ICOM_METHOD macros to define the type of the ’this’
pointer. Defining this macro here saves us the trouble of having to repeat the interface name everywhere.
Note however that because of the way macros work, a macro like ICOM_METHOD1 cannot use
’ICOM_INTERFACE##_VTABLE’ because this would give ’ICOM_INTERFACE_VTABLE’ and not
’IDirect3D_VTABLE’.

ICOM_METHODS defines the methods specific to this interface. It is then aggregated with the inherited
methods to form ICOM_IMETHODS.

ICOM_IMETHODS defines the list of methods that are inheritable from this interface. It must be written
manually (rather than using a macro to generate the equivalent code) to avoid macro recursion (which
compilers don’t like).

The ICOM_DEFINE finally declares all the structures necessary for the interface. We have to explicitly
use the interface name for macro expansion reasons again. Inherited methods are inherited in C by using
the IDirect3D_METHODS macro and the parent’s Xxx_IMETHODS macro. In C++ we need only use
the IDirect3D_METHODS since method inheritance is taken care of by the language.

In C++ the ICOM_METHOD macros generate a function prototype and a call to a function pointer
method. This means using once ’t1 p1, t2 p2, ...’ and once ’p1, p2’ without the types. The only way I
found to handle this is to have one ICOM_METHOD macro per number of parameters and to have it
take only the type information (with const if necessary) as parameters. The ’undef ICOM_INTERFACE’
is here to remind you that using ICOM_INTERFACE in the following macros will not work. This time
it’s because the ICOM_CALL macro expansion is done only once the ’IDirect3D_Xxx’ macro is
expanded. And by that time ICOM_INTERFACE will be long gone anyway.

135

Chapter 11. COM in Wine

You may have noticed the double commas after each parameter type. This allows you to put the name of
that parameter which I think is good for documentation. It is not required and since I did not know what
to put there for this example (I could only find doc about IDirect3D2), I left them blank.

Finally the set of ’IDirect3D_Xxx’ macros is a standard set of macros defined to ease access to the
interface methods in C. Unfortunately I don’t see any way to avoid having to duplicate the inherited
method definitions there. This time I could have used a trick to use only one macro whatever the number
of parameters but I preferred to have it work the same way as above.

You probably have noticed that we don’t define the fields we need to actually implement this interface:
reference count, pointer to other resources and miscellaneous fields. That’s because these interfaces are
just that: interfaces. They may be implemented more than once, in different contexts and sometimes not
even in Wine. Thus it would not make sense to impose that the interface contains some specific fields.

11.1.2. Bindings in C

In C this gives:

typedef struct IDirect3DVtbl IDirect3DVtbl;
struct IDirect3D {

IDirect3DVtbl* lpVtbl;
};
struct IDirect3DVtbl {

HRESULT (*fnQueryInterface)(IDirect3D* me, REFIID riid, LPVOID* ppvObj);
ULONG (*fnAddRef)(IDirect3D* me);
ULONG (*fnRelease)(IDirect3D* me);
HRESULT (*fnInitialize)(IDirect3D* me, REFIID a);
HRESULT (*fnEnumDevices)(IDirect3D* me, LPD3DENUMDEVICESCALLBACK a, LPVOID b);
HRESULT (*fnCreateLight)(IDirect3D* me, LPDIRECT3DLIGHT* a, IUnknown* b);
HRESULT (*fnCreateMaterial)(IDirect3D* me, LPDIRECT3DMATERIAL* a, IUnknown* b);
HRESULT (*fnCreateViewport)(IDirect3D* me, LPDIRECT3DVIEWPORT* a, IUnknown* b);
HRESULT (*fnFindDevice)(IDirect3D* me, LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b);

};

#ifdef ICOM_CINTERFACE
// *** IUnknown methods *** //
#define IDirect3D_QueryInterface(p,a,b) (p)->lpVtbl->fnQueryInterface(p,a,b)
#define IDirect3D_AddRef(p) (p)->lpVtbl->fnAddRef(p)
#define IDirect3D_Release(p) (p)->lpVtbl->fnRelease(p)
// *** IDirect3D methods *** //
#define IDirect3D_Initialize(p,a) (p)->lpVtbl->fnInitialize(p,a)
#define IDirect3D_EnumDevices(p,a,b) (p)->lpVtbl->fnEnumDevice(p,a,b)
#define IDirect3D_CreateLight(p,a,b) (p)->lpVtbl->fnCreateLight(p,a,b)
#define IDirect3D_CreateMaterial(p,a,b) (p)->lpVtbl->fnCreateMaterial(p,a,b)
#define IDirect3D_CreateViewport(p,a,b) (p)->lpVtbl->fnCreateViewport(p,a,b)
#define IDirect3D_FindDevice(p,a,b) (p)->lpVtbl->fnFindDevice(p,a,b)
#endif

136

Chapter 11. COM in Wine

Comments:

IDirect3D only contains a pointer to the IDirect3D virtual/jump table. This is the only thing the user
needs to know to use the interface. Of course the structure we will define to implement this interface will
have more fields but the first one will match this pointer.

The code generated by ICOM_DEFINE defines both the structure representing the interface and the
structure for the jump table. ICOM_DEFINE uses the parent’s Xxx_IMETHODS macro to automatically
repeat the prototypes of all the inherited methods and then uses IDirect3D_METHODS to define the
IDirect3D methods.

Each method is declared as a pointer to function field in the jump table. The implementation will fill this
jump table with appropriate values, probably using a static variable, and initialize the lpVtbl field to
point to this variable.

The IDirect3D_Xxx macros then just dereference the lpVtbl pointer and use the function pointer
corresponding to the macro name. This emulates the behavior of a virtual table and should be just as fast.

This C code should be quite compatible with the Windows headers both for code that uses COM
interfaces and for code implementing a COM interface.

11.1.3. Bindings in C++

And in C++ (with gcc’s g++):

typedef struct IDirect3D: public IUnknown {
private: HRESULT (*fnInitialize)(IDirect3D* me, REFIID a);
public: inline HRESULT Initialize(REFIID a) { return ((IDirect3D*)t.lpVtbl)->fnInitialize(this,a); };
private: HRESULT (*fnEnumDevices)(IDirect3D* me, LPD3DENUMDEVICESCALLBACK a, LPVOID b);
public: inline HRESULT EnumDevices(LPD3DENUMDEVICESCALLBACK a, LPVOID b)

{ return ((IDirect3D*)t.lpVtbl)->fnEnumDevices(this,a,b); };
private: HRESULT (*fnCreateLight)(IDirect3D* me, LPDIRECT3DLIGHT* a, IUnknown* b);
public: inline HRESULT CreateLight(LPDIRECT3DLIGHT* a, IUnknown* b)

{ return ((IDirect3D*)t.lpVtbl)->fnCreateLight(this,a,b); };
private: HRESULT (*fnCreateMaterial)(IDirect3D* me, LPDIRECT3DMATERIAL* a, IUnknown* b);
public: inline HRESULT CreateMaterial(LPDIRECT3DMATERIAL* a, IUnknown* b)

{ return ((IDirect3D*)t.lpVtbl)->fnCreateMaterial(this,a,b); };
private: HRESULT (*fnCreateViewport)(IDirect3D* me, LPDIRECT3DVIEWPORT* a, IUnknown* b);
public: inline HRESULT CreateViewport(LPDIRECT3DVIEWPORT* a, IUnknown* b)

{ return ((IDirect3D*)t.lpVtbl)->fnCreateViewport(this,a,b); };
private: HRESULT (*fnFindDevice)(IDirect3D* me, LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b);
public: inline HRESULT FindDevice(LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b)

{ return ((IDirect3D*)t.lpVtbl)->fnFindDevice(this,a,b); };
};

137

Chapter 11. COM in Wine

Comments:

In C++ IDirect3D does double duty as both the virtual/jump table and as the interface definition. The
reason for this is to avoid having to duplicate the method definitions: once to have the function pointers
in the jump table and once to have the methods in the interface class. Here one macro can generate both.
This means though that the first pointer, t.lpVtbl defined in IUnknown, must be interpreted as the jump
table pointer if we interpret the structure as the interface class, and as the function pointer to the
QueryInterface method, t.fnQueryInterface, if we interpret the structure as the jump table. Fortunately
this gymnastic is entirely taken care of in the header of IUnknown.

Of course in C++ we use inheritance so that we don’t have to duplicate the method definitions.

Since IDirect3D does double duty, each ICOM_METHOD macro defines both a function pointer and a
non-virtual inline method which dereferences it and calls it. This way this method behaves just like a
virtual method but does not create a true C++ virtual table which would break the structure layout. If you
look at the implementation of these methods you’ll notice that they would not work for void functions.
We have to return something and fortunately this seems to be what all the COM methods do (otherwise
we would need another set of macros).

Note how the ICOM_METHOD generates both function prototypes mixing types and formal parameter
names and the method invocation using only the formal parameter name. This is the reason why we need
different macros to handle different numbers of parameters.

Finally there is no IDirect3D_Xxx macro. These are not needed in C++ unless the CINTERFACE macro
is defined in which case we would not be here.

This C++ code works well for code that just uses COM interfaces. But it will not work with C++ code
implement a COM interface. That’s because such code assumes the interface methods are declared as
virtual C++ methods which is not the case here.

11.1.4. Implementing a COM interface.

This continues the above example. This example assumes that the implementation is in C.

typedef struct _IDirect3D {
void* lpVtbl;
// ...

} _IDirect3D;

static ICOM_VTABLE(IDirect3D) d3dvt;

// implement the IDirect3D methods here

int IDirect3D_fnQueryInterface(IDirect3D* me)

138

Chapter 11. COM in Wine

{
ICOM_THIS(IDirect3D,me);
// ...

}

// ...

static ICOM_VTABLE(IDirect3D) d3dvt = {
ICOM_MSVTABLE_COMPAT_DummyRTTIVALUE
IDirect3D_fnQueryInterface,
IDirect3D_fnAdd,
IDirect3D_fnAdd2,
IDirect3D_fnInitialize,
IDirect3D_fnSetWidth

};

Comments:

We first define what the interface really contains. This is the _IDirect3D structure. The first field must of
course be the virtual table pointer. Everything else is free.

Then we predeclare our static virtual table variable, we will need its address in some methods to
initialize the virtual table pointer of the returned interface objects.

Then we implement the interface methods. To match what has been declared in the header file they must
take a pointer to an IDirect3D structure and we must cast it to an _IDirect3D so that we can manipulate
the fields. This is performed by the ICOM_THIS macro.

Finally we initialize the virtual table.

11.2. A brief introduction to DCOM in Wine

This section explains the basic principles behind DCOM remoting as used by InstallShield and others.

11.2.1. Basics

The basic idea behind DCOM is to take a COM object and make it location transparent. That means you
can use it from other threads, processes and machines without having to worry about the fact that you
can’t just dereference the interface vtable pointer to call methods on it.

139

Chapter 11. COM in Wine

You might be wondering about putting threads next to processes and machines in that last paragraph.
You can access thread safe objects from multiple threads without DCOM normally, right? Why would
you need RPC magic to do that?

The answer is of course that COM doesn’t assume that objects actually are thread-safe. Most real-world
objects aren’t, in fact, for various reasons. What these reasons are isn’t too important here, though; it’s
just important to realize that the problem of thread-unsafe objects is what COM tries hard to solve with
its apartment model. There are also ways to tell COM that your object is truly thread-safe (namely the
free-threaded marshaller). In general, no object is truly thread-safe if it could potentially use another not
so thread-safe object, though, so the free-threaded marshaller is less used than you’d think.

For now, suffice it to say that COM lets you "marshal" interfaces into other "apartments". An apartment
(you may see it referred to as a context in modern versions of COM) can be thought of as a location, and
contains objects.

Every thread in a program that uses COM exists in an apartment. If a thread wishes to use an object from
another apartment, marshalling and the whole DCOM infrastructure gets involved to make that happen
behind the scenes.

So. Each COM object resides in an apartment, and each apartment resides in a process, and each process
resides in a machine, and each machine resides in a network. Allowing those objects to be used fromany
of these different places is what DCOM is all about.

The process of marshalling refers to taking a function call in an apartment and actually performing it in
another apartment. Let’s say you have two machines, A and B, and on machine B there is an object
sitting in a DLL on the hard disk. You want to create an instance of that object (activate it) and use it as if
you had compiled it into your own program. This is hard, because the remote object is expecting to be
called by code in its own address space - it may do things like accept pointers to linked lists and even
return other objects.

Very basic marshalling is easy enough to understand. You take a method on a remote interface (that is a
COM interface that is implemented on the remote computer), copy each of its parameters into a buffer,
and send it to the remote computer. On the other end, the remote server reads each parameter from the
buffer, calls the method, writes the result into another buffer and sends it back.

The tricky part is exactly how to encode those parameters in the buffer, and how to convert standard
stdcall/cdecl method calls to network packets and back again. This is the job of the RPCRT4.DLL file -
or the Remote Procedure Call Runtime.

The backbone of DCOM is this RPC runtime, which is an implementation of DCE RPC
(http://www.opengroup.org/onlinepubs/009629399/toc.htm). DCE RPC is not naturally object oriented,
so this protocol is extended with some new constructs and by assigning new meanings to some of the
packet fields, to produce ORPC or Object RPC. You might see it called MS-RPC as well.

140

Chapter 11. COM in Wine

RPC packets contain a buffer containing marshalled data in NDR format. NDR is short for "Network
Data Representation" and is similar to the XDR format used in SunRPC (the closest native equivalent on
Linux to DCE RPC). NDR/XDR are all based on the idea of graph serialization and were worked out
during the 80s, meaning they are very powerful and can do things like marshal doubly linked lists and
other rather tricky structures.

In Wine, our DCOM implementation isnot currently based on the RPC runtime, as while few programs
use DCOM even fewer use RPC directly so it was developed some time after OLE32/OLEAUT32 were.
Eventually this will have to be fixed, otherwise our DCOM will never be compatible with Microsoft’s.
Bear this in mind as you read through the code however.

11.2.2. Proxies and Stubs

Manually marshalling and unmarshalling each method call using the NDR APIs
(NdrConformantArrayMarshall etc) is very tedious work, so the Platform SDK ships with a tool called
"midl" which is an IDL compiler. IDL or the "Interface Definition Language" is a tool designed
specifically for describing interfaces in a reasonably language neutral fashion, though in reality it bears a
close resemblence to C++.

By describing the functions you want to expose via RPC in IDL therefore, it becomes possible to pass
this file to MIDL which spits out a huge amount of C source code. That code defines functions which
have the same prototype as the functions described in your IDL but which internally take each argument,
marshal it using Ndr, send the packet, and unmarshal the return.

Because this code proxies the code from the client to the server, the functions are called proxies. Easy,
right?

Of course, in the RPC server process at the other end, you need some way to unmarshal the RPCs, so you
have functions also generated by MIDL which are the inverse of the proxies; they accept an NDR buffer,
extract the parameters, call the real function and then marshal the result back. They are called stubs, and
stand in for the real calling code in the client process.

The sort of marshalling/unmarshalling code that MIDL spits out can be seen in dlls/oleaut32/oaidl_p.c -
it’s not exactly what it would look like as that file contains DCOM proxies/stubs which are different, but
you get the idea. Proxy functions take the arguments and feed them to the NDR marshallers (or picklers),
invoke an NdrProxySendReceive and then convert the out parameters and return code. There’s a ton of
goop in there for dealing with buffer allocation, exceptions and so on - it’s really ugly code. But, this is
the basic concept behind DCE RPC.

11.2.3. Interface Marshalling

Standard NDR only knows about C style function calls - they can accept and even return structures, but it

141

Chapter 11. COM in Wine

has no concept of COM interfaces. Confusingly DCE RPCdoeshave a concept of RPC interfaces which
are just convenient ways to bundle function calls together into namespaces, but let’s ignore that for now
as it just muddies the water. The primary extension made by Microsoft to NDR then was the ability to
take a COM interface pointer and marshal that into the NDR stream.

The basic theory of proxies and stubs and IDL is still here, but it’s been modified slightly. Whereas
before you could define a bunch of functions in IDL, now a new "object" keyword has appeared. This
tells MIDL that you’re describing a COM interface, and as a result the proxies/stubs it generates are also
COM objects.

That’s a very important distinction. When you make a call to a remote COM object you do it via a proxy
object that COM has constructed on the fly. Likewise, a stub object on the remote end unpacks the RPC
packet and makes the call.

Because this is object-oriented RPC, there are a few complications: for instance, a call that goes via the
same proxies/stubs may end up at a different object instance, so the RPC runtime keeps track of "this"
and "that" in the RPC packets.

This leads naturally onto the question of how we got those proxy/stub objects in the first place, and
where they came from. You can use the CoCreateInstanceEx API to activate COM objects on a remote
machine, this works like CoCreateInstance API. Behind the scenes, a lot of stuff is involved to do this
(like IRemoteActivation, IOXIDResolver and so on) but let’s gloss over that for now.

When DCOM creates an object on a remote machine, the DCOM runtime on that machine activates the
object in the usual way (by looking it up in the registry etc) and then marshals the requested interface
back to the client. Marshalling an interface takes a pointer, and produces a buffer containing all the
information DCOM needs to construct a proxy object in the client, a stub object in the server and link the
two together.

The structure of a marshalled interface pointer is somewhat complex. Let’s ignore that too. The
important thing is how COM proxies/stubs are loaded.

11.2.4. COM Proxy/Stub System

COM proxies are objects that implement both the interfaces needing to be proxied and also
IRpcProxyBuffer. Likewise, COM stubs implement IRpcStubBuffer and understand how to invoke the
methods of the requested interface.

You may be wondering what the word "buffer" is doing in those interface names. I’m not sure either,
except that a running theme in DCOM is that interfaces which have nothing to do with buffers have the
word Buffer appended to them, seemingly at random. Ignore it anddon’t let it confuse you:) This stuff is
convoluted enough ...

142

Chapter 11. COM in Wine

The IRpc[Proxy/Stub]Buffer interfaces are used to control the proxy/stub objects and are one of the
many semi-public interfaces used in DCOM.

DCOM is theoretically an internet RFC [2] (http://www.grimes.demon.co.uk/DCOM/DCOMSpec.htm)
and is specced out, but in reality the only implementation of it apart from ours is Microsoft’s, and as a
result there are lots of interfaces whichcanbe used if you want to customize or control DCOM but in
practice are badly documented or not documented at all, or exist mostly as interfaces between MIDL
generated code and COM itself. Don’t pay too much attention to the MSDN definitions of these
interfaces and APIs.

COM proxies and stubs are like any other normal COM object - they are registered in the registry, they
can be loaded with CoCreateInstance and so on. They have to be in process (in DLLs) however. They
aren’t activated directly by COM however, instead the process goes something like this:

• COM receives a marshalled interface packet, and retrieves the IID of the marshalled interface from it

• COM looks in HKEY_CLASSES_ROOT/Interface/{whatever-iid}/ProxyStubClsId32 to retrieve the
CLSID of another COM object, which implements IPSFactoryBuffer.

• IPSFactoryBuffer has only two methods, CreateProxy and CreateStub. COM calls whichever is
appropriate: CreateStub for the server, CreateProxy for the client. MIDL will normally provide an
implementation of this object for you in the code it generates.

Once CreateProxy has been called, the resultant object is QueryInterfaced to IRpcProxyBuffer, which
only has 1 method, IRpcProxyBuffer::Connect. This method only takes one parameter, the
IRpcChannelBuffer object which encapsulates the "RPC Channel" between the client and server.

On the server side, a similar process is performed - the PSFactoryBuffer is created, CreateStub is called,
result is QId to IRpcStubBuffer, and IRpcStubBuffer::Connect is used to link it to the RPC channel.

11.2.5. RPC Channels

Remember the RPC runtime? Well, that’s not just responsible for marshalling stuff, it also controls the
connection and protocols between the client and server. We can ignore the details of this for now, suffice
it to say that an RPC Channel is a COM object that implements IRpcChannelBuffer, and it’s basically an
abstraction of different RPC methods. For instance, in the case of inter-thread marshalling (not covered
here) the RPC connection code isn’t used, only the NDR marshallers are, so IRpcChannelBuffer in that
case isn’t actually implemented by RPCRT4 but rather just by the COM/OLE DLLS.

On this topic, Ove Kaaven says: It depends on the Windows version, I think. Windows 95 and Windows
NT 4 certainly had very different models when I looked. I’m pretty sure the Windows 98 version of
RPCRT4 was able to dispatch messages directly to individual apartments. I’d be surprised if some
similar functionality was not added to Windows 2000. After all, if an object on machine A wanted to use
an object on machine B in an apartment C, wouldn’t it be most efficient if the RPC system knew about

143

Chapter 11. COM in Wine

apartments and could dispatch the message directly to it? And if RPC does know how to efficiently
dispatch to apartments, why should COM duplicate this functionality? There were, however, no unified
way to tell RPC about them across Windows versions, so in that old patch of mine, I let the COM/OLE
dlls do the apartment dispatch, but even then, the RPC runtime was always involved. After all, it could be
quite tricky to tell whether the call is merely interthread, without involving the RPC runtime...

RPC channels are constructed on the fly by DCOM as part of the marshalling process. So, when you
make a call on a COM proxy, it goes like this:

Your code -> COM proxy object -> RPC Channel -> COM stub object -> Their code

11.2.6. How this actually works in Wine

Right now, Wine does not use the NDR marshallers or RPC to implement its DCOM. When you marshal
an interface in Wine, in the server process a _StubMgrThread thread is started. I haven’t gone into the
stub manager here. The important thing is that eventually a _StubReaderThread is started which accepts
marshalled DCOM RPCs, and then passes them to IRpcStubBuffer::Invoke on the correct stub object
which in turn demarshals the packet and performs the call. The threads started by our implementation of
DCOM are never terminated, they just hang around until the process dies.

Remember that I said our DCOM doesn’t use RPC? Well, you might be thinking "but we use
IRpcStubBuffer like we’re supposed to ... isn’t that provided by MIDL which generates code that uses
the NDR APIs?". If so pat yourself on the back, you’re still with me. Go get a cup of coffee.

11.2.7. Typelib Marshaller

In fact, the reason for the PSFactoryBuffer layer of indirection is because not all interfaces are
marshalled using MIDL generated code. Why not? Well, to understandthat you have to see that one of
the driving forces behind OLE and by extension DCOM was the development of Visual Basic. Microsoft
wanted VB developers to be first class citizens in the COM world, but things like writing IDL and
compiling them with a C compiler into DLLs wasn’t easy enough.

So, type libraries were invented. Actually they were invented as part of a parallel line of COM
development known as "OLE Automation", but let’s not get into that here. Type libraries are basically
binary IDL files, except that despite there being two type library formats neither of them can fully
express everything expressable in IDL. Anyway, with a type library (which can be embedded as a
resource into a DLL) you have another option beyond compiling MIDL output - you can set the
ProxyStubClsId32 registry entry for your interfaces to the CLSID of the "type library marshaller" or
"universal marshaller". Both terms are used, but in the Wine source it’s called the typelib marshaller.

The type library marshaller constructs proxy and stub objects on the fly. It does so by having generic
marshalling glue which reads the information from the type libraries, and takes the parameters directly

144

Chapter 11. COM in Wine

off the stack. The CreateProxy method actually builds a vtable out of blocks of assembly stitched
together which pass control to _xCall, which then does the marshalling. You can see all this magic in
dlls/oleaut32/tmarshal.c

In the case of InstallShield, it actually comes with typelibs for all the interfaces it needs to marshal
(fixme: is this right?), but they actually use a mix of MIDL and typelib marshalling. In order to cover up
for the fact that we don’t really use RPC they’re all forced to go via the typelib marshaller - that’s what
the 1 || hack is for and what the "Registering non-automation type library!" warning is about (I think).

11.2.8. Apartments

Before a thread can use COM it must enter an apartment. Apartments are an abstraction of a COM
objects thread safety level. There are many types of apartment but the only two we care about right now
are single threaded apartments (STAs) and the multi-threaded apartment (MTA).

Any given process may contain at most one MTA and potentially many STAs. This is because all objects
in MTAs never care where they are invoked from and hence can all be treated the same. Since objects in
STAs do care, they cannot be treated the same.

You enter an apartment by callingCoInitializeEx() and passing the desired thread model in as a
parameter. The default if you use the deprecatedCoInitialize() is a STA, and this is the most
common type of apartment used in COM.

An object in the multi-threaded apartment may be accessed concurrently by multiple threads: eg, it’s
supposed to be entirely thread safe. It must also not care about thread-affinity, the object should react the
same way no matter which thread is calling it.

An object inside a STA does not have to be thread safe, and all calls upon it should come from the same
thread - the thread that entered the apartment in the first place.

The apartment system was originally designed to deal with the disparity between the Windows NT/C++
world in which threading was given a strong emphasis, and the Visual Basic world in which threading
was barely supported and even if it had been fully supported most developers would not have used it.
Visual Basic code is not truly multi-threaded, instead if you start a new thread you get an entirely new
VM, with separate sets of global variables. Changes made in one thread donot reflect in another, which
pretty much violates the expected semantics of multi-threading entirely but this is Visual Basic, so what
did you expect? If you access a VB object concurrently from multiple threads, behind the scenes each
VM runs in a STA and the calls are marshaled between the threads using DCOM.

In the Windows 2000 release of COM, several new types of apartment were added, the most important of
which are RTAs (the rental threaded apartment) in which concurrent access are serialised by COM using
an apartment-wide lock but thread affinity is not guaranteed.

145

Chapter 11. COM in Wine

11.2.9. Structure of a marshaled interface pointer

When an interface is marshaled usingCoMarshalInterface() , the result is a serialized OBJREF
structure. An OBJREF actually contains a union, but we’ll be assuming the variant that embeds a
STDOBJREF here which is what’s used by the system provided standard marshaling. A STDOBJREF
(standard object reference) consists of the magic signature ’MEOW’, then some flags, then the IID of the
marshaled interface. Quite what MEOW stands for is a mystery, but it’s definitely not "Microsoft
Extended Object Wire". Next comes the STDOBJREF flags, identified by their SORF_ prefix. Most of
these are reserved, and their purpose (if any) is unknown, but a few are defined.

After the SORF flags comes a count of the references represented by this marshaled interface. Typically
this will be 5 in the case of a normal marshal, but may be 0 for table-strong and table-weak marshals (the
difference between these is explained below). The reasoning is this: In the general case, we want to know
exactly when an object is unmarshaled and released, so we can accurately control the lifetime of the stub
object. This is what happens when cPublicRefs is zero. However, in many cases, we only want to
unmarshal an object once. Therefore, if we strengthen the rules to say when marshaling that we will only
unmarshal once, then we no longer have to know when it is unmarshaled. Therefore, we can give out an
arbitrary number of references when marshaling and basically say "don’t call me, except when you die."

The most interesting part of a STDOBJREF is the OXID, OID, IPID triple. This triple identifies any
given marshaled interface pointer in the network. OXIDs are apartment identifiers, and are supposed to
be unique network-wide. How this is guaranteed is currently unknown: the original algorithm Windows
used was something like the current UNIX time and a local counter.

OXIDs are generated and registered with the OXID resolver by performing local RPCs to the RPC
subsystem (rpcss.exe). In a fully security-patched Windows system they appear to be randomly
generated. This registration is done using theILocalOxidResolver interface, however the exact
structure of this interface is currently unknown.

OIDs are object identifiers, and identify a stub manager. The stub manager manages interface stubs. For
each exported COM object there are multiple interfaces and therefore multiple interface stubs
(IRpcStubBuffer implementations). OIDs are apartment scoped. Each ifstub is identified by an IPID,
which identifies a marshaled interface pointer. IPIDs are apartment scoped.

Unmarshaling one of these streams therefore means setting up a connection to the object exporter (the
apartment holding the marshaled interface pointer) and being able to send RPCs to the right ifstub. Each
apartment has its own RPC endpoint and calls can be routed to the correct interface pointer by
embedding the IPID into the call using RpcBindingSetObject. IRemUnknown, discussed below, uses a
reserved IPID. Please note that this is true only in the current implementation. The native version
generates an IPID as per any other object and simply notifies the SCM of this IPID.

Both standard and handler marshaled OBJREFs contains an OXID resolver endpoint which is an RPC
string binding in a DUALSTRINGARRAY. This is necessary because an OXID alone is not enough to
contact the host, as it doesn’t contain any network address data. Instead, the combination of the remote

146

Chapter 11. COM in Wine

OXID resolver RPC endpoint and the OXID itself are passed to the local OXID resolver. It then returns
the apartment string binding.

This step is an optimisation: technically the OBJREF itself could contain the string binding of the
apartment endpoint and the OXID resolver could be bypassed, but by using this DCOM can optimise out
a server round-trip by having the local OXID resolver cache the query results. The OXID resolver is a
service in the RPC subsystem (rpcss.exe) which implements a raw (non object-oriented) RPC interface
calledIOXIDResolver . Despite the identical naming convention this is not a COM interface.

Unmarshaling an interface pointer stream therefore consists of reading the OXID, OID and IPID from
the STDOBJREF, then reading one or more RPC string bindings for the remote OXID resolver. Then
RpcBindingFromStringBinding is used to convert this remote string binding into an RPC binding
handle which can be passed to the localIOXIDResolver::ResolveOxid implementation along with
the OXID. The local OXID resolver consults its list of same-machine OXIDs, then its cache of remote
OXIDs, and if not found does an RPC to the remote OXID resolver using the binding handle passed in
earlier. The result of the query is stored for future reference in the cache, and finally the unmarshaling
application gets back the apartment string binding, the IPID of that apartmentsIRemUnknown

implementation, and a security hint (let’s ignore this for now).

Once the remote apartments string binding has been located the unmarshalling process constructs an
RPC Channel Buffer implementation with the connection handle and the IPID of the needed interface,
loads and constructs theIRpcProxyBuffer implementation for that IID and connects it to the channel.
Finally the proxy is passed back to the application.

11.2.10. Handling IUnknown

There are some subtleties here with respect to IUnknown. IUnknown itself is never marshaled directly:
instead a version of it optimised for network usage is used. IRemUnknown is similar in concept to
IUnknown except that it allows you to add and release arbitrary numbers of references at once, and it
also allows you to query for multiple interfaces at once.

IRemUnknown is used for lifecycle management, and for marshaling new interfaces on an object back to
the client. Its definition can be seen in dcom.idl - basically the IRemUnknown::RemQueryInterface
method takes an IPID and a list of IIDs, then returns STDOBJREFs of each new marshaled interface
pointer.

There is one IRemUnknown implementation per apartment, not per stub manager as you might expect.
This is OK because IPIDs are apartment not object scoped (In fact, according to the DCOM draft spec,
they are machine-scoped, but this implies apartment-scoped).

147

Chapter 11. COM in Wine

11.2.11. Table marshaling

Normally once you have unmarshaled a marshaled interface pointer that stream is dead, you can’t
unmarshal it again. Sometimes this isn’t what you want. In this case, table marshaling can be used. There
are two types: strong and weak. In table-strong marshaling, selected by a specific flag to
CoMarshalInterface() , a stream can be unmarshaled as many times as you like. Even if all the
proxies are released, the marshaled object reference is still valid. Effectively the stream itself holds a ref
on the object. To release the object entirely so its server can shut down, you must use
CoReleaseMarshalData() on the stream.

In table-weak marshaling the stream can be unmarshaled many times, however the stream does not hold
a ref. If you unmarshal the stream twice, once those two proxies have been released remote object will
also be released. Attempting to unmarshal the stream at this point will yieldCO_E_DISCONNECTED.

11.2.12. RPC dispatch

Exactly how RPC dispatch occurs depends on whether the exported object is in a STA or the MTA. If it’s
in the MTA then all is simple: the RPC dispatch thread can temporarily enter the MTA, perform the
remote call, and then leave it again. If it’s in a STA things get more complex, because of the requirement
that only one thread can ever access the object.

Instead, when entering a STA a hidden window is created implicitly by COM, and the user must
manually pump the message loop in order to service incoming RPCs. The RPC dispatch thread performs
the context switch into the STA by sending a message to the apartments window, which then proceeds to
invoke the remote call in the right thread.

RPC dispatch threads are pooled by the RPC runtime. When an incoming RPC needs to be serviced, a
thread is pulled from the pool and invokes the call. The main RPC thread then goes back to listening for
new calls. It’s quite likely for objects in the MTA to therefore be servicing more than one call at once.

11.2.13. Message filtering and re-entrancy

When an outgoing call is made from a STA, it’s possible that the remote server will re-enter the client,
for instance to perform a callback. Because of this potential re-entrancy, when waiting for the reply to an
RPC made inside a STA, COM will pump the message loop. That’s because while this thread is blocked,
the incoming callback will be dispatched by a thread from the RPC dispatch pool, so it must be
processing messages.

While COM is pumping the message loop, all incoming messages from the operating system are filtered
through one or more message filters. These filters are themselves COM objects which can choose to
discard, hold or forward window messages. The default message filter drops all input messages and
forwards the rest. This is so that if the user chooses a menu option which triggers an RPC, they then

148

Chapter 11. COM in Wine

cannot choose that menu option *again* and restart the function from the beginning. That type of
unexpected re-entrancy is extremely difficult to debug, so it’s disallowed.

Unfortunately other window messages are allowed through, meaning that it’s possible your UI will be
required to repaint itself during an outgoing RPC. This makes programming with STAs more complex
than it may appear, as you must be prepared to run all kinds of code any time an outgoing call is made. In
turn this breaks the idea that COM should abstract object location from the programmer, because an
object that was originally free-threaded and is then run from a STA could trigger new and untested
codepaths in a program.

11.2.14. Wrapup

Theres are still a lot of topics that have not been covered:

• Format strings/MOPs

• IRemoteActivation

• Complex/simple pings, distributed garbage collection

• Marshalling IDispatch

• ICallFrame

• Interface pointer swizzling

• Runtime class object registration (CoRegisterClassObject), ROT

• Exactly how InstallShield uses DCOM

11.2.15. Further Reading

Most of these documents assume you have knowledge only contained in other documents. You may have
to reread them a few times for it all to make sense. Don’t feel you need to read these to understand
DCOM, you don’t, you only need to look at them if you’re planning to help implement it.

• http://www-csag.ucsd.edu/individual/achien/cs491-f97/projects/dcom-writeup.ps
(http://www-csag.ucsd.edu/individual/achien/cs491-f97/projects/dcom-writeup.ps)

• http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmi_n2p_459u.asp
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmi_n2p_459u.asp)

• http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmi_q2z_5ygi.asp
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmi_q2z_5ygi.asp)

• http://www.microsoft.com/msj/0398/dcom.aspx (http://www.microsoft.com/msj/0398/dcom.aspx)

• http://www.microsoft.com/ntserver/techresources/appserv/COM/DCOM/4_ConnectionMgmt.asp
(http://www.microsoft.com/ntserver/techresources/appserv/COM/DCOM/4_ConnectionMgmt.asp)

149

Chapter 11. COM in Wine

• http://www.idevresource.com/com/library/articles/comonlinux.asp
(http://www.idevresource.com/com/library/articles/comonlinux.asp) (unfortunately part 2 of this
article does not seem to exist anymore, if it was ever written)

150

Chapter 12. Wine and OpenGL

12.1. What is needed to have OpenGL support in Wine

Basically, if you have a Linux OpenGL ABI compliant libGL
(http://oss.sgi.com/projects/ogl-sample/ABI/ (http://oss.sgi.com/projects/ogl-sample/ABI/)) installed on
your computer, you should have everything that is needed.

To be more clear, I will detail one step after another what theconfigurescript checks.

If, after Wine compiles, OpenGL support is not compiled in, you can always checkconfig.log to see
which of the following points failed.

12.1.1. Header files

The needed header files to build OpenGL support in Wine are :

gl.h:

the definition of all OpenGL core functions, types and enumerants

glx.h:

how OpenGL integrates in the X Window environment

glext.h:

the list of all registered OpenGL extensions

The latter file (glext.h) is, as of now, not necessary to build Wine. But as this file can be easily
obtained from SGI (http://oss.sgi.com/projects/ogl-sample/ABI/glext.h
(http://oss.sgi.com/projects/ogl-sample/ABI/glext.h)), and that all OpenGL should provide one, I decided
to keep it here.

12.1.2. OpenGL library itself

To check for the presence of ’libGL’ on the system, the script checks if it defines the
glXCreateContext function.

151

Chapter 12. Wine and OpenGL

12.1.3. glXGetProcAddressARB function

The core of Wine’s OpenGL implementation (at least for all extensions) is the
glXGetProcAddressARB function. Your OpenGL library needs to have this function defined for Wine
to be able to support OpenGL.

12.2. How it all works

The core OpenGL function calls are the same between Windows and Linux. So what is the difficulty to
support it in Wine ? Well, there are two different problems :

1. the interface to the windowing system is different for each OS. It’s called ’GLX’ for Linux (well, for
X Window) and ’wgl’ for Windows. Thus, one need first to emulate one (wgl) with the other (GLX).

2. the calling convention between Windows (the ’Pascal’ convention or ’stdcall’) is different from the
one used on Linux (the ’C’ convention or ’cdecl’). This means that each call to an OpenGL function
must be ’translated’ and cannot be used directly by the Windows program.

Add to this some brain-dead programs (using GL calls without setting-up a context or deleting three time
the same context) and you have still some work to do :-)

12.2.1. The Windowing system integration

This integration is done at two levels :

1. At GDI level for all pixel format selection routines (ie choosing if one wants a depth / alpha buffer,
the size of these buffers, ...) and to do the ’page flipping’ in double buffer mode. This is implemented
in dlls/x11drv/opengl.c (all these functions are part of Wine’s graphic driver function pointer
table and thus could be reimplemented if ever Wine works on another Windowing system than X).

2. In theOpenGL32.DLL itself for all other functionalities (context creation / deletion, querying of
extension functions, ...). This is done indlls/opengl32/wgl.c .

12.2.2. The thunks

The thunks are the Wine code that does the calling convention translation and they are auto-generated by
a Perl script. In Wine’s CVS tree, these thunks are already generated for you. Now, if you want to do it
yourself, there is how it all works....

The script is located indlls/opengl32 and is calledmake_opengl. It requires Perl5 to work and takes
two arguments :

152

Chapter 12. Wine and OpenGL

1. The first is the path to the OpenGL registry. Now, you will all ask ’but what is the OpenGL registry
?’ :-) Well, it’s part of the OpenGL sample implementation source tree from SGI (more informations
at this URL : http://oss.sgi.com/projects/ogl-sample/ (http://oss.sgi.com/projects/ogl-sample/).

To summarize, these files contain human-readable but easily parsed information on ALL OpenGL
core functions and ALL registered extensions (for example the prototype, the OpenGL version, ...).

2. the second is the OpenGL version to ’simulate’. This fixes the list of functions that the Windows
application can link directly to without having to query them from the OpenGL driver. Windows is
based, for now, on OpenGL 1.1, but the thunks that are in the CVS tree are generated for OpenGL
1.2.

This option can have three values:1.0 , 1.1 and1.2 .

This script generates three files :

1. opengl32.spec gives Wine’s linker the signature of all function in theOpenGL32.DLL library so
that the application can link them. Only ’core’ functions are listed here.

2. opengl_norm.c contains all the thunks for the ’core’ functions. Your OpenGL library must provide
ALL the function used in this file as these are not queried at run time.

3. opengl_ext.c contains all the functions that are not part of the ’core’ functions. Contrary to the
thunks inopengl_norm.c , these functions do not depend at all on what your libGL provides.

In fact, before using one of these thunks, the Windows program first needs to ’query’ the function
pointer. At this point, the corresponding thunk is useless. But as we first query the same function in
libGL and store the returned function pointer in the thunk, the latter becomes functional.

12.3. Known problems

12.3.1. When running an OpenGL application, the screen
flickers

Due to restrictions (that do not exist in Windows) on OpenGL contexts, if you want to prevent the screen
to flicker when using OpenGL applications (all games are using double-buffered contexts), you need to
set the following option in your~/.wine/config file in the [x11drv] section:

DesktopDoubleBuffered = Y

153

Chapter 12. Wine and OpenGL

and to run Wine in desktop mode.

12.3.2. Unknown extension error message:

Extension defined in the OpenGL library but NOT in opengl_ext.c...
Please report (lionel.ulmer@free.fr) !

This means that the extension requested by the application is found in the libGL used by Linux (ie the
call to glXGetProcAddressARB returns a non-NULLpointer) but that this string was NOT found in
Wine’s extension registry.

This can come from two causes:

1. Theopengl_ext.c file is too old and needs to be generated again.

2. Use of obsolete extensions that are not supported anymore by SGI or of ’private’ extensions that are
not registered. An example of the former areglMTexCoord2fSGIS andglSelectTextureSGIS

as used by Quake 2 (and apparently also by old versions of Half Life). If documentation can be
found on these functions, they can be added to Wine’s extension set.

If you have this, run withWINEDEBUG=+opengland send me <lionel.ulmer@free.fr > the TRACE.

12.3.3. libopengl32.so is built but it is still not working

This may be caused by some missing functions required byopengl_norm.c but that your Linux
OpenGL library does not provide.

To check for this, do the following steps :

1. create a dummy.c file :

int main(void)
{

return 0;
}

2. try to compile it by linking both libwine and libopengl32 (this command line supposes that you
installed the Wine libraries in/usr/local/lib , YMMV) :

gcc dummy.c -L/usr/local/lib -lwine -lopengl32

3. if it works, the problem is somewhere else (and you can send me an email). If not, you could
re-generate the thunk files for OpenGL 1.1 for example (and send me your OpenGL version so that
this problem can be detected at configure time).

154

Chapter 13. Outline of DirectDraw Architecture

This is an outline of the architecture. Many details are skipped, but hopefully this is useful.

13.1. DirectDraw inheritance tree
Main

|
User

|-----------\
XVidMode DGA2

Most of the DirectDraw functionality is implemented in a common base class. Derived classes are
responsible for providing display mode functions (Enum, Set, Restore), GetCaps, GetDevice identifier
and internal functions called to create primary and backbuffer surfaces.

User provides for DirectDraw capabilities based on drawing to a Wine window. It uses the User
DirectDrawSurface implementation for primary and backbuffer surfaces.

XVidMode attempt to use the XFree86 VidMode extension to set the display resolution to match the
parameters to SetDisplayMode.

DGA2 attempt to use the XFree86 DGA 2.x extension to set the display resolution and direct access to
the framebuffer, if the full-screen-exclusive cooperative level is used. If not, it just uses the User
implementation.

13.2. DirectDrawSurface inheritance tree
Main

|--------------\
| |

DIB Fake Z-Buffer
|
|------\---------\
| | |

User DGA2 DIBTexture

Main provides a very simple base class that does not implement any of the image-related functions.
Therefore it does not place any constraints on how the surface data is stored.

155

Chapter 13. Outline of DirectDraw Architecture

DIB stores the surface data in a DIB section. It is used by the Main DirectDraw driver to create
off-screen surfaces.

User implements primary and backbuffer surfaces for the User DirectDraw driver. If it is a primary
surface, it will attempt to keep itself synchronized to the window.

DGA2 surfaces claims an appropriate section of framebuffer space and lets DIB build its DIB section on
top of it.

Fake Z-Buffer surfaces are used by Direct3D to indicate that a primary surface has an associated
z-buffer. For a first implementation, it doesn’t need to store any image data since it is just a placeholder.

(Actually 3D programs will rarely use Lock or GetDC on primary surfaces, backbuffers or z-buffers so
we may want to arrange for lazy allocation of the DIB sections.)

13.3. Interface Thunks

Only the most recent version of an interface needs to be implemented. Other versions are handled by
having thunks convert their parameters and call the root version.

Not all interface versions have thunks. Some versions could be combined because their parameters were
compatible. For example if a structure changes but the structure has a dwSize field, methods using that
structure are compatible, as long as the implementation remembers to take the dwSize into account.

Interface thunks for Direct3D are more complicated since the paradigm changed between versions.

13.4. Logical Object Layout

The objects are split into the generic part (essentially the fields for Main) and a private part. This is
necessary because some objects can be created with CoCreateInstance, then Initialized later. Only at
initialization time do we know which class to use. Each class except Main declares a Part structure and
adds that to its Impl.

For example, the DIBTexture DirectDrawSurface implementation looks like this:

struct DIBTexture_DirectDrawSurfaceImpl_Part
{

union DIBTexture_data data; /*declared in the real header*/
};

typedef struct

156

Chapter 13. Outline of DirectDraw Architecture

{
struct DIB_DirectDrawSurfaceImpl_Part dib;
struct DIBTexture_DirectDrawSurfaceImpl_Part dibtexture;

} DIBTexture_DirectDrawSurfaceImpl;

So the DIBTexture surface class is derived from the DIB surface class and it adds one piece of data, a
union.

Main does not have a Part structure. Its fields are stored in IDirectDrawImpl/IDirectDrawSurfaceImpl.

To access private data, one says

DIBTexture_DirectDrawSurfaceImpl* priv = This->private;
do_something_with(priv->dibtexture.data);

13.5. Creating Objects

Classes have two functions relevant to object creation, Create and Construct. To create a new object, the
class’ Create function is called. It allocates enough memory for IDirectDrawImpl or
IDirectDrawSurfaceImpl as well as the private data for derived classes and then calls Construct.

Each class’s Construct function calls the base class’s Construct, then does the necessary initialization.

For example, creating a primary surface with the user ddraw driver calls
User_DirectDrawSurface_Create which allocates memory for the object and calls
User_DirectDrawSurface_Construct to initialize it. This calls DIB_DirectDrawSurface_Construct which
calls Main_DirectDrawSurface_Construct.

157

Chapter 14. Wine and Multimedia

This file contains information about the implementation of the multimedia layer of Wine.

The implementation can be found in thedlls/winmm/ directory (and in many of its subdirectories), but
also indlls/msacm/ (for the audio compression/decompression manager) anddlls/msvideo/ (for
the video compression/decompression manager).

14.1. Overview

The multimedia stuff is split into 3 layers. The low level (device drivers), mid level (MCI commands)
and high level abstraction layers. The low level layer has also some helper DLLs (like the
MSACM/MSACM32 and MSVIDEO/MSVFW32 pairs).

All of those components are defined as DLLs (one by one).

The low level layer may depend on current hardware and OS services (like OSS on Unix). It provides the
core of playback/record using fine grain objects (audio/midi streams...).

Mid level (MCI) and high level layers must be written independently from the hardware and OS services.

MCI level provides some coarser grain operations (like playing a Midi file, or playing a video stream).

14.2. Multimedia architecture

14.2.1. Windows 95 multimedia architecture

|
Kernel space | Client applications

|
| | | ^ ^ | | | |
| 16>| |<32 16>| |<32 16>| |<32 16>| |<32
| | v | | | v | v
| +----|-----------|---------|------------|-------+
| | | | | | | WinMM.dll
| | | | | | | 32 bit
| +----|-----------|---------|------------|-------+
			^					
+------+		<16				<16		
	16>							
	v v v		v v v					

158

Chapter 14. Wine and Multimedia

| | +---------------+---+-------------+-------------+
		waveInXXX		mciXXX	*playSound*
		waveOutXXX			mmioXXX
		midiInXXX			timeXXX
		midiOutXXX			driverXXX
		midiStreamXXX			
		mixerXXX			

+--------+ | | | auxXXX +---+ +---+ mmThread| |
|MMDEVLDR|<------->| joyXXX | Call back | mmTask | |
+--------+ | | +-----------+-----------+---------+-------------+

^ | | | ^ ^ | ^
| | | 16>| |<16>| 16>| |<16
v | | v | | v |

+--------+ | | +-------------+ +----------+
| VxD |<------->| *.drv | | mci*.drv |
+--------+ | | +--------------+ +-----------+

| | | msacm.drv | | mciwave |
| | +--------------+ +-----------+
| | | midimap.drv | | mcimidi |
| | +-------------+ +-----------+
| | Low-level drivers | ... | MCI drivers
| | +----------+
| | |
| | |<16
| +-------------------------------+
|

The important points to notice are:

• all drivers (and most of the core code) is 16 bit

• all hardware (or most of it) dependent code reside in the kernel space (which is not surprising)

14.2.2. Windows NT multimedia architecture

Note that Win 98 has mixed 95/NT architecture, so when speaking about Windows 95 (resp. NT)
architecture, it refers to the type of architecture, not what’s actually implemented. For example, Windows
98 implements both types of architectures.

The important points to notice (compared to the Windows 95 architecture) are:

• drivers (low level, MCIs...) are 32 bit and Unicode

• the interfaces between kernel and user drivers has changed, but it doesn’t impact much Wine. Those
changes allow some good things (like kernel mixing, where different apps share the audio hardware)
and of course bad things (like kernel mixing, which adds latency).

159

Chapter 14. Wine and Multimedia

14.2.3. Wine multimedia architecture

|
Kernel space | Client applications

|
| | | ^ ^ | | | |
| 16>| |<32 16>| |<32 16>| |<32 16>| |<32
+------+									
	32/16>								
	v v v		v v v v						
	+---------------+---+-------------+-------------+								
		waveInXXX		mciXXX	*playSound*				
		waveOutXXX			mmioXXX	WinMM.dll			
		midiInXXX			timeXXX	32 bit			
		midiOutXXX			driverXXX				
		midiStreamXXX				MMSystem.dll			
		mixerXXX				16 bit			
		auxXXX +---+ +---+ mmThread							
		joyXXX	Call back	mmTask					
	+-----------+-----------+---------+-------------+								
			^ ^	^					
	16>		<32	<16>	16>		<16		
	vv	<32>	32>v	<32					

+---------+ | | +-------------+ +----------+
|HW driver|<------->| *.drv | | mci*.drv |
+---------+ | | +--------------+ +-----------+

| | | msacm.drv | | mciwave |
| | +--------------+ +-----------+
| | | midimap.drv | | mcimidi |
| | +-------------+ +-----------+
| | Low-level drivers | ... | MCI drivers
| | +----------+
| | |
| | |<32/16
| +-------------------------------+
|

From the previous drawings, the most noticeable differences are:

• low-level drivers can either be 16 or 32 bit (in fact, Wine supports only native wave and audio
mappers).

• MCI drivers can either be 16 or 32 bit

• all built-in drivers (low-level and MCI) will be written as 32 bit drivers

160

Chapter 14. Wine and Multimedia

Wine’s WinMM automatically adapts the messages to be sent to a driver so that it can convert it to 16 or
32 bit interfaces.

14.3. Low level layers

The low level drivers abstract the hardware specific features from the rest of the multimedia code. Those
are implemented with a well defined set of APIs, as windows do.

Please note that native low level drivers are not currently supported in Wine, because they either access
hardware components or require VxDs to be loaded; Wine does not correctly supports those two so far.

There are two specific low level drivers (msacm.drv for wave input/output, midimap.drv for MIDI output
only). These drivers (also present in Windows) allow:

• choosing one low level driver between many (we’ll discuss how the choice is made later on)

• add the possibility to convert stream’s format (ie ADPCM => PCM) (this is useful if the format
required by the application for playback isn’t supported by the soundcard).

• add the possibility to filter a stream (adding echo, equalizer... to a wave stream, or modify the
instruments that have to be played for a MIDI stream).

14.3.1. Hardware-bound low level drivers

Each low lever driver has to implement at least one of the following functionality, through the named
function:

• Waveform audio: out for playback, and in for recording. MMSYSTEM and WINMM call the real low
level audio driver using the driver’swodMessage andwidMessage functions which handle the
different requests.

• MIDI (Musical Instrument Digital Interface): out for playback, and in for recording. MMSYSTEM
and WINMM call the low level driver functions using the driver’smidMessage and themodMessage

functions.

• Mixer: this allows setting the volume for each one of the other functionnality (and also some specific
attributes, like left/right balance for stereo streams...). MMSYSTEM and WINMM call the low level
driver functions using themxdMessage function.

• Aux: this is the predecessor of the mixer functionnality (introduced in Win 95). Its usage has been
deprecated in favor of mixer interfaces.

Wine currently supports the following (kernel) multimedia interfaces.

161

Chapter 14. Wine and Multimedia

• Open Sound System (OSS) as supplied in the Linux and FreeBSD kernels by 4Front Technologies
(http://www.4front-tech.com/). The presence of this driver is checked by configure (depends on the
<sys/soundcard.h> file). Source code resides indlls/winmm/wineoss .

• Advanced Linux Sound Architecture (ALSA (http://www.alsa-project.org/)) as supplied in the Linux
kernel. Source code resides indlls/winmm/winealsa .

• Analog RealTime Synthetizer (aRts (http://www.arts-project.org/)): a network server (and virtual
mixer) used in the KDE project.

• Enlightenment Sound Daemon (EsounD (http://www.tux.org/~ricdude/EsounD.html)): a network
server used in the GNOME project.

• Network Audio Server (NAS (http://radscan.com/nas.html)): an audio server.

• Jack (http://jackit.sourceforge.net/): a low latency audio server.

• AudioIO: the native Solaris audio interface.

The supported functionnalities per driver is as follows (this table lists the available features of the
products, not exactly what’s actually implemented on Wine):

Table 14-1. Wine multimedia drivers’ functionalities

Driver Wave Out Wave In Midi Out Midi In Mixer (and
Aux)

OSS Yes Yes Yes Yes Yes

ALSA Yes Yes Yes Yes Yes

aRts Yes Yes No No Yes

ESD Yes Yes No No No

NAS Yes Yes No No Yes

AudioIO Yes Yes No No Yes

Jack Yes Yes No No Yes

Lots of listed drivers won’t support Midi (in a short time) because the exposed "Un*x" native interfaces
don’t. This would require using some kind as software synthesis (as Timidity), but we cannot incorporate
as it’s GPL’ed.

14.3.2. Wave mapper (msacm.drv)

The Wave mapper device allows to load on-demand audio codecs in order to perform software
conversion for the types the actual low level driver (hardware). Those codecs are provided through the
standard ACM drivers in MSACM32.DLL.

Wave mapper driver implementation can be found indlls/winmm/wavemap/ directory. This driver

162

Chapter 14. Wine and Multimedia

heavily relies on MSACM and MSACM32 DLLs which can be found indlls/msacm and
dlls/msacm32 . Those DLLs load ACM drivers which provide the conversion to PCM format (which is
normally supported by low level drivers). A Law, uLaw, ADPCM, MP3... fit into the category of non
PCM formats.

14.3.3. MIDI mapper (midimap.drv)

Midi mapper allows to map each one of 16 MIDI channels to a specific instrument on an installed sound
card. This allows for example to support different MIDI instrument definitions (XM, GM...). It also
permits to output on a per channel basis to different MIDI renderers.

A built-in MIDI mapper can be found indlls/winmm/midimap/ . It partly provides the same
functionality as the Windows’ one. It allows to pick up destination channels: you can map a given
channel to a specific playback device channel (see the configuration bits for more details).

14.4. Mid level drivers (MCI)

The mid level drivers are represented by some common API functions, mostlymciSendCommand and
mciSendString . Wine implements several MCI mid level drivers.

Table 14-2. Wine MCI drivers

MCI Name DLL Name Role Location Comments

CdAudio MciCDA.drv MCI interface to a CD
audio player

dlls/winmm/mcicda/ Relies on NTDLL CdRom raw interface (throughDeviceIoControl).

WaveAudio MciWave.drv MCI interface for wave
playback and record

dlls/winmm/mciwave/ It uses the low level audio API.

Sequencer MciSeq.drv Midi Sequencer
(playback)

dlls/winmm/mciseq/ It uses the low level midi APIs

AviVideo MciAvi.drv AVI playback and recorddlls/winmm/mciavi/ It rather heavily relies on MSVIDEO/MSVFW32 DLLs pair to work.

The MCI Name column is the name of the MCI driver, as it is searched in configuration. The DLL Name
column is the name of the DLL the configuration provides as a value. The name listed here is the default
one (see the configuration section for the details).

Adding a new MCI driver is just a matter of writing the corresponding DLL with the correct interface
(see existing MCI drivers for the details), and to provide the relevant setup information forwine.inf

163

Chapter 14. Wine and Multimedia

14.5. High level layers

14.5.1. WINMM (and MMSYSTEM)

The high level layers encompass basically the MMSYSTEM and WINMM DLLs exported APIs. It also
provides the skeleton for the core functionality for multimedia playback and recording. Note that native
MMSYSTEM and WINMM do not currently work under Wine and there is no plan to support them (it
would require to also fully support VxD, which is not done yet).

WINMM and MMSYSTEM in Wine can handle both 16 bit and 32 bit drivers (for low level and MCI
drivers). It will handle all the conversions transparently for the all the calls to WINMM and
MMSYSTEM, as it knows what the driver interface is (16 bit or 32 bit) and it manages the information
sent accordingly.

MCI drivers are seen as regular Wine modules, and can be loaded (with a correct load order between
builtin, native), as any other DLL. Please note, that MCI drivers module names must bear the.drv

extension to be correctly understood.

Multimedia timers are implemented with a dedicated thread, run in the context of the calling process,
which should correctly mimic Windows behavior. The only drawback is that the thread will appear the
calling process if it enumerates the running processes.

14.5.2. DSOUND

Wine also provide a DSound (DirectX) DLL with the proper COM implementation.

Note that a Wine specific flag has been added to thewodOpen function, so that the DSound DLL can get
a reference to a COM sound object from a given WINMM wave output device. This should be changed
in the future.

14.6. MS ACM Dlls

14.6.1. Contents

The MSACM32 (and its 16 bit sibbling MSACM) provide a way to map a given wave format to another
format. It also provides filtering capabilities. Those DLLs only implement the proper switch between a
caller and a driver providing the implementation of the requested format change or filter operation.

164

Chapter 14. Wine and Multimedia

There’s nothing specific in Wine’s implementation compared to Windows’ one. Here’s however a list of
the builtin format change drivers (there’s no filter driver yet):

Table 14-3. Wine ACM drivers

Name Provides

imaadp32 IMA ADPCM (adaptative PCM)

msadp32 Microsoft’s ADPCM (adaptative PCM)

msg711 Microsoft’s G.711 (A-Law and textmu-Law)

winemp3 Wine’s MP3 (MPEG Layer 3), based on mpglib
library

Note that Wine also supports native audio codecs as well.

All builtin ACM drivers are 32 bit Unicode DLLs

14.6.2. Caching

The MSACM/MSACM32 keeps some data cached for all known ACM drivers. Under the key

Software\Microsoft\AudioCompressionManager\DriverCache\ <driver name >

, are kept for values:

• aFormatTagCache which contains an array ofDWORD. There are twoDWORDs percFormatTags

entry. The firstDWORDcontains a format tag value, and the second the associated maximum size for a
WAVEFORMATEXstructure. (FieldsdwFormatTag andcbFormatSize from
ACMFORMATDETAILS)

• cFilterTags contains the number of tags supported by the driver for filtering.

• cFormatTags contains the number of tags support by the driver for conversions.

• fdwSupport (the same as the one returned fromacmDriverDetails).

ThecFilterTags , cFormatTags , fdwSupport are the same values as the ones returned from
acmDriverDetails function.

165

Chapter 14. Wine and Multimedia

14.7. MS Video Dlls

14.7.1. Contents

The MSVFW32 (and its 16 bit sibbling MSVIDEO) provide encode/decode video streams. Those DLLs
only implement the proper switch between a caller and a driver providing the implementation of the
requested format coding/decoding operation.

There’s nothing specific in Wine’s implementation compared to Windows’ one. Here’s however a list of
the builtin decoding drivers:

Table 14-4. Wine VIDC drivers

Name Provides

msrle32 Microsoft’s RLE (Run-Length encoded)

msvidc32 Microsoft’s Video-1

iccvid Radius Cinepak Video Decoder

Note that Wine also supports native video codecs as well.

All builtin VIDC drivers are 32 bit Unicode DLLs

14.8. Multimedia configuration

Unfortunately, multimedia configuration evolved over time:

• In the early days on Windows 3.x, configuration was stored insystem.in file, under various sections
([drivers] for low level drivers,[mci] (resp.[mci32]) for 16 bit (resp. 32 bit) MCI drivers...).

• With the apparition of the registry, in Windows 95, configuration as been duplicated there, under the
key

HKLM\System\CurrentControlSet\Control\MediaResources

• Windows NT also adopted the registry, but decided to store the configuration information under
another key than Windows 9x did.

HKLM\Software\Microsoft\Windows NT\CurrentVersion

And with a different layout of keys and values beneath this key.

166

Chapter 14. Wine and Multimedia

Currently, Wine tries to load first a driver (low-level or MCI) from the NT registry settings. If it fails, it
will try the system.ini configuration.

An out-of-the-box configuration is provided inwine.inf , and shall be stored in registry and
system.ini at Wine installation time. It will setup correctly the MCI drivers’ configuration (as well as
the wave and MIDI mappers). As the low-level drivers depend on hardware, their setup will be handled
by winecfg .

Table 14-5. Wine multimedia configuration scheme

Driver Read from NT
registry

Read from
system.ini

Setup by
wine.inf

Setup by winecfg

MCI drivers Yes (1) Yes (2) Yes No

Wave and MIDI
mappers

Yes No Yes No

Hardware-bound
low level drivers

Yes No No Yes

ACM and VIDC
drivers (audio &
video codecs)

No Yes Yes No

This will allow most settings to be correctly loaded and handled. However, it won’t if an app tries to
search directly the registry for the actual configuration, as the three potential configuration places may
not be in sync.

It still lacks a correct installation scheme (as any multimedia device under Windows), so that all the
correct keys are created in the registry. This requires an advanced model since, for example, the number
of wave out devices can only be known on the destination system (depends on the sound card driven by
the OSS interface).

The following sections describe which type of information (depending on the location) Wine’s
multimedia DLLs understand.

14.8.1. NT configuration

Under the

HKLM\Software\Microsoft\Windows NT\CurrentVersion

key, are stored the names of the DLLs to be loaded for each MCI driver name:

"cdaudio"="mcicda.drv"
"sequencer"="mciseq.drv"
"waveaudio"="mciwave.drv"

167

Chapter 14. Wine and Multimedia

"avivideo"="mciavi.drv"
"videodisc"="mcipionr.drv"
"vcr"="mcivisca.drv"
"MPEGVideo"="mciqtz.drv"

14.8.2. system.ini

Wine will read the MCI drivers from the[mci] or [mci32] section. Wine won’t make any difference
between the two.

Here’s a sample configuration:

[mci]
cdaudio=mcicda.drv
sequencer=mciseq.drv
waveaudio=mciwave.drv
avivideo=mciavi.drv
videodisc=mcipionr.drv
vcr=mcivisca.drv
MPEGVideo=mciqtz.drv

ACM drivers’ configuration is read (only so far) from thesystem.ini (and setup at Wine installation
from thewine.inf file).

[drivers32]
MSACM.imaadpcm=imaadp32.acm
MSACM.msadpcm=msadp32.acm
MSACM.msg711=msg711.acm
MSACM.winemp3=winemp3.acm

Video (aka vidc) drivers’ configuration is read (only so far) from thesystem.ini (and setup at Wine
installation from thewine.inf file).

[drivers32]
VIDC.MRLE=msrle32.dll
VIDC.MSVC=msvidc32.dll
VIDC.CVID=iccvid.dll

168

Chapter 14. Wine and Multimedia

See also the configuration part of the User’s Guide for other information on low level drivers.

14.8.3. Per driver/DLL configuration

14.8.3.1. Midi mapper

The Midi mapper configuration is the same as on Windows 9x. Under the key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Multimedia\MIDIMap

if the UseScheme value is not set, or is set to a null value, the MIDI mapper will always use the driver
identified by theCurrentInstrument value. Note: Wine (for simplicity while installing) allows to
defineCurrentInstrument as#n (where n is a number), whereas Windows only allows the real device
name here. IfUseScheme is set to a non null value,CurrentScheme defines the name of the scheme to
map the different channels. All the schemes are available with keys like

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\MediaProperties\PrivateProperties\Midi\Schemes\%name_of_scheme%

For every scheme, under this key, will be a sub-key (which name is usually a two digit index, starting at
00). Its default value is the name of the output driver, and the valueChannels lists all channels (of the
16 standard MIDI ones) which have to be copied to this driver.

To provide enhanced configuration and mapping capabilities, each driver can define under the key

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\MediaProperties\PrivateProperties\Midi\Ports\%driver_name%

a link to and.IDF file which allows to remap channels internally (for example 9 -> 16), to change
instruments identification, event controllers values. See the source file
dlls/winmm/midimap/midimap.c for the details (this isn’t implemented yet).

169

