BIND 9 Administrator Reference Manual

August 31, 2006

Copyright (© 2004, 2005, 2006 Internet Systems Consortium, Inc. ("ISC”)
Copyright © 2000, 2001, 2002, 2003 Internet Software Consortium.

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Software Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.2.

1.2 Organization of This Document

In this document, Section 1 introduces the basic DNS and BIND concepts. Section 2 describes resource
requirements for running BIND in various environments. Information in Section 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Section 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Section 5 describes the BIND 9 lightweight
resolver. The contents of Section 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Section 7addresses security considerations, and Section 8 contains troubleshooting
help. The main body of the document is followed by several Appendices which contain useful reference
information, such as a Bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing | Fixed width
list name, or new term or concept
literal user input Fixed Width Bold
program output Fixed Width

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND software package,
and we begin by reviewing the fundamentals of the Domain Name System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is the hierarchical, distributed database. It stores information for
mapping Internet host names to IP addresses and vice versa, mail routing information, and other data
used by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains both a name server
and a resolver library.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the root node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be mail.example.com,
where comis the top level domain to which curhost .example . combelongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section A.4.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As we stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those
contiguous parts of the domain tree for which a name server has complete information and over which
it has authority. It contains all domain names from a certain point downward in the domain tree except
those which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

For instance, consider the example . com domain which includes names such as host . aaa.example.
comand host .bbb.example. comeven though the example . com zone includes only delegations for
the aaa.example.comand bbb.example.comzones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a “domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named. conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers.

Responses from authoritative servers have the “authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.4.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. It loads the zone contents from some local file edited by humans or
perhaps generated mechanically from some other local file which is edited by humans. This file is called
the zone file or master file.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the fop level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the "official” servers for the zone are inaccessible.

A configuration where the primary master server itself is a stealth server is often referred to as a "hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is controlled
by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf. An added benefit of using the forwarding feature is that the central machine
develops a much more complete cache of information that all the clients can take advantage of.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC and IPv6 features of BIND 9 may prove to be quite CPU intensive however, so organiza-
tions that make heavy use of these features may wish to consider larger systems for these applications.
BIND 9 is now fully multithreaded, allowing full utilization of multiprocessor systems for installations
that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. It is still good practice to have enough memory
to load all zone and cache data into memory — unfortunately, the best way to determine this for a given
installation is to watch the nameserver in operation. After a few weeks the server process should reach a
relatively stable size where entries are expiring from the cache as fast as they are being inserted. Ideally,
the resource limits should be set higher than this stable size.

2.4 Nameserver Intensive Environment Issues

For nameserver intensive environments, there are two alternative configurations that may be used. The
first is where clients and any second-level internal nameservers query a main nameserver, which has
enough memory to build a large cache. This approach minimizes the bandwidth used by external name
lookups. The second alternative is to set up second-level internal nameservers to make queries indepen-
dently. In this configuration, none of the individual machines needs to have as much memory or CPU
power as in the first alternative, but this has the disadvantage of making many more external queries,
as none of the nameservers share their cached data.

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on the following operating systems:
e IBM AIX 4.3
e Compagq Digital / Tru64 UNIX 4.0D
e Compagq Digital /Tru64 UNIX 5 (with IPv6 EAK)
e HP HP-UX 11
o IRIX64 6.5
e Sun Solaris 2.6,7, 8
e NetBSD 1.5 (with unproven-pthreads 0.17)
e FreeBSD 3.4-STABLE, 3.5,4.0,4.1
e Red Hat Linux 6.0, 6.1, 6.2, 7.0

Chapter 3

Nameserver Configuration

In this section we provide some suggested configurations along with guidelines for their use. We also
address the topic of reasonable option setting.

3.1 Sample Configurations

3.1.1 A Caching-only Nameserver

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused.

// Two corporate subnets we wish to allow queries from.
acl "corpnets" { 192.168.4.0/24; 192.168.7.0/24; };
options {
directory "/etc/namedb"; // Working directory
pid-file "named.pid"; // Put pid file in working dir
allow—-query { "corpnets"; };
}i
// Root server hints
zone "." { type hint; file "root.hint"; };
// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

3.1.2 An Authoritative-only Nameserver

This sample configuration is for an authoritative-only server that is the master server for “example.
com” and a slave for the subdomain “eng.example.com”.

options {

directory "/etc/namedb"; // Working directory

pid-file "named.pid"; // Put pid file in working dir
allow—-query { any; }; // This is the default

recursion no; // Do not provide recursive service

3.3. NOTIFY CHAPTER 3. NAMESERVER CONFIGURATION

// Root server hints
zone "." { type hint; file "root.hint"; };

// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify no;
}i
// We are the master server for example.com
zone "example.com" {
type master;
file "example.com.db";
// IP addresses of slave servers allowed to transfer example.com
allow—-transfer {
192.168.4.14;
192.168.5.53;
bi
}i
// We are a slave server for eng.example.com
zone "eng.example.com" {
type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };
}i

3.2 Load Balancing

Primitive load balancing can be achieved in DNS using multiple A records for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2,3;2,3,1;and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order substatement in the options statement, see
RRset Ordering. This substatement is not supported in BIND 9, and only the ordering scheme described
above is available.

3.3 Notify

DNS Notify is a mechanism that allows master nameservers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a transfer.

10

CHAPTER 3. NAMESERVER CONFIGURATION 3.4. NAMESERVER OPERATIONS

DNS Notify is fully documented in RFC 1996. See also the description of the zone option also-notify,
see Section 6.2.14.6. For more information about notify, see Section 6.2.14.1.

3.4 Nameserver Operations

3.4.1 Tools for Use With the Nameserver Daemon

There are several indispensable diagnostic, administrative and monitoring tools available to the system
administrator for controlling and debugging the nameserver daemon. We describe several in this section

3.4.1.1 Diagnostic Tools

dig The domain information groper (dig) is a command line tool that can be used to gather information
from the Domain Name System servers. Dig has two modes: simple interactive mode for a single
query, and batch mode which executes a query for each in a list of several query lines. All query
options are accessible from the command line.

Usage
dig [@server] domain [query-typel [query-class] [+query-option]
[-dig-option] [%$comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility provides a simple DNS lookup using a command-line interface for looking up
Internet hostnames. By default, the utility converts between host names and Internet addresses,
but its functionality can be extended with the use of options.

Usage
host [-aCdlrTwv] [-c class] [-N ndots] [-t type] [-W timeout] [-R
retries] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup is a program used to query Internet domain nameservers. nslookup has two
modes: interactive and non-interactive. Interactive mode allows the user to query nameservers
for information about various hosts and domains or to print a list of hosts in a domain. Non-
interactive mode is used to print just the name and requested information for a host or domain.

Usage
nslookup [-option...] [host-to-find | - [server]]

Interactive mode is entered when no arguments are given (the default nameserver will be used)
or when the first argument is a hyphen (*-’) and the second argument is the host name or Internet
address of a nameserver.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
nameserver.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

11

3.4. NAMESERVER OPERATIONS CHAPTER 3. NAMESERVER CONFIGURATION

3.4.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named. conf file.
Usage
named-checkconf [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.
Usage

named-checkzone [-dg] [-c class] zone [filename]

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a nameserver. If you run rndc without any options it will display a usage message as
follows:

Usage

rndc [-c config] [-s server] [-p port] [-y key] command [command.. .]
The command is one of the following:

reload Reload configuration file and zones.

reload zone [class [view]] Reload the given zone.

refresh zone [class [view]] Schedule zone maintenance for the given zone.

reconfig Reload the configuration file and load new zones, but do not reload existing zone files
even if they have changed. This is faster than a full reload when there is a large number of
zones because it avoids the need to examine the modification times of the zones files.

stats Write server statistics to the statistics file.

querylog Toggle query logging. Query logging can also be enabled by explicitly directing the
queries category to a channel in the logging section of named. conft.

dumpdb Dump the server’s caches to the dump file.

stop Stop the server, making sure any recent changes made through dynamic update or IXFR are
first saved to the master files of the updated zones.

halt Stop the server immediately. Recent changes made through dynamic update or IXFR are
not saved to the master files, but will be rolled forward from the journal files when the server
is restarted.

trace Increment the servers debugging level by one.

trace level Sets the server’s debugging level to an explicit value.

notrace Sets the server’s debugging level to 0.

12

CHAPTER 3. NAMESERVER CONFIGURATION 3.4. NAMESERVER OPERATIONS

flush Flushes the server’s cache.

status Display status of the server. Note that the number of zones includes the internal bind/CH
zone and the default ./IN hint zone if there is not an explicit root zone configured.

In BIND 9.2, rndc supports all the commands of the BIND 8 ndc utility except ndc start, which
was also not supported in ndc’s channel mode.

A configuration file is required, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration fileis /etc/rndc.conf,
but an alternate location can be specified with the —c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named. conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if
no -s option is provided on the command line. default-key takes the name of key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement names a key with its string argument. The string is required by the server to be
a valid domain name, though it need not actually be hierarchical; thus, a string like “rndc_key” is
a valid name. The key statement has two clauses: algorithm and secret. While the configuration
parser will accept any string as the argument to algorithm, currently only the string “hmac-md5”
has any meaning. The secret is a base-64 encoded string.

The server statement uses the key clause to associate a key-defined key with a server. The argu-
ment to the server statement is a host name or address (addresses must be double quoted). The
argument to the key clause is the name of the key as defined by the key statement. The port clause
can be used to specify the port to which rndc should connect on the given server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4AgYnV0IGlhZGUgZmOyIGEgd29tYW4K";
}i
options {
default-server localhost;
default-key rndc_key;
}i

This file, if installed as /etc/rndc.conf, would allow the command:
Srnde reload

to connect to 127.0.0.1 port 953 and cause the nameserver to reload, if a nameserver on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
}i

13

3.4. NAMESERVER OPERATIONS CHAPTER 3. NAMESERVER CONFIGURATION

and it had an identical key statement for rndc_key.

Running the rndc-confgen program will conveniently create a rndc. conf file for you, and also
display the corresponding controls statement that you need to add to named. conf. Alternatively,
you can run rndc-confgen -a to set up a rndc. key file and not modify named. conf at all.

3.4.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

14

Chapter 4

Advanced Concepts

4.1 Dynamic Update

Dynamic update is the term used for the ability under certain specified conditions to add, modify or
delete records or RRsets in the master zone files. Dynamic update is fully described in RFC 2136.

Dynamic update is enabled on a zone-by-zone basis, by including an allow-update or update-policy
clause in the zone statement.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: SIG and NXT records affected by
updates are automatically regenerated by the server using an online zone key. Update authorization is
based on transaction signatures and an explicit server policy.

41.1 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is
automatically created by the server when the first dynamic update takes place. The name of the journal
file is formed by appending the extension . jnl to the name of the corresponding zone file. The journal
file is in a binary format and should not be edited manually.

The server will also occasionally write ("dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when
a large zone is updated frequently. Instead, the dump is delayed by 15 minutes, allowing additional
updates to take place.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes — those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Shut
down the server using rndc stop (sending a signal or using rndc halt is not sufficient). Wait for the
server to exit, then remove the zone’s . jnl file, edit the zone file, and restart the server. Removing the .
jn1 file is necessary because the manual edits will not be present in the journal, rendering it inconsistent
with the contents of the zone file.

15

4.2. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED CONCEPTS

4.2 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is documented in RFC 1995. See [Pro-
posed Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR, but not manually maintained master zones nor slave zones obtained
by performing a full zone transfer (AXFR).

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

4.3 Split DNS

Setting up different views, or visibility, of DNS space to internal and external resolvers is usually referred
to as a Split DNS setup. There are several reasons an organization would want to set up its DNS this
way.

One common reason for setting up a DNS system this way is to hide “internal” DNS information from
“external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
“attackers” can find the information they need using other means.

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

Here is an example of a split DNS setup:

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an inter-
nal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ), or
“outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of nameservers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are “proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for sitel.example.com, site2.example.
com,sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal nameservers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public” version
of the sitel and site2.example.com zones. This could include things such as the host records for
public servers (www.example.comand ftp.example.com), and mail exchange (MX) records (a.mx .
example.comand b.mx.example.com).

In addition, the public sitel and site2.example.com zones should have special MX records that
contain wildcard ("*') records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

16

CHAPTER 4. ADVANCED CONCEPTS 4.3. SPLIT DNS

* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal nameservers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
nameservers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:
e Look up any hostnames in the sitel and site2.example.com zones.
e Look up any hostnames in the sitel.internal and site2.internal domains.
e Look up any hostnames on the Internet.
e Exchange mail with both internal AND external people.
Hosts on the Internet will be able to:
e Look up any hostnames in the sitel and site2.example.com zones.
e Exchange mail with anyone in the sitel and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

forward only;

forwarders { // forward to external servers

bastion—-ips—-go-here;

}i

allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; }; // restrict recursion

bi

zone "sitel.example.com" { // sample master zone

type master;
file "m/sitel.example.com";
forwarders { }; // do normal iterative

// resolution (do not forward)

allow-query { internals; externals; };
allow-transfer { internals; };
bi

zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };

17

4.3. SPLIT DNS

CHAPTER 4. ADVANCED CONCEPTS

forwarders { };
allow—query { internals; externals; };
allow—-transfer { internals; };

}i

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }
}i

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }
}i

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24;

acl externals { bastion-ips—-go-here; };

options {

allow—-transfer { none; };
allow—query { internals; externals; };
allow—-recursion { internals; externals; };

}i

zone "sitel.example.com" ({
type master;
file "m/sitel.foo.com";
allow—-query { any; };
allow-transfer { internals; externals; };

}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow—query { any; };
allow-transfer { internals; externals; }
}i

In the resolv.conf (or equivalent) on the bastion host(s):

search
nameserver 172.16.72.2

}i

//
//
//

//

sample allow-transfer
restrict query access
restrict recursion

sample slave zone

(no one)

18

CHAPTER 4. ADVANCED CONCEPTS 4.4. TSIG

nameserver 172.16.72.3
nameserver 172.16.72.4

44 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG might be most useful for dynamic update. A primary server for a dynamic zone should use access
control to control updates, but IP-based access control is insufficient. Key-based access control is far
superior, see [Proposed Standards]. The nsupdate program supports TSIG via the -k and -y command
line options.

4.4.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host] and host2. An arbitrary key name is chosen:
“host1-host2.”. The key name must be the same on both hosts.

4.4.1.1 Automatic Generation

The following command will generate a 128-bit (16 byte) HMAC-MDS5 key as described above. Longer
keys are better, but shorter keys are easier to read. Note that the maximum key length is 512 bits; keys
longer than that will be digested with MD5 to produce a 128-bit key.

dnssec-keygen —a hmac-md5 -b 128 —-n HOST hostl-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this file, but the
base-64 encoded string following “Key :” can be extracted from the file and used as a shared secret:

Key: La/E5CjG90+0sljgla2jdA==

The string “La/E5CjG90+0s1 jg0a2 jdA=="can be used as the shared secret.

4.4.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.4.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This could be secure
FTP, ssh, telephone, etc.

19

44. TSIG CHAPTER 4. ADVANCED CONCEPTS

4.4.3 Informing the Servers of the Key’s Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s named. conf file:

key hostl-host2. {

algorithm hmac-md5;

secret "La/E5CjG90+o0sljgla2jda==";
}i

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one generated above.
Since this is a secret, it is recommended that either named. conf be non-world readable, or the key
directive be added to a non-world readable file that is included by named. conf.

At this point, the key is recognized. This means that if the server receives a message signed by this key,
it can verify the signature. If the signature succeeds, the response is signed by the same key.

4.4.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are to be used. The
following is added to the named. conf file for host1, if the IP address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { hostl-host2. ;};
}i

Multiple keys may be present, but only the first is used. This directive does not contain any secrets, so
it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be signed with the specified
key. host1 will expect any responses to signed messages to be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s address) for host2 to sign
request messages to host1.

4.4.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{ query | transfer |
update } directives. This has been extended to allow TSIG keys also. The above key would be denoted
key hostl-host2.

An example of an allow-update directive would be:
allow-update { key hostl-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named ”“host1-host2.”.

You may want to read about the more powerful update-policy statement in Section 6.2.22.4.

4.4.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed message is sent to a non-
TSIG aware server, a FORMERR (format error) will be returned, since the server will not understand the
record. This is a result of misconfiguration, since the server must be explicitly configured to send a TSIG
signed message to a specific server.

20

CHAPTER 4. ADVANCED CONCEPTS 45. TKEY

If a TSIG aware server receives a message signed by an unknown key, the response will be unsigned
with the TSIG extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and the time values will be
adjusted so that the response can be successfully verified. In any of these cases, the message’s rcode is
set to NOTAUTH (not authenticated).

4.5 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There are several
“"modes” of TKEY that specify how the key is generated or assigned. BIND implements only one of
these modes, the Diffie-Hellman key exchange. Both hosts are required to have a Diffie-Hellman KEY
record (although this record is not required to be present in a zone). The TKEY process must use signed
messages, signed either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used to sign
messages with TSIG. TKEY can also be used to delete shared secrets that it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY query (including any
appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success, will contain a
TKEY record and any appropriate keys. After this exchange, both participants have enough information
to determine the shared secret; the exact process depends on the TKEY mode. When using the Diffie-
Hellman TKEY mode, Diffie-Hellman keys are exchanged, and the shared secret is derived by both
participants.

4.6 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535. SIG(0) uses
public/private keys to authenticate messages. Access control is performed in the same manner as TSIG
keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and trusted by the
server; the server will not attempt to locate and / or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

BIND 9 does not ship with any tools that generate SIG(0) signed messages.

4.7 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC) ex-
tensions, defined in RFC 2535. This section describes the creation and use of DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed. BIND 9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the “~h” option prints a full list of parameters. Note that the DNSSEC tools require the keyset
and signedkey files to be in the working directory, and that the tools shipped with BIND 9.0.x are not
fully compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to transmit
keys and signatures. A zone’s security status must be indicated by the parent zone for a DNSSEC
capable resolver to trust its data.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

21

4.7. DNSSEC CHAPTER 4. ADVANCED CONCEPTS

4.7.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records in the zone,
as well as the zone keys of any secure delegated zones. Zone keys must have the same name as the
zone, a name type of ZONE, and must be usable for authentication. It is recommended that zone keys
use a cryptographic algorithm designated as “mandatory to implement” by the IETF; currently these
are RSASHA1 (which is not yet supported in BIND 9.2) and DSA.

The following command will generate a 768-bit DSA key for the child.example zone:
dnssec-keygen —a DSA -b 768 —-n ZONE child.example.

Two output files will be produced: Kchild.example.+003+12345.key and Kchild.example.+
003+12345.private (where 12345 is an example of a key tag). The key file names contain the key
name (child.example.), algorithm (3 is DSA, 1is RSA, etc.), and the key tag (12345 in this case). The
private key (in the . private file) is used to generate signatures, and the public key (in the . key file) is
used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above com-
mand.

The public keys should be inserted into the zone file with $SINCLUDE statements, including the . key
files.

4.7.2 Creating a Keyset

The dnssec-makekeyset program is used to create a key set from one or more keys.

Once the zone keys have been generated, a key set must be built for transmission to the administrator of
the parent zone, so that the parent zone can sign the keys with its own zone key and correctly indicate
the security status of this zone. When building a key set, the list of keys to be included and the TTL of
the set must be specified, and the desired signature validity period of the parent’s signature may also be
specified.

The list of keys to be inserted into the key set may also included non-zone keys present at the top of the
zone. dnssec-makekeyset may also be used at other names in the zone.

The following command generates a key set containing the above key and another key similarly gener-
ated, with a TTL of 3600 and a signature validity period of 10 days starting from now.

dnssec-makekeyset -t 3600 -e +864000 Kchild.example.+003+12345 Kchild.example.
+003+23456

One output file is produced: keyset-child.example.. This file should be transmitted to the parent
to be signed. It includes the keys, as well as signatures over the key set generated by the zone keys
themselves, which are used to prove ownership of the private keys and encode the desired validity
period.

4.7.3 Signing the Child’s Keyset

The dnssec-signkey program is used to sign one child’s keyset.

If the child. example zone has any delegations which are secure, for example, grand.child.example,
the child.example administrator should receive keyset files for each secure subzone. These keys must
be signed by this zone’s zone keys.

The following command signs the child’s key set with the zone keys:

dnssec-signkey keyset—-grand.child.example. Kchild.example.+003+12345 Kchild.
example.+003+23456

22

CHAPTER 4. ADVANCED CONCEPTS 4.8. 1IPV6 SUPPORT IN BIND 9

One output file is produced: signedkey-grand.child.example.. This file should be both trans-
mitted back to the child and retained. It includes all keys (the child’s keys) from the keyset file and
signatures generated by this zone’s zone keys.

4.7.4 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any signedkey files corresponding to secure subzones should be present, as well as a signedkey
file for this zone generated by the parent (if there is one). The zone signer will generate NXT and SIG
records for the zone, as well as incorporate the zone key signature from the parent and indicate the
security status at all delegation points.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone —-o child.example zone.child.example

One output file is produced: zone .child.example.signed. This file should be referenced by named.
conf as the input file for the zone.

4.7.5 Configuring Servers
Unlike in BIND 8, data is not verified on load in BIND 9, so zone keys for authoritative zones do not
need to be specified in the configuration file.

The public key for any security root must be present in the configuration file’s trusted-keys statement,
as described later in this document.

4.8 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name lookups.
It will also use IPv6 addresses to make queries when running on an IPv6 capable system.

For forward lookups, BIND 9 supports both A6 and AAAA records. The use of A6 records has been
moved to experimental (RFC 3363) and should be treated as deprecated.

The use of "bitstring” labels for IPv6 has been moved to experimental (RFC 3363) reverting to a nibble
format. The suffix for the IPv6 reverse lookups has also changed from IP6.INT to IP6.ARPA (RFC
3152).

BIND 9 now defaults to nibble IP6 . ARPA format lookups.

BIND 9 includes a new lightweight resolver library and resolver daemon which new applications may
choose to use to avoid the complexities of A6 chain following and bitstring labels, see Chapter 5, “The
BIND 9 Lightweight Resolver”.

For an overview of the format and structure of IPv6 addresses, see Section A.3.1.

4.8.1 Address Lookups Using AAAA Records

The AAAA record is a parallel to the IPv4 A record. It specifies the entire address in a single record. For
example,

SORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

23

4.8. IPV6 SUPPORT IN BIND 9 CHAPTER 4. ADVANCED CONCEPTS

4.8.2 Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in

IPv4, and IP6.ARPA. is appended to the resulting name. For example, the following would provide
reverse name lookup for a host with address 2001 : db8: : 1.

SORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.1ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR host .example.com.

24

Chapter 5

The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive DNS queries
to a local caching name server.

IPv6 introduces new complexity into the resolution process, such as following A6 chains and DNAME
records, and simultaneous lookup of IPv4 and IPv6 addresses. These are hard or impossible to imple-
ment in a traditional stub resolver.

Instead, BIND 9 provides resolution services to local clients using a combination of a lightweight re-
solver library and a resolver daemon process running on the local host. These communicate using a
simple UDP-based protocol, the “lightweight resolver protocol” that is distinct from and simpler than
the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon Iwresd.

By default, applications using the light-weight resolver library will make UDP requests to the IPv4
loopback address (127.0.0.1) on port 921. The address can be overridden by lwserver lines in /etc/
resolv.conf. The daemon will try to find the answer to the questions “what are the addresses for
host foo.example.com?” and “what are the names for IPv4 address 10.1.2.3?”

The daemon currently only looks in the DNS, but in the future it may use other sources such as /etc/
hosts, NIS, etc.

The lwresd daemon is essentially a caching-only name server that answers requests using the lightweight
resolver protocol rather than the DNS protocol. Because it needs to run on each host, it is designed to
require no or minimal configuration. Unless configured otherwise, it uses the name servers listed on
nameserver lines in /etc/resolv.conf as forwarders, but is also capable of doing the resolution
autonomously if none are specified.

The Iwresd daemon may also be configured with a named. conf style configuration file, in /etc/
lwresd.conf by default. A name server may also be configured to act as a lightweight resolver dae-
mon using the Iwres statement in named. conft.

25

Chapter 6

BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8.x; however, there are a few new areas of configura-
tion, such as views. BIND 8.x configuration files should work with few alterations in BIND 9, although
more complex configurations should be reviewed to check if they can be more efficiently implemented

using the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/named-
bootconf/named-bootconf. sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name
address_match_list
domain_name
dotted.-decimal
ip4_addr

ip6_addr

ip_addr
ip_port

ipprefix

key_id
key_list

number

The name of an addressmatch_list as defined by the acl
statement.

A list of one or more ip_addr, ipprefix, key_id, or
acl_name elements, see Section 6.1.1.

A quoted string which will be used as a DNS name, for exam-
ple "my.test.domain”.

One or more integers valued 0 through 255 separated only by
dots (“."), such as 123, 45.67 or 89.123.45.67.

An IPv4 address with exactly four elements in
dotted_decimal notation.

An IPv6 address, such as 2001:db8::1234.

An ip4_addr or ip6_addr.

An IP port number. number is limited to 0 through 65535,
with values below 1024 typically restricted to root-owned pro-
cesses. In some cases, an asterisk (‘*’) character can be used as
a placeholder to select a random high-numbered port.

An IP network specified as an ip_addr, followed by a slash
("/’) and then the number of bits in the netmask. Trailing
zeros in a ip_addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is net-
work 1.2.3.0 with netmask 255.255.255.240.

A domain_name representing the name of a shared key, to be
used for transaction security.

A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

A non-negative 32-bit unsigned integer (i.e., a number be-
tween 0 and 4294967295, inclusive). Its acceptable value might
further be limited by the context in which it is used.

27

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

path_name A quoted string which will be used as a pathname, such as
zones/master/my.test.domain
size_spec A number, the word unlimited, or the word default.

An unlimited size_spec requests unlimited use, or the
maximum available amount. A default size_spec uses
the limit that was in force when the server was started.

A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for gi-
gabytes, which scale by 1024, 1024*1024, and 1024*1024*1024
respectively.

The value must be representable as a 64-bit unsigned integer
(0 to 18446744073709551615, inclusive). Using unlimited is
the best way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also ac-
cepted, as are the numbers 1 and 0.
dialup_option One of yes, no, notify, notify-passive, refresh

or passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub zones.

6.1.1 Address Match Lists
6.1.1.1 Syntax

address_match_list = address_match_list_element ;
address_match_list_element;

address_match_list_element = ! (ip_address /length |
key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for various server operations. They
are also used to define priorities for querying other nameservers and to set the addresses on which
named will listen for queries. The elements which constitute an address match list can be any of the
following:

e an IP address (IPv4 or IPv6)

e an IP prefix (in the ‘/’-notation)

e a key ID, as defined by the key statement

e the name of an address match list defined with the acl statement

e a nested address match list enclosed in braces

“ns s

Elements can be negated with a leading exclamation mark (‘") and the match list names “any,” "none,”
“localhost” and “localnets” are predefined. More information on those names can be found in the de-
scription of the acl statement.

The addition of the key clause made the name of this syntactic element something of a misnomer, since
security keys can be used to validate access without regard to a host or network address. Nonetheless,
the term “address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the list is traversed in order
until an element matches. The interpretation of a match depends on whether the list is being used for
access control, defining listen-on ports, or as a topology, and whether the element was negated.

28

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.1. CONFIGURATION FILE ELEMENTS

When used as an access control list, a non-negated match allows access and a negated match denies
access. If there is no match, access is denied. The clauses allow-notify, allow-query, allow-transfer,
allow-update and blackhole all use address match lists this. Similarly, the listen-on option will cause
the server to not accept queries on any of the machine’s addresses which do not match the list.

When used with the topology clause, a non-negated match returns a distance based on its position on
the list (the closer the match is to the start of the list, the shorter the distance is between it and the
server). A negated match will be assigned the maximum distance from the server. If there is no match,
the address will get a distance which is further than any non-negated list element, and closer than any
negated element.

Because of the first-match aspect of the algorithm, an element that defines a subset of another element in
the list should come before the broader element, regardless of whether either is negated. For example,
in 1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless because the algorithm will match any
lookup for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having 1.2.3.13
blocked by the negation but all other 1.2.3.* hosts fall through.

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that white space may appear
in a BIND configuration file. To appeal to programmers of all kinds, they can be written in C, C++, or
shell /perl constructs.

6.1.2.1 Syntax

/+* This is a BIND comment as in C =/
// This is a BIND comment as in C++

This is a BIND comment as in common UNIX shells and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that white space may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because
they are completely delimited with these characters, they can be used to comment only a portion of a
line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment
ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/+ This 1s an incorrect attempt at nesting a comment. x/
This is no longer in any comment. x/

C++-style comments start with the two characters // (slash, slash) and continue to the end of the phys-
ical line. They cannot be continued across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair.

For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and continue
to the end of the physical line, as in C++ comments.

29

6.2. CONFIGURATION FILE GRAMMAR

For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

statement.

WARNING: you cannot use the semicolon (‘;’) character to start a comment such
as you would in a zone file. The semicolon indicates the end of a configuration

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon. State-
ments and comments are the only elements that can appear without enclosing braces. Many statements

contain a block of substatements, which are also terminated with a semicolon.

The following statements are supported:

acl

controls
include
key

logging
options
server
trusted-keys

view
zone

defines a named IP address matching list, for access control
and other uses.

declares control channels to be used by the rndc utility.
includes a file.

specifies key information for use in authentication and autho-
rization using TSIG.

specifies what the server logs, and where the log messages are
sent.

controls global server configuration options and sets defaults
for other statements.

sets certain configuration options on a per-server basis.
defines trusted DNSSEC keys.

defines a view.

defines a zone.

The logging and options statements may only occur once per configuration.

6.2.1 acl Statement Grammar

acl acl-name {
address_match_list
}i

6.2.2 acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use

of address match lists: Access Control Lists (ACLs).

30

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

Note that an address match list’'s name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

any Matches all hosts.

none Matches no hosts.

localhost Matches the IPv4 addresses of all network interfaces on the sys-
tem.

localnets Matches any host on an IPv4 network for which the system has an
interface.

The localhost and localnets ACLs do not currently support IPv6 (that is, localhost does not match the
host’s IPv6 addresses, and localnets does not match the host’s attached IPv6 networks) due to the lack
of a standard method of determining the complete set of local IPv6 addresses for a host.

6.2.3 controls Statement Grammar

controls {
inet (ip_addr | =*) port ip_port allow { address_match_list }
keys { key_list };
inet ...;

bi

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to affect the oper-
ation of the local nameserver. These control channels are used by the rdc utility to send commands to
and retrieve non-DNS results from a nameserver.

An inet control channel is a TCP socket listening at the specified ip_port on the specified ip_addr, which
can be an IPv4 or IPv6 address. An ip_addr of « (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip_addr of : :. If you will only use rndc on the local host, using the loopback address
(127.0.0.1 or : :1) is recommended for maximum security.

The ability to issue commands over the control channel is restricted by the allow and keys clauses. Con-
nections to the control channel are permitted based on the address permissions in address_match _list.
key_id members of the address_match_list are ignored, and instead are interpreted independently based
the key _list. Each key_id in the key_list is allowed to be used to authenticate commands and responses
given over the control channel by digitally signing each message between the server and a command
client (See [Remote Name Daemon Control application] in Section 3.4.1.2). All commands to the control
channel must be signed by one of its specified keys to be honored.

If no controls statement is present, named will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named will attempt to load the command channel key from the
file rndc.key in /etc (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rnde-confgen -a.

The rndc. key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-confgen -a after BIND 9
is installed.

31

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

Since the rndc. key feature is only intended to allow the backward-compatible usage of BIND 8 con-
figuration files, this feature does not have a high degree of configurability. You cannot easily change the
key name or the size of the secret, so you should make a rndc. conf with your own key if you wish to
change those things. The rndc. key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users
to access rndc commands, then you need to create a rndc. conf file and make it group readable by a
group that contains the users who should have access.

The UNIX control channel type of BIND 8 is not supported in BIND 9.0, BIND 9.1, BIND 9.2 and BIND
9.3. If it is present in the controls statement from a BIND 8 configuration file, it is ignored and a warning
is logged.

To disable the command channel, use an empty controls statement: controls { };.

6.2.5 include Statement Grammar

include filename;

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point that the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by a nameserver.

6.2.7 key Statement Grammar

key key_id {
algorithm string;
secret string;

}i

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG, see Section 4.4.

The key statement can occur at the top level of the configuration file or inside a view statement. Keys de-
fined in top-level key statements can be used in all views. Keys intended for use in a controls statement
(see Section 6.2.4) must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can be used
in a “server” statement to cause requests sent to that server to be signed with this key, or in address
match lists to verify that incoming requests have been signed with a key matching this name, algorithm,
and secret.

The algorithm_id is a string that specifies a security /authentication algorithm. The only algorithm
currently supported with TSIG authentication is hmac-md5. The secret_string is the secret to be
used by the algorithm, and is treated as a base-64 encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {
(file path name
[versions (number | unlimited)]

32