
Documenting Python
Release 2.2

Fred L. Drake, Jr.

December 21, 2001

PythonLabs
Email: fdrake@acm.org

Abstract

The Python language has a substantial body of documentation, much of it contributed by various authors.
The markup used for the Python documentation is based on LATEX and requires a significant set of macros
written specifically for documenting Python. This document describes the macros introduced to support
Python documentation and how they should be used to support a wide range of output formats.

This document describes the document classes and special markup used in the Python documentation.
Authors may use this guide, in conjunction with the template files provided with the distribution, to
create or maintain whole documents or sections.

Contents

1 Introduction 2

2 Directory Structure 2

3 Style Guide 3

4 LATEX Primer 4
4.1 Syntax . 4
4.2 Hierarchical Structure . 6

5 Document Classes 7

6 Special Markup Constructs 7
6.1 Markup for the Preamble . 7
6.2 Meta-information Markup . 7
6.3 Information Units . 8
6.4 Showing Code Examples . 9
6.5 Inline Markup . 10
6.6 Miscellaneous Text Markup . 14
6.7 Module-specific Markup . 14
6.8 Library-level Markup . 15
6.9 Table Markup . 15
6.10 Reference List Markup . 17
6.11 Index-generating Markup . 19
6.12 Grammar Production Displays . 20

7 Graphical Interface Components 21

8 Processing Tools 21
8.1 External Tools . 21
8.2 Internal Tools . 22

9 Future Directions 22
9.1 Structured Documentation . 22
9.2 Discussion Forums . 23

1 Introduction

Python’s documentation has long been considered to be good for a free programming language. There are
a number of reasons for this, the most important being the early commitment of Python’s creator, Guido
van Rossum, to providing documentation on the language and its libraries, and the continuing involvement
of the user community in providing assistance for creating and maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports to just plain complaining
when the documentation could be more complete or easier to use. All of these forms of input from the
community have proved useful during the time I’ve been involved in maintaining the documentation.

This document is aimed at authors and potential authors of documentation for Python. More specifically, it is
for people contributing to the standard documentation and developing additional documents using the same
tools as the standard documents. This guide will be less useful for authors using the Python documentation
tools for topics other than Python, and less useful still for authors not using the tools at all.

The material in this guide is intended to assist authors using the Python documentation tools. It includes
information on the source distribution of the standard documentation, a discussion of the document types,
reference material on the markup defined in the document classes, a list of the external tools needed for
processing documents, and reference material on the tools provided with the documentation resources. At
the end, there is also a section discussing future directions for the Python documentation and where to turn
for more information.

2 Directory Structure

The source distribution for the standard Python documentation contains a large number of directories. While
third-party documents do not need to be placed into this structure or need to be placed within a similar
structure, it can be helpful to know where to look for examples and tools when developing new documents
using the Python documentation tools. This section describes this directory structure.

The documentation sources are usually placed within the Python source distribution as the top-level directory
‘Doc/’, but are not dependent on the Python source distribution in any way.

The ‘Doc/’ directory contains a few files and several subdirectories. The files are mostly self-explanatory,
including a ‘README’ and a ‘Makefile’. The directories fall into three categories:

Document Sources
The LATEX sources for each document are placed in a separate directory. These directories are given
short names which vaguely indicate the document in each:

2 2 Directory Structure

Directory Document Title
api/ The Python/C API
dist/ Distributing Python Modules
doc/ Documenting Python
ext/ Extending and Embedding the Python Interpreter
inst/ Installing Python Modules
lib/ Python Library Reference
mac/ Macintosh Module Reference
ref/ Python Reference Manual
tut/ Python Tutorial

Format-Specific Output
Most output formats have a directory which contains a ‘Makefile’ which controls the generation of that
format and provides storage for the formatted documents. The only variations within this category are
the Portable Document Format (PDF) and PostScript versions are placed in the directories ‘paper-a4/’
and ‘paper-letter/’ (this causes all the temporary files created by LATEX to be kept in the same place for
each paper size, where they can be more easily ignored).

Directory Output Formats
html/ HTML output
info/ GNU info output
paper-a4/ PDF and PostScript, A4 paper
paper-letter/ PDF and PostScript, US-Letter paper

Supplemental Files
Some additional directories are used to store supplemental files used for the various processes. Direc-
tories are included for the shared LATEX document classes, the LATEX2HTML support, template files
for various document components, and the scripts used to perform various steps in the formatting
processes.

Directory Contents
perl/ Support for LATEX2HTML processing
templates/ Example files for source documents
texinputs/ Style implementation for LATEX
tools/ Custom processing scripts

3 Style Guide

The Python documentation should follow the Apple Publications Style Guide wherever possible. This par-
ticular style guide was selected mostly because it seems reasonable and is easy to get online. (Printed copies
are available; see the Apple’s Developer Documentation FAQ for more information.)

Topics which are not covered in the Apple’s style guide will be discussed in this document if necessary.

Many special names are used in the Python documentation, including the names of operating systems,
programming languages, standards bodies, and the like. Many of these were assigned LATEX macros at some
point in the distant past, and these macros lived on long past their usefulness. In the current markup, most
of these entities are not assigned any special markup, but the preferred spellings are given here to aid authors
in maintaining the consistency of presentation in the Python documentation.

Other terms and words deserve special mention as well; these conventions should be used to ensure consistency
throughout the documentation:

CPU For “central processing unit.” Many style guides say this should be spelled out on the first use (and
if you must use it, do so!). For the Python documentation, this abbreviation should be avoided since

3

there’s no reasonable way to predict which occurance will be the first seen by the reader. It is better
to use the word “processor” instead.

POSIX The name assigned to a particular group of standards. This is always uppercase. Use the macro
\POSIX to represent this name.

Python The name of our favorite programming language is always capitalized.

Unicode The name of a character set and matching encoding. This is always written capitalized.

Unix The name of the operating system developed at AT&T Bell Labs in the early 1970s. Use the macro
\UNIX to use this name.

4 LATEX Primer

This section is a brief introduction to LATEX concepts and syntax, to provide authors enough information to
author documents productively without having to become “TEXnicians.”

Perhaps the most important concept to keep in mind while marking up Python documentation is that while
TEX is unstructured, LATEX was designed as a layer on top of TEX which specifically supports structured
markup. The Python-specific markup is intended to extend the structure provided by standard LATEX
document classes to support additional information specific to Python.

LATEX documents contain two parts: the preamble and the body. The preamble is used to specify certain
metadata about the document itself, such as the title, the list of authors, the date, and the class the document
belongs to. Additional information used to control index generation and the use of bibliographic databases
can also be placed in the preamble. For most authors, the preamble can be most easily created by copying
it from an existing document and modifying a few key pieces of information.

The class of a document is used to place a document within a broad category of documents and set some
fundamental formatting properties. For Python documentation, two classes are used: the manual class and
the howto class. These classes also define the additional markup used to document Python concepts and
structures. Specific information about these classes is provided in section 5, “Document Classes,” below.
The first thing in the preamble is the declaration of the document’s class.

After the class declaration, a number of macros are used to provide further information about the document
and setup any additional markup that is needed. No output is generated from the preamble; it is an error
to include free text in the preamble because it would cause output.

The document body follows the preamble. This contains all the printed components of the document marked
up structurally. Generic LATEX structures include hierarchical sections, numbered and bulleted lists, and
special structures for the document abstract and indexes.

4.1 Syntax

There are some things that an author of Python documentation needs to know about LATEX syntax.

A comment is started by the “percent” character (‘%’) and continues through the end of the line and all
leading whitespace on the following line. This is a little different from any programming language I know
of, so an example is in order:

This is text.% comment

This is more text. % another comment

Still more text.

4 4 LATEX Primer

The first non-comment character following the first comment is the letter ‘T’ on the second line; the leading
whitespace on that line is consumed as part of the first comment. This means that there is no space between
the first and second sentences, so the period and letter ‘T’ will be directly adjacent in the typeset document.

Note also that though the first non-comment character after the second comment is the letter ‘S’, there is
whitespace preceding the comment, so the two sentences are separated as expected.

A group is an enclosure for a collection of text and commands which encloses the formatting context and
constrains the scope of any changes to that context made by commands within the group. Groups can be
nested hierarchically. The formatting context includes the font and the definition of additional macros (or
overrides of macros defined in outer groups). Syntactically, groups are enclosed in braces:

{text in a group}

An alternate syntax for a group using brackets, [...], is used by macros and environment constructors
which take optional parameters; brackets do not normally hold syntactic significance. A degenerate group,
containing only one atomic bit of content, does not need to have an explicit group, unless it is required to
avoid ambiguity. Since Python tends toward the explicit, groups are also made explicit in the documentation
markup.

Groups are used only sparingly in the Python documentation, except for their use in marking parameters to
macros and environments.

A macro is usually a simple construct which is identified by name and can take some number of parameters.
In normal LATEX usage, one of these can be optional. The markup is introduced using the backslash char-
acter (‘\’), and the name is given by alphabetic characters (no digits, hyphens, or underscores). Required
parameters should be marked as a group, and optional parameters should be marked using the alternate
syntax for a group.

For example, a macro named “foo” which takes a single parameter would appear like this:

\name{parameter}

A macro which takes an optional parameter would be typed like this when the optional paramter is given:

\name[optional]

If both optional and required parameters are to be required, it looks like this:

\name[optional]{required}

A macro name may be followed by a space or newline; a space between the macro name and any parameters
will be consumed, but this usage is not practiced in the Python documentation. Such a space is still consumed
if there are no parameters to the macro, in which case inserting an empty group ({}) or explicit word space
(‘\ ’) immediately after the macro name helps to avoid running the expansion of the macro into the following
text. Macros which take no parameters but which should not be followed by a word space do not need special
treatment if the following character in the document source if not a name character (such as punctuation).

Each line of this example shows an appropriate way to write text which includes a macro which takes no
parameters:

4.1 Syntax 5

This \UNIX{} is followed by a space.

This \UNIX\ is also followed by a space.

\UNIX, followed by a comma, needs no additional markup.

An environment is a larger construct than a macro, and can be used for things with more content than
would conveniently fit in a macro parameter. They are primarily used when formatting parameters need
to be changed before and after a large chunk of content, but the content itself needs to be highly flexible.
Code samples are presented using an environment, and descriptions of functions, methods, and classes are
also marked using environments.

Since the content of an environment is free-form and can consist of several paragraphs, they are actually
marked using a pair of macros: \begin and \end. These macros both take the name of the environment as
a parameter. An example is the environment used to mark the abstract of a document:

\begin{abstract}

This is the text of the abstract. It concisely explains what

information is found in the document.

It can consist of multiple paragraphs.

\end{abstract}

An environment can also have required and optional parameters of its own. These follow the parameter of
the \begin macro. This example shows an environment which takes a single required parameter:

\begin{datadesc}{controlnames}

A 33-element string array that contains the \ASCII{} mnemonics for

the thirty-two \ASCII{} control characters from 0 (NUL) to 0x1f

(US), in order, plus the mnemonic \samp{SP} for the space character.

\end{datadesc}

There are a number of less-used marks in LATEX which are used to enter non-ascii characters, especially
those used in European names. Given that these are often used adjacent to other characters, the markup
required to produce the proper character may need to be followed by a space or an empty group, or the
markup can be enclosed in a group. Some which are found in Python documentation are:

Character Markup
ç \c c
ö \"o
ø \o

4.2 Hierarchical Structure

LATEX expects documents to be arranged in a conventional, hierarchical way, with chapters, sections, sub-
sections, appendixes, and the like. These are marked using macros rather than environments, probably
because the end of a section can be safely inferred when a section of equal or higher level starts.

There are six “levels” of sectioning in the document classes used for Python documentation, and the deepest
two levels1 are not used. The levels are:

1The deepest levels have the highest numbers in the table.

6 4 LATEX Primer

Level Macro Name Notes
1 \chapter (1)
2 \section
3 \subsection
4 \subsubsection
5 \paragraph (2)
6 \subparagraph

Notes:

(1) Only used for the manual documents, as described in section 5, “Document Classes.”

(2) Not the same as a paragraph of text; nobody seems to use this.

5 Document Classes

Two LATEX document classes are defined specifically for use with the Python documentation. The manual
class is for large documents which are sectioned into chapters, and the howto class is for smaller documents.

The manual documents are larger and are used for most of the standard documents. This document class
is based on the standard LATEX report class and is formatted very much like a long technical report. The
Python Reference Manual is a good example of a manual document, and the Python Library Reference is a
large example.

The howto documents are shorter, and don’t have the large structure of the manual documents. This class
is based on the standard LATEX article class and is formatted somewhat like the Linux Documentation
Project’s “HOWTO” series as done originally using the LinuxDoc software. The original intent for the
document class was that it serve a similar role as the LDP’s HOWTO series, but the applicability of the
class turns out to be somewhat broader. This class is used for “how-to” documents (this document is an
example) and for shorter reference manuals for small, fairly cohesive module libraries. Examples of the later
use include Using Kerberos from Python, which contains reference material for an extension package. These
documents are roughly equivalent to a single chapter from a larger work.

6 Special Markup Constructs

The Python document classes define a lot of new environments and macros. This section contains the
reference material for these facilities.

6.1 Markup for the Preamble

\release{ver}
Set the version number for the software described in the document.

\setshortversion{sver}
Specify the “short” version number of the documented software to be sver .

6.2 Meta-information Markup

\sectionauthor{author}{email}
Identifies the author of the current section. author should be the author’s name such that it can be
used for presentation (though it isn’t), and email should be the author’s email address. The domain
name portion of the address should be lower case.

7

No presentation is generated from this markup, but it is used to help keep track of contributions.

6.3 Information Units

XXX Explain terminology, or come up with something more “lay.”

There are a number of environments used to describe specific features provided by modules. Each envi-
ronment requires parameters needed to provide basic information about what is being described, and the
environment content should be the description. Most of these environments make entries in the general
index (if one is being produced for the document); if no index entry is desired, non-indexing variants are
available for many of these environments. The environments have names of the form featuredesc, and the
non-indexing variants are named featuredescni. The available variants are explicitly included in the list
below.

For each of these environments, the first parameter, name, provides the name by which the feature is accessed.

Environments which describe features of objects within a module, such as object methods or data attributes,
allow an optional type name parameter. When the feature is an attribute of class instances, type name only
needs to be given if the class was not the most recently described class in the module; the name value from
the most recent classdesc is implied. For features of built-in or extension types, the type name value should
always be provided. Another special case includes methods and members of general “protocols,” such as the
formatter and writer protocols described for the formatter module: these may be documented without any
specific implementation classes, and will always require the type name parameter to be provided.

\begin{cfuncdesc}{type}{name}{args}
\end{cfuncdesc}

Environment used to described a C function. The type should be specified as a typedef name, struct
tag , or the name of a primitive type. If it is a pointer type, the trailing asterisk should not be preceded
by a space. name should be the name of the function (or function-like pre-processor macro), and args
should give the types and names of the parameters. The names need to be given so they may be used
in the description.

\begin{ctypedesc}[tag]{name}
\end{ctypedesc}

Environment used to described a C type. The name parameter should be the typedef name. If the
type is defined as a struct without a typedef, name should have the form struct tag . name will be
added to the index unless tag is provided, in which case tag will be used instead. tag should not be
used for a typedef name.

\begin{cvardesc}{type}{name}
\end{cvardesc}

Description of a global C variable. type should be the typedef name, struct tag , or the name of a
primitive type. If variable has a pointer type, the trailing asterisk should not be preceded by a space.

\begin{datadesc}{name}
\end{datadesc}

This environment is used to document global data in a module, including both variables and values
used as “defined constants.” Class and object attributes are not documented using this environment.

\begin{datadescni}{name}
\end{datadescni}

Like datadesc, but without creating any index entries.

\begin{excclassdesc}{name}{constructor parameters}
\end{excclassdesc}

Descibe an exception defined by a class. constructor parameters should not include the self parameter
or the parentheses used in the call syntax. To describe an exception class without describing the
parameters to its constructor, use the excdesc environment.

8 6 Special Markup Constructs

\begin{excdesc}{name}
\end{excdesc}

Describe an exception. This may be either a string exception or a class exception. In the case of class
exceptions, the constructor parameters are not described; use excclassdesc to describe an exception
class and its constructor.

\begin{funcdesc}{name}{parameters}
\end{funcdesc}

Describe a module-level function. parameters should not include the parentheses used in the call
syntax. Object methods are not documented using this environment. Bound object methods placed
in the module namespace as part of the public interface of the module are documented using this, as
they are equivalent to normal functions for most purposes.

The description should include information about the parameters required and how they are used
(especially whether mutable objects passed as parameters are modified), side effects, and possible
exceptions. A small example may be provided.

\begin{funcdescni}{name}{parameters}
\end{funcdescni}

Like funcdesc, but without creating any index entries.

\begin{classdesc}{name}{constructor parameters}
\end{classdesc}

Describe a class and its constructor. constructor parameters should not include the self parameter or
the parentheses used in the call syntax.

\begin{classdesc*}{name}
\end{classdesc*}

Describe a class without describing the constructor. This can be used to describe classes that are
merely containers for attributes or which should never be instantiated or subclassed by user code.

\begin{memberdesc}[type name]{name}
\end{memberdesc}

Describe an object data attribute. The description should include information about the type of the
data to be expected and whether it may be changed directly.

\begin{memberdescni}[type name]{name}
\end{memberdescni}

Like memberdesc, but without creating any index entries.

\begin{methoddesc}[type name]{name}{parameters}
\end{methoddesc}

Describe an object method. parameters should not include the self parameter or the parentheses used
in the call syntax. The description should include similar information to that described for funcdesc.

\begin{methoddescni}[type name]{name}{parameters}
\end{methoddescni}

Like methoddesc, but without creating any index entries.

6.4 Showing Code Examples

Examples of Python source code or interactive sessions are represented as verbatim environments. This
environment is a standard part of LATEX. It is important to only use spaces for indentation in code examples
since TEX drops tabs instead of converting them to spaces.

Representing an interactive session requires including the prompts and output along with the Python code.
No special markup is required for interactive sessions. After the last line of input or output presented, there
should not be an “unused” primary prompt; this is an example of what not to do:

6.4 Showing Code Examples 9

>>> 1 + 1

2

>>>

Within the verbatim environment, characters special to LATEX do not need to be specially marked in any
way. The entire example will be presented in a monospaced font; no attempt at “pretty-printing” is made,
as the environment must work for non-Python code and non-code displays. There should be no blank lines
at the top or bottom of any verbatim display.

Longer displays of verbatim text may be included by storing the example text in an external file containing
only plain text. The file may be included using the standard \verbatiminput macro; this macro takes
a single argument naming the file containing the text. For example, to include the Python source file
‘example.py’, use:

\verbatiminput{example.py}

Use of \verbatiminput allows easier use of special editing modes for the included file. The file should be
placed in the same directory as the LATEX files for the document.

The Python Documentation Special Interest Group has discussed a number of approaches to creating pretty-
printed code displays and interactive sessions; see the Doc-SIG area on the Python Web site for more
information on this topic.

6.5 Inline Markup

The macros described in this section are used to mark just about anything interesting in the document text.
They may be used in headings (though anything involving hyperlinks should be avoided there) as well as in
the body text.

\bfcode{text}
Like \code, but also makes the font bold-face.

\cdata{name}
The name of a C-language variable.

\cfunction{name}
The name of a C-language function. name should include the function name and the trailing paren-
theses.

\character{char}
A character when discussing the character rather than a one-byte string value. The character will be
typeset as with \samp.

\citetitle[url]{title}
A title for a referenced publication. If url is specified, the title will be made into a hyperlink when
formatted as HTML.

\class{name}
A class name; a dotted name may be used.

\code{text}
A short code fragment or literal constant value. Typically, it should not include any spaces since no
quotation marks are added.

\constant{name}

10 6 Special Markup Constructs

The name of a “defined” constant. This may be a C-language #define or a Python variable that is
not intended to be changed.

\ctype{name}
The name of a C typedef or structure. For structures defined without a typedef, use \ctype{struct
struct tag} to make it clear that the struct is required.

\deprecated{version}{what to do}
Declare whatever is being described as being deprecated starting with release version. The text given
as what to do should recommend something to use instead.

\dfn{term}
Mark the defining instance of term in the text. (No index entries are generated.)

\e
Produces a backslash. This is convenient in \code and similar macros, and is only defined there.
To create a backslash in ordinary text (such as the contents of the \file macro), use the standard
\textbackslash macro.

\email{address}
An email address. Note that this is not hyperlinked in any of the possible output formats. The domain
name portion of the address should be lower case.

\emph{text}
Emphasized text; this will be presented in an italic font.

\envvar{name}
An environment variable. Index entries are generated.

\exception{name}
The name of an exception. A dotted name may be used.

\file{file or dir}
The name of a file or directory. In the PDF and PostScript outputs, single quotes and a font change
are used to indicate the file name, but no quotes are used in the HTML output. Warning: The \file
macro cannot be used in the content of a section title due to processing limitations.

\filenq{file or dir}
Like \file, but single quotes are never used. This can be used in conjunction with tables if a column
will only contain file or directory names. Warning: The \filenq macro cannot be used in the content
of a section title due to processing limitations.

\function{name}
The name of a Python function; dotted names may be used.

\infinity
The symbol for mathematical infinity: ∞. Some Web browsers are not able to render the HTML
representation of this symbol properly, but support is growing.

\kbd{key sequence}
Mark a sequence of keystrokes. What form key sequence takes may depend on platform- or application-
specific conventions. When there are no relevant conventions, the names of modifier keys should be
spelled out, to improve accessibility for new users and non-native speakers. For example, an xemacs
key sequence may be marked like \kbd{C-x C-f}, but without reference to a specific application or
platform, the same sequence should be marked as \kbd{Control-x Control-f}.

\keyword{name}
The name of a keyword in a programming language.

\mailheader{name}
The name of an RFC 822-style mail header. This markup does not imply that the header is being used
in an email message, but can be used to refer to any header of the same “style.” This is also used for

6.5 Inline Markup 11

headers defined by the various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions being preferred where
there is more than one common usage. The colon which follows the name of the header should not be
included. For example: \mailheader{Content-Type}.

\makevar{name}
The name of a make variable.

\manpage{name}{section}
A reference to a Unix manual page.

\member{name}
The name of a data attribute of an object.

\method{name}
The name of a method of an object. name should include the method name and the trailing parentheses.
A dotted name may be used.

\mimetype{name}
The name of a MIME type, or a component of a MIME type (the major or minor portion, taken alone).

\module{name}
The name of a module; a dotted name may be used. This should also be used for package names.

\newsgroup{name}
The name of a Usenet newsgroup.

\note{text}
An especially important bit of information about an API that a user should be aware of when using
whatever bit of API the note pertains to. This should be the last thing in the paragraph as the end of
the note is not visually marked in any way. The content of text should be written in complete sentences
and include all appropriate punctuation.

\pep{number}
A reference to a Python Enhancement Proposal. This generates appropriate index entries. The text
‘PEP number ’ is generated; in the HTML output, this text is a hyperlink to an online copy of the
specified PEP.

\plusminus
The symbol for indicating a value that may take a positive or negative value of a specified magnitude,
typically represented by a plus sign placed over a minus sign. For example: \plusminus 3%.

\program{name}
The name of an executable program. This may differ from the file name for the executable for some
platforms. In particular, the ‘.exe’ (or other) extension should be omitted for DOS and Windows
programs.

\programopt{option}
A command-line option to an executable program. Use this only for “shot” options, and include the
leading hyphen.

\longprogramopt{option}
A long command-line option to an executable program. This should only be used for long option names
which will be prefixed by two hyphens; the hyphens should not be provided as part of option.

\refmodule[key]{name}
Like \module, but create a hyperlink to the documentation for the named module. Note that the
corresponding \declaremodule must be in the same document. If the \declaremodule defines a
module key different from the module name, it must also be provided as key to the \refmodule macro.

\regexp{string}
Mark a regular expression.

12 6 Special Markup Constructs

\rfc{number}
A reference to an Internet Request for Comments. This generates appropriate index entries. The text
‘RFC number ’ is generated; in the HTML output, this text is a hyperlink to an online copy of the
specified RFC.

\samp{text}
A short code sample, but possibly longer than would be given using \code. Since quotation marks are
added, spaces are acceptable.

\shortversion
The “short” version number of the documented software, as specified using the \setshortversion
macro in the preamble. For Python, the short version number for a release is the first three characters
of the sys.version value. For example, versions 2.0b1 and 2.0.1 both have a short version of 2.0. This
may not apply for all packages; if \setshortversion is not used, this produces an empty expansion.
See also the \version macro.

\strong{text}
Strongly emphasized text; this will be presented using a bold font.

\ulink{text}{url}
A hypertext link with a target specified by a URL, but for which the link text should not be the title
of the resource. For resources being referenced by name, use the \citetitle macro. Not all formatted
versions support arbitrary hypertext links. Note that many characters are special to LATEX and this
macro does not always do the right thing. In particular, the tilde character (‘~’) is mis-handled;
encoding it as a hex-sequence does work, use ‘%7e’ in place of the tilde character.

\url{url}
A URL (or URN). The URL will be presented as text. In the HTML and PDF formatted versions, the
URL will also be a hyperlink. This can be used when referring to external resources without specific
titles; references to resources which have titles should be marked using the \citetitle macro. See the
comments about special characters in the description of the \ulink macro for special considerations.

\var{name}
The name of a variable or formal parameter in running text.

\version
The version number of the described software, as specified using \release in the preamble. See also
the \shortversion macro.

\versionadded[explanation]{version}
The version of Python which added the described feature to the library or C API. explanation should
be a brief explanation of the change consisting of a capitalized sentence fragment; a period will be
appended by the formatting process. This is typically added to the end of the first paragraph of the
description before any availability notes. The location should be selected so the explanation makes
sense and may vary as needed.

\versionchanged[explanation]{version}
The version of Python in which the named feature was changed in some way (new parameters, changed
side effects, etc.). explanation should be a brief explanation of the change consisting of a capitalized
sentence fragment; a period will be appended by the formatting process. This is typically added to the
end of the first paragraph of the description before any availability notes and after \versionadded.
The location should be selected so the explanation makes sense and may vary as needed.

\warning{text}
An important bit of information about an API that a user should be very aware of when using whatever
bit of API the warning pertains to. This should be the last thing in the paragraph as the end of the
warning is not visually marked in any way. The content of text should be written in complete sentences
and include all appropriate punctuation. This differs from \note in that it is recommended over \note
for information regarding security.

6.5 Inline Markup 13

6.6 Miscellaneous Text Markup

In addition to the inline markup, some additional “block” markup is defined to make it easier to bring
attention to various bits of text. The markup described here serves this purpose, and is intended to be used
when marking one or more paragraphs or other block constructs (such as verbatim environments).

\begin{notice}[type]
\end{notice}

Label some paragraphs as being worthy of additional attention from the reader. What sort of attention
is warrented can be indicated by specifying the type of the notice. The only values defined for type are
note and warning; these are equivalent in intent to the inline markup of the same name. If type is
omitted, note is used. Additional values may be defined in the future.

6.7 Module-specific Markup

The markup described in this section is used to provide information about a module being documented. A
typical use of this markup appears at the top of the section used to document a module. A typical example
might look like this:

\section{\module{spam} ---

Access to the SPAM facility}

\declaremodule{extension}{spam}

\platform{Unix}

\modulesynopsis{Access to the SPAM facility of \UNIX.}

\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Python packages — collections of modules that can be described as a unit — are documented using the
same markup as modules. The name for a module in a package should be typed in “fully qualified” form
(it should include the package name). For example, a module “foo” in package “bar” should be marked as
\module{bar.foo}, and the beginning of the reference section would appear as:

\section{\module{bar.foo} ---

Module from the \module{bar} package}

\declaremodule{extension}{bar.foo}

\modulesynopsis{Nifty module from the \module{bar} package.}

\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

Note that the name of a package is also marked using \module.

\declaremodule[key]{type}{name}
Requires two parameters: module type (‘standard’, ‘builtin’, ‘extension’, or ‘’), and the module
name. An optional parameter should be given as the basis for the module’s “key” used for linking to or
referencing the section. The “key” should only be given if the module’s name contains any underscores,
and should be the name with the underscores stripped. Note that the type parameter must be one
of the values listed above or an error will be printed. For modules which are contained in packages,
the fully-qualified name should be given as name parameter. This should be the first thing after the
\section used to introduce the module.

\platform{specifier}
Specifies the portability of the module. specifier is a comma-separated list of keys that specify what
platforms the module is available on. The keys are short identifiers; examples that are in use include
‘IRIX’, ‘Mac’, ‘Windows’, and ‘Unix’. It is important to use a key which has already been used when

14 6 Special Markup Constructs

applicable. This is used to provide annotations in the Module Index and the HTML and GNU info
output.

\modulesynopsis{text}
The text is a short, “one line” description of the module that can be used as part of the chapter
introduction. This is must be placed after \declaremodule. The synopsis is used in building the
contents of the table inserted as the \localmoduletable. No text is produced at the point of the
markup.

\moduleauthor{name}{email}
This macro is used to encode information about who authored a module. This is currently not used
to generate output, but can be used to help determine the origin of the module.

6.8 Library-level Markup

This markup is used when describing a selection of modules. For example, the Macintosh Library Modules
document uses this to help provide an overview of the modules in the collection, and many chapters in the
Python Library Reference use it for the same purpose.

\localmoduletable
If a ‘.syn’ file exists for the current chapter (or for the entire document in howto documents), a
synopsistable is created with the contents loaded from the ‘.syn’ file.

6.9 Table Markup

There are three general-purpose table environments defined which should be used whenever possible. These
environments are defined to provide tables of specific widths and some convenience for formatting. These
environments are not meant to be general replacements for the standard LATEX table environments, but
can be used for an advantage when the documents are processed using the tools for Python documentation
processing. In particular, the generated HTML looks good! There is also an advantage for the eventual
conversion of the documentation to XML (see section 9, “Future Directions”).

Each environment is named tablecols, where cols is the number of columns in the table specified in lower-
case Roman numerals. Within each of these environments, an additional macro, \linecols, is defined, where
cols matches the cols value of the corresponding table environment. These are supported for cols values of
ii, iii, and iv. These environments are all built on top of the tabular environment. Variants based on
the longtable environment are also provided.

Note that all tables in the standard Python documentation use vertical lines between columns, and this must
be specified in the markup for each table. A general border around the outside of the table is not used, but
would be the responsibility of the processor; the document markup should not include an exterior border.

The longtable-based variants of the table environments are formatted with extra space before and after, so
should only be used on tables which are long enough that splitting over multiple pages is reasonable; tables
with fewer than twenty rows should never by marked using the long flavors of the table environments. The
header row is repeated across the top of each part of the table.

\begin{tableii}{colspec}{col1font}{heading1}{heading2}
\end{tableii}

Create a two-column table using the LATEX column specifier colspec. The column specifier should
indicate vertical bars between columns as appropriate for the specific table, but should not specify
vertical bars on the outside of the table (that is considered a stylesheet issue). The col1font parameter
is used as a stylistic treatment of the first column of the table: the first column is presented as
\col1font{column1}. To avoid treating the first column specially, col1font may be ‘textrm’. The
column headings are taken from the values heading1 and heading2 .

\begin{longtableii}...

6.8 Library-level Markup 15

\end{longtableii}
Like tableii, but produces a table which may be broken across page boundaries. The parameters are
the same as for tableii.

\lineii{column1}{column2}
Create a single table row within a tableii or longtableii environment. The text for the first column
will be generated by applying the macro named by the col1font value when the tableii was opened.

\begin{tableiii}{colspec}{col1font}{heading1}{heading2}{heading3}
\end{tableiii}

Like the tableii environment, but with a third column. The heading for the third column is given by
heading3 .

\begin{longtableiii}...
\end{longtableiii}

Like tableiii, but produces a table which may be broken across page boundaries. The parameters
are the same as for tableiii.

\lineiii{column1}{column2}{column3}
Like the \lineii macro, but with a third column. The text for the third column is given by column3 .

\begin{tableiv}{colspec}{col1font}{heading1}{heading2}{heading3}{heading4}
\end{tableiv}

Like the tableiii environment, but with a fourth column. The heading for the fourth column is given
by heading4 .

\begin{longtableiv}...
\end{longtableiv}

Like tableiv, but produces a table which may be broken across page boundaries. The parameters are
the same as for tableiv.

\lineiv{column1}{column2}{column3}{column4}
Like the \lineiii macro, but with a fourth column. The text for the fourth column is given by
column4 .

\begin{tablev}{colspec}{col1font}{heading1}{heading2}{heading3}{heading4}{heading5}
\end{tablev}

Like the tableiv environment, but with a fifth column. The heading for the fifth column is given by
heading5 .

\begin{longtablev}...
\end{longtablev}

Like tablev, but produces a table which may be broken across page boundaries. The parameters are
the same as for tablev.

\linev{column1}{column2}{column3}{column4}{column5}
Like the \lineiv macro, but with a fifth column. The text for the fifth column is given by column5 .

An additional table-like environment is synopsistable. The table generated by this environment contains
two columns, and each row is defined by an alternate definition of \modulesynopsis. This environment is
not normally used by authors, but is created by the \localmoduletable macro.

Here is a small example of a table given in the documentation for the warnings module; markup inside the
table cells is minimal so the markup for the table itself is readily discernable. Here is the markup for the
table:

16 6 Special Markup Constructs

\begin{tableii}{l|l}{exception}{Class}{Description}

\lineii{Warning}

{This is the base class of all warning category classes. It

is a subclass of \exception{Exception}.}

\lineii{UserWarning}

{The default category for \function{warn()}.}

\lineii{DeprecationWarning}

{Base category for warnings about deprecated features.}

\lineii{SyntaxWarning}

{Base category for warnings about dubious syntactic

features.}

\lineii{RuntimeWarning}

{Base category for warnings about dubious runtime features.}

\end{tableii}

Here is the resulting table:

Class Description
Warning This is the base class of all warning category classes. It is a subclass of Exception.
UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

Note that the class names are implicitly marked using the \exception macro, since that is given as the
col1font value for the tableii environment. To create a table using different markup for the first column,
use textrm for the col1font value and mark each entry individually.

To add a horizontal line between vertical sections of a table, use the standard \hline macro between the
rows which should be separated:

\begin{tableii}{l|l}{constant}{Language}{Audience}

\lineii{APL}{Masochists.}

\lineii{BASIC}{First-time programmers on PC hardware.}

\lineii{C}{\UNIX{} \&\ Linux kernel developers.}

\hline

\lineii{Python}{Everyone!}

\end{tableii}

Note that not all presentation formats are capable of displaying a horizontal rule in this position. This is
how the table looks in the format you’re reading now:

Language Audience
APL Masochists.
C Unix & Linux kernel developers.
JavaScript Web developers.
Python Everyone!

6.10 Reference List Markup

Many sections include a list of references to module documentation or external documents. These lists are
created using the seealso or seealso* environments. These environments define some additional macros

6.10 Reference List Markup 17

to support creating reference entries in a reasonable manner.

The seealso environment is typically placed in a section just before any sub-sections. This is done to ensure
that reference links related to the section are not hidden in a subsection in the hypertext renditions of the
documentation. For the HTML output, it is shown as a “side bar,” boxed off from the main flow of the text.
The seealso* environment is different in that it should be used when a list of references is being presented
as part of the primary content; it is not specially set off from the text.

\begin{seealso}
\end{seealso}

This environment creates a “See also:” heading and defines the markup used to describe individual
references.

\begin{seealso*}
\end{seealso*}

This environment is used to create a list of references which form part of the main content. It is not
given a special header and is not set off from the main flow of the text. It provides the same additional
markup used to describe individual references.

For each of the following macros, why should be one or more complete sentences, starting with a capital
letter (unless it starts with an identifier, which should not be modified), and ending with the apropriate
punctuation.

These macros are only defined within the content of the seealso and seealso* environments.

\seemodule[key]{name}{why}
Refer to another module. why should be a brief explanation of why the reference may be interesting.
The module name is given in name, with the link key given in key if necessary. In the HTML and
PDF conversions, the module name will be a hyperlink to the referred-to module. Note: The module
must be documented in the same document (the corresponding \declaremodule is required).

\seepep{number}{title}{why}
Refer to an Python Enhancement Proposal (PEP). number should be the official number assigned by
the PEP Editor, title should be the human-readable title of the PEP as found in the official copy of the
document, and why should explain what’s interesting about the PEP. This should be used to refer the
reader to PEPs which specify interfaces or language features relevant to the material in the annotated
section of the documentation.

\seerfc{number}{title}{why}
Refer to an IETF Request for Comments (RFC). Otherwise very similar to \seepep. This should be
used to refer the reader to PEPs which specify protocols or data formats relevant to the material in
the annotated section of the documentation.

\seetext{text}
Add arbitrary text text to the “See also:” list. This can be used to refer to off-line materials or on-line
materials using the \url macro. This should consist of one or more complete sentences.

\seetitle[url]{title}{why}
Add a reference to an external document named title. If url is given, the title is made a hyperlink in
the HTML version of the documentation, and displayed below the title in the typeset versions of the
documentation.

\seeurl{url}{why}
References to specific on-line resources should be given using the \seeurl macro if they don’t have
a meaningful title. Online documents which have identifiable titles should be referenced using the
\seetitle macro, using the optional parameter to that macro to provide the URL.

18 6 Special Markup Constructs

6.11 Index-generating Markup

Effective index generation for technical documents can be very difficult, especially for someone familiar with
the topic but not the creation of indexes. Much of the difficulty arises in the area of terminology: including
the terms an expert would use for a concept is not sufficient. Coming up with the terms that a novice would
look up is fairly difficult for an author who, typically, is an expert in the area she is writing on.

The truly difficult aspects of index generation are not areas with which the documentation tools can help.
However, ease of producing the index once content decisions are made is within the scope of the tools.
Markup is provided which the processing software is able to use to generate a variety of kinds of index entry
with minimal effort. Additionally, many of the environments described in section 6.3, “Information Units,”
will generate appropriate entries into the general and module indexes.

The following macro can be used to control the generation of index data, and should be used in the document
preamble:

\makemodindex
This should be used in the document preamble if a “Module Index” is desired for a document containing
reference material on many modules. This causes a data file libjobname.idx to be created from the
\declaremodule macros. This file can be processed by the makeindex program to generate a file
which can be \input into the document at the desired location of the module index.

There are a number of macros that are useful for adding index entries for particular concepts, many of which
are specific to programming languages or even Python.

\bifuncindex{name}
Add an index entry referring to a built-in function named name; parentheses should not be included
after name.

\exindex{exception}
Add a reference to an exception named exception. The exception may be either string- or class-based.

\kwindex{keyword}
Add a reference to a language keyword (not a keyword parameter in a function or method call).

\obindex{object type}
Add an index entry for a built-in object type.

\opindex{operator}
Add a reference to an operator, such as ‘+’.

\refmodindex[key]{module}
Add an index entry for module module; if module contains an underscore, the optional parameter key
should be provided as the same string with underscores removed. An index entry “module (module)”
will be generated. This is intended for use with non-standard modules implemented in Python.

\refexmodindex[key]{module}
As for \refmodindex, but the index entry will be “module (extension module).” This is intended for
use with non-standard modules not implemented in Python.

\refbimodindex[key]{module}
As for \refmodindex, but the index entry will be “module (built-in module).” This is intended for use
with standard modules not implemented in Python.

\refstmodindex[key]{module}
As for \refmodindex, but the index entry will be “module (standard module).” This is intended for
use with standard modules implemented in Python.

\stindex{statement}
Add an index entry for a statement type, such as print or try/finally.

XXX Need better examples of difference from \kwindex.

6.11 Index-generating Markup 19

Additional macros are provided which are useful for conveniently creating general index entries which should
appear at many places in the index by rotating a list of words. These are simple macros that simply use
\index to build some number of index entries. Index entries build using these macros contain both primary
and secondary text.

\indexii{word1}{word2}
Build two index entries. This is exactly equivalent to using \index{word1!word2} and
\index{word2!word1}.

\indexiii{word1}{word2}{word3}
Build three index entries. This is exactly equivalent to using \index{word1!word2 word3},
\index{word2!word3, word1}, and \index{word3!word1 word2}.

\indexiv{word1}{word2}{word3}{word4}
Build four index entries. This is exactly equivalent to using \index{word1!word2
word3 word4}, \index{word2!word3 word4, word1}, \index{word3!word4, word1 word2}, and
\index{word4!word1 word2 word3}.

6.12 Grammar Production Displays

Special markup is available for displaying the productions of a formal grammar. The markup is simple
and does not attempt to model all aspects of BNF (or any derived forms), but provides enough to allow
context-free grammars to be displayed in a way that causes uses of a symbol to be rendered as hyperlinks
to the definition of the symbol. There is one environment and a pair of macros:

\begin{productionlist}[language]
\end{productionlist}

This environment is used to enclose a group of productions. The two macros are only defined within
this environment. If a document descibes more than one language, the optional parameter language
should be used to distinguish productions between languages. The value of the parameter should be
a short name that can be used as part of a filename; colons or other characters that can’t be used in
filename across platforms should be included.

\production{name}{definition}
A production rule in the grammar. The rule defines the symbol name to be definition. name should
not contain any markup, and the use of hyphens in a document which supports more than one grammar
is undefined. definition may contain \token macros and any additional content needed to describe the
grammatical model of symbol . Only one \production may be used to define a symbol — multiple
definitions are not allowed.

\token{name}
The name of a symbol defined by a \production macro, used in the definition of a symbol. Where
possible, this will be rendered as a hyperlink to the definition of the symbol name.

Note that the entire grammar does not need to be defined in a single productionlist environment; any
number of groupings may be used to describe the grammar. Every use of the \token must correspond to a
\production.

The following is an example taken from the Python Reference Manual:

20 6 Special Markup Constructs

\begin{productionlist}

\production{identifier}

{(\token{letter}|"_") (\token{letter} | \token{digit} | "_")*}

\production{letter}

{\token{lowercase} | \token{uppercase}}

\production{lowercase}

{"a"..."z"}

\production{uppercase}

{"A"..."Z"}

\production{digit}

{"0"..."9"}

\end{productionlist}

7 Graphical Interface Components

The components of graphical interfaces will be assigned markup, but the specifics have not been determined.

8 Processing Tools

8.1 External Tools

Many tools are needed to be able to process the Python documentation if all supported formats are required.
This section lists the tools used and when each is required. Consult the ‘Doc/README’ file to see if there
are specific version requirements for any of these.

dvips This program is a typical part of TEX installations. It is used to generate PostScript from the “device
independent” ‘.dvi’ files. It is needed for the conversion to PostScript.

emacs Emacs is the kitchen sink of programmers’ editors, and a damn fine kitchen sink it is. It also comes
with some of the processing needed to support the proper menu structures for Texinfo documents when
an info conversion is desired. This is needed for the info conversion. Using xemacs instead of FSF
emacs may lead to instability in the conversion, but that’s because nobody seems to maintain the
Emacs Texinfo code in a portable manner.

latex LATEX is a large and extensible macro package by Leslie Lamport, based on TEX, a world-class type-
setter by Donald Knuth. It is used for the conversion to PostScript, and is needed for the HTML
conversion as well (LATEX2HTML requires one of the intermediate files it creates).

latex2html Probably the longest Perl script anyone ever attempted to maintain. This converts LATEX
documents to HTML documents, and does a pretty reasonable job. It is required for the conversions
to HTML and GNU info.

lynx This is a text-mode Web browser which includes an HTML-to-plain text conversion. This is used to
convert howto documents to text.

make Just about any version should work for the standard documents, but GNU make is required for
the experimental processes in ‘Doc/tools/sgmlconv/’, at least while they’re experimental. This is not
required for running the mkhowto script.

makeindex This is a standard program for converting LATEX index data to a formatted index; it should be
included with all LATEX installations. It is needed for the PDF and PostScript conversions.

21

makeinfo GNU makeinfo is used to convert Texinfo documents to GNU info files. Since Texinfo is used
as an intermediate format in the info conversion, this program is needed in that conversion.

pdflatex pdfTEX is a relatively new variant of TEX, and is used to generate the PDF version of the manuals.
It is typically installed as part of most of the large TEX distributions. pdflatex is pdfTEX using the
LATEX format.

perl Perl is required for LATEX2HTML and one of the scripts used to post-process LATEX2HTML output, as
well as the HTML-to-Texinfo conversion. This is required for the HTML and GNU info conversions.

python Python is used for many of the scripts in the ‘Doc/tools/’ directory; it is required for all conversions.
This shouldn’t be a problem if you’re interested in writing documentation for Python!

8.2 Internal Tools

This section describes the various scripts that are used to implement various stages of document processing
or to orchestrate entire build sequences. Most of these tools are only useful in the context of building the
standard documentation, but some are more general.

mkhowto This is the primary script used to format third-party documents. It contains all the logic needed
to “get it right.” The proper way to use this script is to make a symbolic link to it or run it in place;
the actual script file must be stored as part of the documentation source tree, though it may be used
to format documents outside the tree. Use mkhowto --help for a list of command line options.

mkhowto can be used for both howto and manual class documents. (For the later, be sure to get the
latest version from the Python CVS repository rather than the version distributed in the ‘latex-1.5.2.tgz’
source archive.)

XXX Need more here.

9 Future Directions

The history of the Python documentation is full of changes, most of which have been fairly small and
evolutionary. There has been a great deal of discussion about making large changes in the markup languages
and tools used to process the documentation. This section deals with the nature of the changes and what
appears to be the most likely path of future development.

9.1 Structured Documentation

Most of the small changes to the LATEX markup have been made with an eye to divorcing the markup from the
presentation, making both a bit more maintainable. Over the course of 1998, a large number of changes were
made with exactly this in mind; previously, changes had been made but in a less systematic manner and with
more concern for not needing to update the existing content. The result has been a highly structured and
semantically loaded markup language implemented in LATEX. With almost no basic TEX or LATEX markup
in use, however, the markup syntax is about the only evidence of LATEX in the actual document sources.

One side effect of this is that while we’ve been able to use standard “engines” for manipulating the documents,
such as LATEX and LATEX2HTML, most of the actual transformations have been created specifically for
Python. The LATEX document classes and LATEX2HTML support are both complete implementations of the
specific markup designed for these documents.

Combining highly customized markup with the somewhat esoteric systems used to process the documents
leads us to ask some questions: Can we do this more easily? and, Can we do this better? After a great deal of

22 9 Future Directions

discussion with the community, we have determined that actively pursuing modern structured documentation
systems is worth some investment of time.

There appear to be two real contenders in this arena: the Standard General Markup Language (SGML),
and the Extensible Markup Language (XML). Both of these standards have advantages and disadvantages,
and many advantages are shared.

SGML offers advantages which may appeal most to authors, especially those using ordinary text editors.
There are also additional abilities to define content models. A number of high-quality tools with demonstrated
maturity are available, but most are not free; for those which are, portability issues remain a problem.

The advantages of XML include the availability of a large number of evolving tools. Unfortunately, many
of the associated standards are still evolving, and the tools will have to follow along. This means that
developing a robust tool set that uses more than the basic XML 1.0 recommendation is not possible in the
short term. The promised availability of a wide variety of high-quality tools which support some of the most
important related standards is not immediate. Many tools are likely to be free, and the portability issues of
those which are, are not expected to be significant.

It turns out that converting to an XML or SGML system holds promise for translators as well; how much
can be done to ease the burden on translators remains to be seen, and may have some impact on the schema
and specific technologies used.

XXX Eventual migration to XML.

The documentation will be moved to XML in the future, and tools are being written which will convert
the documentation from the current format to something close to a finished version, to the extent that the
desired information is already present in the documentation. Some XSLT stylesheets have been started for
presenting a preliminary XML version as HTML, but the results are fairly rough..

The timeframe for the conversion is not clear since there doesn’t seem to be much time available to work on
this, but the appearant benefits are growing more substantial at a moderately rapid pace.

9.2 Discussion Forums

Discussion of the future of the Python documentation and related topics takes place in the Documentation
Special Interest Group, or “Doc-SIG.” Information on the group, including mailing list archives and sub-
scription information, is available at http://www.python.org/sigs/doc-sig/. The SIG is open to all interested
parties.

Comments and bug reports on the standard documents should be sent to python-docs@python.org. This may
include comments about formatting, content, grammatical and spelling errors, or this document. You can
also send comments on this document directly to the author at fdrake@acm.org.

9.2 Discussion Forums 23

	1 Introduction
	2 Directory Structure
	3 Style Guide
	4 Primer
	4.1 Syntax
	4.2 Hierarchical Structure

	5 Document Classes
	6 Special Markup Constructs
	6.1 Markup for the Preamble
	6.2 Meta-information Markup
	6.3 Information Units
	6.4 Showing Code Examples
	6.5 Inline Markup
	6.6 Miscellaneous Text Markup
	6.7 Module-specific Markup
	6.8 Library-level Markup
	6.9 Table Markup
	6.10 Reference List Markup
	6.11 Index-generating Markup
	6.12 Grammar Production Displays

	7 Graphical Interface Components
	8 Processing Tools
	8.1 External Tools
	8.2 Internal Tools

	9 Future Directions
	9.1 Structured Documentation
	9.2 Discussion Forums

