Python Library Reference
Release 2.3.4

Guido van Rossum
Fred L. Drake, Jr., editor

May 20, 2004

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reférence.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ’ results in the following call: __import __('spam’,
globals(), locals(), [I) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) . Note that even though

locals() and['eggs’] are passed in as arguments, thémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfrgm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugtattr() to
extract the desired components. For example, you could define the following helper:

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

def my_import(hame):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass $&r andunicode . It cannot be called or instantiated, but it can be

used to test whether an object is an instancstiof or unicode . isinstance(obj, basestring) is
equivalent tdsinstance(obj, (str, unicode)) . New in version 2.3.
bool ([x])

Convert a value to a Boolean, using the standard truth testing procedwés fiilse or omitted, this returns
False ; otherwise it returnJrue . bool is also a class, which is a subclassmif . Classbool cannot be
subclassed further. Its only instances baégse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer For examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusiXedueError will
be raised ifi is outside that range.

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
def f(cls, argl, arg2, ..): ..
f = classmethod(f)

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, seticmethod() in this
section. New in version 2.2.

cmp(x,)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive iix > .

compile (string, filename, kin[i ﬂags[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable
value if it wasn't read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can lexec’ if string consists of a sequence of statemel@gal’ if it consists

4 Chapter 2. Built-In Objects

of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else ame will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character'fn’), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ | use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. flagisargument is given and
dont_inheritis not (or is zero) then the future statements specified bfldgesargument are used in addition to
those that would be used anywaydiint_inherit is a non-zero integer then tflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmpiler _flag attribute on the Feature
instance in the__future __ module.

complex ([real[, imag]])
Create a complex number with the val@al + imagFj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat() . If both arguments are omitted, returdjs.

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) isequivalenttalel x. foobar.

dict ([mapping—or—sequenc]e)
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments.
If no arguments are given, return a new empty dictionary. If the positional argument is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary edtaihéd:

2, "two" 3}

edict({'one’: 2, 'two: 3}

edict({'one”. 2, 'two: 3}.items())
edict({'one”: 2, 'two: 3}.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the objeatict __ attribute,

2.1. Built-in Functions 5

if defined, and from the class or type object. The listis not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> jmport struct

>>> dir()

[__builtins__’, ’°__doc__’, '__name__’, ’struct’]

>>> dir(struct)

[__doc__', ' name__’, ’calcsize’, 'error, 'pack’, 'unpack’]

Note: Becausalir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod (a, b)
Take two (hon complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the samgaad b, a % b) . For floating point numbers the result
is(g, a % b),whereqis usuallymath.floor(a / b) butmay be 1 lessthanthat. Inanycgsé& b +
a % bisvery close t@, if a % bis non-zero it has the same signaand0 <= abs(a % b) < abs(b).

Changed in version 2.3: Usirtivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate objeciterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned numerate() returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating ibeexble enumerate() is useful for
obtaining an indexed serief, seq[0]) , (1, seq[l]) , (2, seq[2]) ,.... New in version 2.3.

eval (expressioﬁ, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthiezalsandlocalsdictionaries as global and
local name space. If thglobalsdictionary is present and lacksbuiltins__’, the current globals are copied
into globalsbeforeexpressioris parsed. This means thatpressiomormally has full access to the standard
__builtin - __ module and restricted environments are propagated. liotteds dictionary is omitted it de-
faults to theglobalsdictionary. If both dictionaries are omitted, the expression is executed in the environment
whereeval is called. The return value is the result of the evaluated expression. Syntax errors are reported as
exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagit®()). In this
case pass a code object instead of a string. The code object must have been compiledgyas$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (fiIenameE, globals[, Iocals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does

6 Chapter 2. Built-In Objects

not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using glebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whetecfile() is called. The return value None.

Warning: The defaultocalsact as described for functidocals() below: modifications to the defadticals
dictionary should not be attempted. Pass an expbcials dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamd, modd, bufsizd])
Return a new file object (described in section 2.3MI¢'Objects). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which omeUNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

In addition to the standartbpen() valuesmodemay be’U’ or’'rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any ofthe

Unix end-of-line convention’\r’ , the Macintosh convention dw\n’ , the Windows convention. All of
these external representations are seelnas by the Python program. If Python is built without universal
newline suppormode’U’ is the same as normal text mode. Note that file objects so opened also have an
attribute callednewlines which has a value oNone (if no newlines have yet been seeflfy ,'\r ,

\nn’ , or a tuple containing all the newline types seen.

If modeis omitted, it defaults t&’ . When opening a binary file, you should appélod to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for tty devices and fully buffered
for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2. The previous spellimjggn() , is retained for compatibility,
and is an alias fofile()

filter (function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratoridf is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementssbthat
are false (zero or empty) are removed.

Note that filter(function, list) is equivalent to [item for item in list if
function(item)] if function is notNone and[item for item in list if item)] if function is
None.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensicaigoatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned. If no argument is given, 1@Qirns

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don’'tseiveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedatfject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resltis if the string is the name of one of the object’s
attributes,False if not. (This is implemented by callingetattr(object namg and seeing whether it
raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal. For example, on a 32-bit mache;1) yields Oxffffffff’
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®©amrflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have th@¢ame
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val&jrtaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaadixXfaameter gives
the base for the conversion and may be any integer in the range [2, 36], or zeadlixlfs zero, the proper
radix is guessed based on the contents of string; the interpretation is the same as for integer litadilsisIf
specified anck is not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer

8 Chapter 2. Built-In Objects

or a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given, returns
0.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or an object of the given type, the function always returns falstasdinfois neither a class object
nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedkldfsinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entgjassinfowill be checked. In any other
case, aypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with
integer arguments starting @). If it does not support either of those protocolg,peError is raised. If
the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len ()
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequenc})
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objesetqufncés already a list, a copy is made
and returned, similar teequendg] . Forinstanceljst('abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returns[1l, 2, 3] . If noargumentis given, returns a new empty Ijt,

locals ()
Update and return a dictionary representing the current local symbol ts#dening: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace; this behaves identisizing.atol(X) . Theradix
argument is interpreted in the same way asifitlf) , and may only be given whenis a string. Otherwise,
the argument may be a plain or long integer or a floating point number, and a long integer with the same value is
returned. Conversion of floating point numbers to integers truncates (towards zero). If no arguments are given,
returnsOL.

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended witime items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Tl arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With

2.1. Built-in Functions 9

more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeabject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2,

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbicté;1) yields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®amrflowError exception.

open (filenam({, mode{, bufsizé])
An alias for thefile() function above.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &dy'a’) returns the integer
97, ord(u\u2020’) returns8224 . This is the inverse afhr() for strings and ofinichr() ~ for Unicode
characters.

pow(X, y[z])
Returnx to the powery; if z is present, returix to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For examplE)**2 returns100, but 10**-2 returns0.01 . (This last feature
was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydmust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupmf) returned platform-dependent results
depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derivebjeat).

fgetis a function for getting an attribute value, likewitgetis a function for setting, antiel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self.
def setx(self, value): self.
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

_ X
__X = value

New in version 2.2.

range ([start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedloops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t@. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largsttrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

10 Chapter 2. Built-In Objects

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &direés read,
EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"”

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateq(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argumegnt,
is the update value from treequencelf the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emitiglizér is not given and
sequenceontains only one item, the first item is returned.

reload (modulg
Re-parse and re-initialize an already imponteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tmeoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firs{port statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor
__main __and__builtin __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

2.1. Built-in Functions 11

If a module imports objects from another module usiram ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefumthe
statement, another is to ugeport and qualified names{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for examguied(0.5) is1.0 and
round(-0.5) is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] sto;{, step])
Return a slice object representing the set of indices specifiedrime(start, stop step. Thestartand
steparguments default tblone. Slice objects have read-only data attribusest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For exampla[start:stop:step] "or ‘a[start:stop,] ’

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
def f(argl, arg2, ...): ...
f = staticmethod(f)

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java -ot. CFor a more advanced concept, see
classmethod() in this section. New in version 2.2.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string. If no argument is given, returns the empty string,

sum(sequenc[a start])
Sumsstart and the items of @&equencefrom left to right, and returns the totalstart defaults to0. The
sequencs items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callingjoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type[, object-or-typd)
Return the superclass tfpe If the second argument is omitted the super object returned is unbound. If the

12 Chapter 2. Built-In Objects

second argument is an objedijnstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

New in version 2.2.

tuple ([sequenc}a)
Return a tuple whose items are the same and in the same oslEEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objeetfuencés already a tuple, it is returned unchanged.
For instancetuple('abc’) returns('a’, 'b’, 'c’) andtuple([1, 2, 3]) returns(l, 2,
3) . If no argument is given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motjygdes defines names for
all built-in types that don’t already have built-in names. For instance:

>>> import types
>>> x = ’'abc’
>>> if type(x) is str: print "It's a string"

I's a string
>>> def f(): pass

>>> if type(f) is types.FunctionType: print "It's a function”
It's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgarexampleunichr(97)
returns the string'a’ . This is the inverse odrd() for Unicode strings. The argument must be in the range
[0..65535], inclusiveValueError s raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version abbjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowbhgokupError s raised. Error handling is done accordingetoors;
this specifies the treatment of characters which are invalid in the input encodiegors is ’strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteFFFD to be used to replace
input characters which cannot be decoded. See alsmtiecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselghfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiitt’ mode.

New in version 2.0. Changed in version 2.2: Supportfounicode __() added.

2.1. Built-in Functions 13

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifted.

xrange ([start,] stop{, step])
This function is very similar tdange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth.

zip (seql,.)
This function returns a list of tuples, where thth tuple contains theth element from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatability with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without concerns
about missing something important.

apply (function, arg{, keyword§)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence. Tinectionis called withargs as the argument list; the number
of arguments is the length of the tuple. If the optiokeywordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling
apply() is different from just callingunctior(args) , since in that case there is always exactly one argument.
The use ofaipply() is equivalent tdunction(* args ** keyword¥. Use ofapply() is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.RIse the extended call syntax instead, as described above.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

14 Chapter 2. Built-In Objects

the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value ointern() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-in
types have differed from user-defined types because it was not possible to use the built-in types as the basis for object-
oriented inheritance. With the 2.2 release this situation has started to change, although the intended unification of
user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..’ notation). The latter conversion is implicitly used when an object is written

by theprint statement. (Information gorint statemenand other language statements can be found iR yieon
Reference Manualnd thePython Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl#,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns the integer zerolwol valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarri-alse for false andl or True for
true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one of their
operands.)

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey 1)
not x if xis false, therTrue , elseFalse (2)

Notes:

5Additional information on these special methods may be found ifPthieon Reference Manual

2.3. Built-in Types 15

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z except thay is evaluated only once (but in both casss not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal 8
<> not equal Q)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently, ¥he> and>= operators will raise
aTypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrttpe () method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types

There are four distinct numeric typeplain integers long integers floating point numbersandcomplex numbers

In addition, Booleans are a subtype of plain integers. Plain integers (also justioédigers are implemented using

long in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating point
numbers are implemented usidguble in C. All bets on their precision are off unless you happen to know the
machine you are working with.

Complex numbers have a real and imaginary part, which are each implementedasiodg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

16 Chapter 2. Built-In Objects

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals witt.aor | * suffix yield long integers (L’ is

preferred becausél ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending’or ‘J’ to a numeric literal yields a complex number with a zero real part.

A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same
rule® The constructorgit() ,long() ,float() ,andcomplex() can be used to produce numbers of a specific

type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy 4)
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %vy) (3)(4)
pow(X,) X to the powely
X ** oy x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdiangs
andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, aidmnod()
Deprecated since release 2.Jstead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types
Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers

are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

6As a consequence, the ljdt, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

2.3. Built-in Types 17

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-

isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwise or of x andy

X"y bitwise exclusive oof x andy
X &Yy bitwiseand of x andy

X << n | xshifted left byn bits 2), (2
X >> n | xshifted right byn bits (), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#ta iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fibematbie
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used Vigth the
andin statements. This method corresponds tottheiter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisgttipdteration exception.
This method corresponds to the _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratorext() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

18 Chapter 2. Built-In Objects

Python’s generators provide a convenient way to implement the iterator protocol. If a container ahjget’s __()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the__iter __() andnext() methods.

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotesizzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commas]a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesasugh @s or () . A single

item tuple must have a trailing comma, suci{@&3

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the
xrange() function. They don’t support slicing, concatenation or repetition, and usingiot in , min() or
max() onthem is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thé&dnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tox, else0 (1)
X not in s | Oifanitem ofsis equal tax, elsel Q)
s+t the concatenation afandt
s * n, n* s | nshallow copies of concatenated (2)
9 i] i'th item of s, origin O)
g i:] slice ofsfromi toj 3), 4
gi:j:K slice ofsfromi to j with stepk 3), (5)
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:
(1) Whensis a string or Unicode string object tlie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyonday be a string of any length.

(2) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.dsote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

"They must have since the parser can't tell the type of the operands.

2.3. Built-in Types 19

>>> lists = [[]] * 3
>>> lists

M 0 m

>>> |ists[0].append(3)
>>> lists

(3], 3], [31

What has happened is tHestts s a list containing three copies of the l[fl (a one-element list containing
an empty list), but the contained list is shared by each copy. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> |ists[2].append(7)

>>> lists

(3], 18], [71

(3) If i orj is negative, the index is relative to the end of the strieg(s) + iorlen(s) + jis substituted. But
note thatO is still 0.

(4) The slice ofsfromi toj is defined as the sequence of items with inkexich thai <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usé. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

(5) The slice ofsfromi toj with stepkis defined as the sequence of items with index i + n*ksuchthab <=n
< abs(i-j) . If i orjis greater thaten(s), uselen(s). If i orjare omitted then they become “end” values
(which end depends on the signlgf Note,k cannot be zero.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

decode ([encodini, errors]])
Decodes the string using the codec registerecefaroding encodingdefaults to the default string encoding.
errorsmay be given to set a different error handling scheme. The defdstticst’ , meaning that encoding
errors raise/alueError . Other possible values atignore’ and’replace’ . New in version 2.2.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enardimg may
be given to set a different error handling scheme. The defaudérforsis 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’ . New inversion 2.0.

endswith (suffi>{, starl[, end]])
ReturnTrue if the string ends with the specifiexliffix otherwise returrFalse . With optional start, test
beginning at that position. With optionahd stop comparing at that position.

20 Chapter 2. Built-In Objects

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsabis found, such thagubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retttnif subis not found.

index (sut{, starl[, end]])
Like find() , butraisevValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

istitle 0
Return true if the string is a titlecased string and there is at least one character, i.e. uppercase characters may
only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqsencéhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s).

lower ()
Return a copy of the string converted to lowercase.

Istrip ([chars])
Return a copy of the string with leading characters removethdfsis omitted orNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.2: Supportéhatsargument.

replace (old, nevs[, count])
Return a copy of the string with all occurrences of substaltgeplaced bynew If the optional argumertount
is given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thatubis contained within s[start,end].
Optional argumentstart andendare interpreted as in slice notation. Retetnon failure.

rindex (sut{, start[, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width)

2.3. Built-in Types 21

Return the string right justified in a string of lengtldth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

rstrip ([chars])
Return a copy of the string with trailing characters removedh#rsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.2: Support ébrattsargument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostmaxsplit
splits are done. I§epis not specified oNone, any whitespace string is a separator.

splitlines ([keepend];)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])
ReturnTrue if string starts with theprefix otherwise returiralse . With optionalstart, test string beginning
at that position. With optionand stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removeHattis omitted oNone, whitespace
characters are removed. If given and hNiine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.2: Support for the
charsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argulelettcharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

For Unicode objects, theanslate() method does not accept the optiodaletecharargument. Instead,

it returns a copy of thewhere all characters have been mapped through the given translation table which must
be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringdooe. Unmapped characters are

left untouched. Characters mapped\ione are deleted. Note, a more flexible approach is to create a custom
character mapping codec using ttelecs module (seencodings.cp1251 for an example).

upper ()
Return a copy of the string converted to uppercase.
zfill (width)

Return the numeric string left filled with zeros in a string of lengttth. The original string is returned vfidth
is less thalen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
string formatting or interpolationoperator. Giverformat %values(whereformatis a string or Unicode objectYo
conversion specifications ifiormat are replaced with zero or more elementsvafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will also be a Unicode object.

22 Chapter 2. Built-In Objects

If formatrequires a single argumentaluesmay be a single non-tuple obje&. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

. The % character, which marks the start of the specifier.

. Mapping key (optional), consisting of a parenthesised sequence of characters (for efsonpé@mame)).

. Conversion flags (optional), which affect the result of some conversion types.

A W ON P

. Minimum field width (optional). If specified as ah’*(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’‘ (dot) followed by the precision. If specified as’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in thenstratigclude a paren-
thesised mapping key into that dictionary inserted immediately aftel9theharacter. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

‘-’ | The converted value is left adjusted (overrides Biecbnversion if both are given).

‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ | Asign character ¢’ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may ble, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.3. Built-in Types 23

Conversion | Meaning Notes
‘o’ Signed integer decimal.
i’ Signed integer decimal.
‘0’ Unsigned octal. Q)
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase). (2)
‘X Unsigned hexidecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘9’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). 4)
‘% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze@) (o be inserted between left-hand padding and the formatting of the
number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadiy’ or’0X’ (depending on whether th&™or ‘ X format was used) to be
inserted between left-hand padding and the formatting of the number if the leading character of the result is not
already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@nicode string, the resulting string will also hénicode .

Since Python strings have an explicit lendgtbs conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&Q0;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésgy andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
X is an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

24 Chapter 2. Built-In Objects

Operation Result Notes
qi] = X itemi of sis replaced by
girj] =t slice ofsfromitoj is replaced by
del di:j] same agi:j] =[]
qgirj:kl =t the elements off i: j: k] are replaced by those of 8
del di:j: K] removes the elements dfi: j: k] from the list
s.append(X) same as{len(selen(9] = [X (2)
s.extend(X) same agllen(s)len(9] = X 3)
sccount(X) return number of’s for whichg[i] == x
s.index(x[, i[, j]]) return smallesk such that k] == xandi <= k < j (4)
sinsert(i, X) sameag|i:i] = [X (5)
s.pop([i]) sameax = g i]; del di]; return X (6)
sremove(X) same aslel ¢ s.index(X)] 4)
sreverse() reverses the items afin place (7
s.sort([cmpfunc:Noné) sort the items o in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) Raises an exception wheris not a list object.

(4) RaisesvalueError whenxis not found ins. When a negative index is passed as the second or third parameter
totheindex() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previousljex() didn't have arguments for specifying start
and stop positions.

(5) When a negative index is passed as the first parameter tngee() method, the list length is added, as for
slice indices. If itis still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

(8) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return a negative, zero or positive number depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process down con-
siderably; for example to sort a list in reverse order it is much faster tsogtl]) followed byreverse()
than to usesort() with a comparison function that reverses the ordering of the elements. Phksiegas
the comparison function is semantically equivalent to callag() with no comparison function. Changed
in version 2.3: Support fdlone as an equivalent to omittingmpfunovas added.

As an example of using thempfuncargument to theort() method, consider sorting a list of sequences by
the second element of that list:

def mycmp(a, b):
return cmp(a[l], b[1])

mylist.sort(mycmp)

2.3. Built-in Types 25

A more time-efficient approach for reasonably-sized data structures can often be used:

tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]

(9) Whether thesort() method is stable is not defined by the language (a sort is stable if it guarantees not to change
the relative order of elements that compare equal). In the C implementation of Python, sorts were stable only
by accident through Python 2.2. The C implementation of Python 2.3 introduced astdifje method, but
code that intends to be portable across implementations and versions must not rely on stability.

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 makes the list appear empty for the duration, andValse&rror if it can
detect that the list has been mutated during a sort.

2.3.7 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, tbietionary. A dictionary’s keys are almost arbitrary values. Only values containing
lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used
as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such asl and1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’> 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd?}

The following operations are defined on mappings (wleaadb are mappingsk is a key, ands andx are arbitrary
objects):

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = v seta[k] tov
del a[K] removea K] froma (1)
a.clear() remove all items frona
a.copy() a (shallow) copy oa
a.has _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has key(K) (2)
k notin a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3
a.update(b) for k in b.keys(): al k] = b[K]
a.fromkeys(sec[, value]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[K ifk in a,elsex (4)
a.setdefault(K|, x]) al K] if k in a, elsex (also setting it) (5)
a.pop(k[, x|) al K] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrarggy, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys 2), 3)
a.itervalues() return an iterator over the mapping’s values 2), (3)

Notes:

26 Chapter 2. Built-In Objects

(1) Raises &KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random ordeitdins() ,keys() ,values() ,iteritems() , iterkeys() ,
anditervalues() are called with no intervening modifications to the dictionary, the lists will directly cor-
respond. This allows the creation pfialug key) pairs usingzip() : ‘pairs = zip(a.values(),
akeys()) . The same relationship holds for titerkeys() anditervalues() methods: pairs =
zip(a.itervalues(), a.iterkeys()) " provides the same value fgairs . Another way to create
the same listispairs = [(v, k) for (k, v) in a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing x is both returned and inserted into the dictionary as
the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.
(7) fromkeys() is a class method that returns a new dictionagjuedefaults toNone. New in version 2.3.

(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

2.3.8 File Objects

File objects are implemented using G&lio package and can be created with the built-in construfi()
described in section 2.1, “Built-in Function¥” File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0O-related reason, the excep@&mnror is raised. This includes situations where
the operation is not defined for some reason, $i&ek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise &/alueError after the file has been closed. Callicigse() = more than once is allowed.

flush ()
Flush the internal buffer, liksetdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module oros.read() and friends.Note: File-like objects which do not have a real file descriptor
shouldnot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse . Note: If a file-like object is not associated
with a real file, this method shoutibt be implemented.

next ()
A file object is its own iterator, for exampliger() returnsf (unlessf is closed). When a file is used as an
iterator, typically in afor loop (for examplefor line in f. print line), thenext() method is
called repeatedly. This method returns the next input line, or r&sgslteration whenEOF is hit. In

order to make dor loop the most efficient way of looping over the lines of a file (a very common operation),
thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, com-
biningnext() with other file methods (likeeadline()) does not work right. However, usirsgek() to
reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

1%file() is new in Python 2.2. The older built-mpen() is an alias foffile()

2.3. Built-in Types 27

read ([size])
Read at mossizebytes from the file (less if the read hi&®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after amoFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible. Also note that when in non-blocking mode, less data
than what was requested may be returned, even $izeparameter was given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tribgt may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is retuntyaghen
EOFis encountered immediateljote: Unlike stdio 's fgets() , the returned string contains null characters
(\0’) if they occurred in the input.

readlines ([sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@meghint
argument is present, instead of reading ugaa, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingits(f) . New in version 2.1. Deprecated since release 2.3Jse
for line in file instead.

seek (offse{, Whencé)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) addseek relative to the
file's end). There is no return value. Note that if the file is opened for appending (moder 'a+’), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+’). If the file is opened in text mode (motte), only offsets returned biell()
are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, liketdio s ftell()

truncate ([size])
Truncate the file’s size. If the optionalzeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified
size exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Nix variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to matatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redilé.asadline() , and iteration ends

11The advantage of leaving the newline on is that returning an empty string is then an unamigigedngication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

28 Chapter 2. Built-In Objects

when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributeldse() method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may alNohe, in which case the file
uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The I/O mode for the file. If the file was created using tipeen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlines option (the default) this read-only attribute
exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The valuesitcantakedre ,\n’ ,’\nn’ , None (unknown, no newlines read yet)

or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered.
For files not opened in universal newline read mode the value of this attribute Wilbbe.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control tipgint statement, but to allow the
implementation ofrint to keep track of its internal state.

2.3.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anchameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thathert statement is not, strictly
speaking, an operation on a module objaniport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet
attribute is not possible (you can write __dict __['a’] = 1 , which definesn.a to bel, but you can’t write

m. __dict __ = {}).

2.3. Built-in Types 29

Modules built into the interpreter are written like thismodule ’sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.3/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manutdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function’scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functiohwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach metadata
to functions. Regular attribute dot-notation is used to get and set such attridoteghat the current implementation

only supports function attributes on user-defined functions. Function attributes on built-in functions may be supported
in the future.

Functions have another special attribite__dict __ (a.k.a.f.func _dict) which contains the namespace used
to support function attributes._dict __ andfunc _dict can be accessed directly or set to a dictionary object. A
function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methmals_self is the object on
which the method operates, andim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n).

Class instance methods are eitheundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this saffe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSg@eError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resuli®y/pe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c =C(
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

30 Chapter 2. Built-In Objects

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhis defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (see”iyteon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteldpsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objdeadse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to an

arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in fupatifh can be used to
cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written afalse andTrue , respectively.
Internal Objects

See thePython Reference Manufdr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.3.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by tde() built-in function.

2.3. Built-in Types 31

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the readefgtions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wekxsehtéons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will raise
aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in the
Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions

32 Chapter 2. Built-In Objects

should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an

instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’'sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc8pbplteration and SystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @varflowError |
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly sys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttéeor attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tlilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefifne and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiong0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hiteoF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘pyconfig.h’ file.

exceptionlOError
Raised when an I/O operation (such gt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived froBnvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when amport statement fails to find the module definition or whefnian ... import fails to
find a name that is to be imported.

2.4. Built-in Exceptions 33

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@introl-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipait() orraw _input() is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived froRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frof&BnvironmentError and is used primarily as thes module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raisgdemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethleef .proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref .ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter,; it is not used very much any more.)

exceptionStoplteration
Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriinpan statement, in arexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

34 Chapter 2. Built-In Objects

Instances of this class have atttribufilename , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version it is also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by tsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froException and notStandardError |, since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfock()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladesaiError . New in
version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subcldsécofleError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subcldsécofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsgcofieError . New in
version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporadrtm an

value. Theerrno andstrerror values are created from the return values of@stLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError

2.4. Built-in Exceptions 35

Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedirengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

36 Chapter 2. Built-In Objects

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- I0Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

2.5. Built-in Constants

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

Notlmplemented
Special value which can be returned by the “rich comparison” special methoég (() , —_It __() , and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

38 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy

marshal
warnings

imp

pkguti

code

codeop
pprint

repr

new

site

user
__builtin - __
__main __
__future __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.
Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of timaport statement.
Utilities to support extension of packages.

Base classes for interactive Python interpreters.
Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.
Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.
The set of built-in functions.

The environment where the top-level script is run.
Future statement definitions

3.1 sys — System-specific parameters and functions

39

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.
dilhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value
If valueis notNone, this function prints it tesys.stdout , and saves it in__builtin

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpreter sy@lexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook

__excepthook __
These objects contain the original valuesdigplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drype value tracebach . Their meaning istypegets the exception type

of the exception being handled (a class object)uegets the exception parameter @ssociated valuer the

second argument t@ise , which is always a class instance if the exception type is a class oljjacg®pack

gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point where the
exception originally occurred.

If exc _clear() is called, this function will return threlone values until either another exception is raised
in the current thread or the execution stack returns to a frame where another exception is being handled.

40 Chapter 3. Python Runtime Services

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the
best solution is to use something likectype, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotry with a

... finally statement) or to caltxc _info() in a function that does not itself handle an exceptiNote:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occured in the current thread.
After calling this functiongxc _info() will return threeNone values until another exception is raised in the
current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling systems
that report information on the last or current exception. This function can also be used to try to free resources
and trigger object finalization, though no guarantee is made as to what objects will be freed, if any. New in
version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Jseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. th®c¢onfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdevelopeaix) programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed tesys.stderr and results in an exit code of 1. In particulgys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module.Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or ween exit() s called.

getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

3.1. sys — System-specific parameters and functions 41

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags 0
Return the current value of the flags that are usedilimpen() calls. The flag constants are defined in dhe
andDLFCNmodules. Availability: Wix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naiesg df the
system default encoding is used. The result value depends on the operating system:
¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8”.

¢On Unix, the encoding is the user’s preference according to the resultlahglinfo(CODESET), or None
if the nl_langinfo(CODESET) failed.

¢On Windows NT+, file names are Unicode natively, so no conversion is performed.

New in version 2.3.

getrefcount (objec)
Return the reference count of tieject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call siéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

0 (VER_PLATFORMWIN32s)Win32s on Windows 3.1.

1 (VER_.PLATFORMWIN32_WINDOWJ8Vindows 95/98/ME

2 (VER_.PLATFORMWIN32_NT)Windows NT/2000/XP

3 (VER_.PLATFORMWIN32_CBEWindows CE.
This function wraps the Win3@&etVersionEx() function; see the Microsoft Documentation for more infor-
mation about these fields.
Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

42 Chapter 3. Python Runtime Services

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use ismport pdb; pdb.pm() ' to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this |gath[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is
invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which directs
Python to search modules in the current directory first. Notice that the script directory is insefoeethe
entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored..

platform
This string contains a platform identifier, elgunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the stringustr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the direqiogfix +
‘llib/python versiori while the platform independent header files (all exceptdnfig.h’) are stored in
prefix + ’'/linclude/python versiori , whereversionis equal toversion[:3]

3.1. sys — System-specific parameters and functions 43

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®> ' and'... . If a non-string object is
assigned to either variable, gtr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defa0ld jsmeaning the check is performed every
100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (namg
Set the current default string encoding used by the Unicode implementatialmmiédoes not match any
available encodingd,.ookupError is raised. This function is only intended to be used bydive module
implementation and, where needed difecustomize . Once used by theite module, it is removed from
thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter fliopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag modules
can be either found in the! module, or in thdDLFCNmodule. IfDLFCNis not available, it can be generated
from ‘/usr/include/difcn.h’ using theh2py script. Availability: UNiX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (seettrace()), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simpliXogtern

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered ssitigice() for each thread being debugged.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stre@tims. is used for
all interpreter input except for scripts but including callgriput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptsmit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hase) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

44 Chapter 3. Python Runtime Services

__stdin __

__stdout

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set td or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the formersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numisggjor, minor, micro, releaselevelandserial. All
values excepteleaseleveare integers; the release levelatpha’ ,’beta’ ,’candidate’ , or'final’
Theversion _info value corresponding to the Python version 2.®is 0, 0, final’, 0) . New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refertathégs
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactekgedsion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

See Also:

Modulesite (section 3.28):
This describes how to use .pth files to extayd.path

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK).

3.2. gc — Garbage Collector interface 45

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writerststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(f, threshold{, thresholdz]])
Set the garbage collection thresholds (the collection frequency). Stttegholdto zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQcollection starts. Initially only generatidhis examined. If generatidd has been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibhefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tupletbfesholdQ thresholdl threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call
collect() before callingget _referrers()

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levigd _traverse methods (if any), and may not be all objects actually directly
reachabletp _traverse methods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable from
an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By

46 Chapter 3. Python Runtime Services

default, this list contains only objects with_del __() methods: Objects that have _del __() methods

and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, itisn’t possible for Python to guess a safe order in which to runttlel __() methods. If you know

a safe order, you can force the issue by examininggtitbagelist, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of beinggartregelist, so

they should be removed frogarbagetoo. For example, after breaking cycles,akl gc.garbagel[:] to

empty the list. It's generally better to avoid the issue by not creating cycles containing objects déh __()

methods, angarbagecan be examined in that case to verify that no such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wstt _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to terbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLErDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to crea&ak referencet® objects.
In the following, the termreferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it's desired that a
large object not be kept alive solely because it appears in a cache or mapping. For example, if you have a number of
large binary image objects, you may wish to associate a name with each. If you used a Python dictionary to map names
to images, or images to names, the image objects would remain alive just because they appeared as values or keys in
the dictionaries. Th&VeakKeyDictionary and WeakValueDictionary classes supplied by theeakref

module are an alternative, using weak references to construct mappings that don’t keep objects alive solely because

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thasedeith__() methods.

3.3. weakref — Weak references 47

they appear in the mapping objects. If, for example, an image object is a valu&/aakValueDictionary ,
then when the last remaining references to that image object are the weak references held by weak mappings, garbage
collection can reclaim the object, and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it's not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by ttveakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), and methods (both bound and unbound). Extension types can easily be made to support weak references;
see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{,callback])
Return a weak reference tbject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will close to be
returned. Ifcallbackis provided and nolNone, it will be called when the object is about to be finalized;
the weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjeckd __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even afteotiject
was deleted. Ihash() is called the first time only after thabjectwas deleted, the call will raisEypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oélihack). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

proxy (objec{, callback])
Return a proxy tambjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on wheth@hbjectis callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keglbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refsyject

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: BecauseWeakKeyDictionary s built on top of a Python dictionary, it must not change size
when iterating over it. This can be difficult to ensure faMaakKeyDictionary = because actions performed

by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side effect of
garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

48 Chapter 3. Python Runtime Services

Note: Caution: Because\WeakValueDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure faaakValueDictionary because actions
performed by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side
effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as

the standardReferenceError exception.
See Also:

PEP 0205, Yeak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about

similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = 1()
>>> 0 iS 02
True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresf§jois not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

3.3. weakref — Weak references 49

r is a weak reference object
0 = r()
if o is None:
referent has been garbage collected

print "Object has been allocated; can't frobnicate."
else:

print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs

of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id20bj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incl@y®©aject* field in the instance structure for
the use of the weak reference mechanism; it must be initializ&tUol by the object’s constructor. It must also set
thetp _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs to add

Py_TPFLAGS HAVE WEAKREF® the tp_flags slot. For example, the instance type is defined with the following
structure:

typedef struct {
PyObject_ HEAD

PyClassObject *in_class; /* The class object */
PyObiject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

50 Chapter 3. Python Runtime Services

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance”,

/* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0 [* tp_richcompare */

offsetof(PylnstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference INdtitol:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
list is nonNULL

static void
instance_dealloc(PylnstanceObject *inst)

{
/* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist = NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

[* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real

computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

3.4. fpectl — Floating point exception control 51

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf” is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. THgectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generdi@F®E whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySI&G#®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation @IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpigtte module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

52 Chapter 3. Python Runtime Services

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to support fipectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengifodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to agxit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounshymexitfunc

register (func{, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsegister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

3.5. atexit — Exit handlers 53

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passesytster() to be passed along to the registered function
when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name="Donny’)

3.6 types — Names for built-in types

This module defines hames for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such
thelistiterator type. It is safe to usedfom types import * ' — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will all'Byykih *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchia) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitygppdse module. Accordingly, the example
above should be written as follows:

54 Chapter 3. Python Runtime Services

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

BooleanType
The type of thebool valuesTrue andFalse ; this is an alias of the built-itbool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.dL).

FloatType
The type of floating point numbers (e.3.0).

ComplexType
The type of complex numbers (e.4.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).

UnicodeType
The type of Unicode character strings (euSpam’). This is not defined if Python was built without Unicode
support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returneaompile()

3.6. types — Names for built-in types 55

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sygs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
containdUnicodeType if it has been built in the running version of Python. For examgligistance(s,
types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the diiatit-itype.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

The module also defines a mixin defining all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the shelve
module).

56 Chapter 3. Python Runtime Services

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings (see section2s@i®)ict instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() ,__setitem __() ,__delitem __() ,andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-

tionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from the full
interface.
In addition to the four base methods, progessively more efficiency comes with defingmptains __()

__iter __() , anditeritems()
Since the mixin has no knowledge of the subclass constructor, it does not defime __() or copy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from thelsiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblel@ia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancesdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodse8.8) instances
provide the following attribute:

data
A real Python list object used to store the contents oftkerList class.

Subclassing requirements: Subclasses offserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.8. UserList — Class wrapper for list objects 57

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-instr type instead of usingserString (there is no built-in equivalent telutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

classUserString ([sequenc})
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance obJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to tpetable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content dfsleeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b
le (a, b
eq(a, b
ne(a,b)
ge(a, b
ot (a, b
__It __(a,/b
_le__(a/b
_eq__(a,b
__ne__(a/b

58 Chapter 3. Python Runtime Services

__ge__(ab

_gt__(a/b
Perform “rich comparisons” betweenandb. Specificallylt(a, b) isequivalenttea < b,le(a, b) is
equivalenttca <= b, eq(a, b) isequivalenttea == b, ne(a, b) isequivalentta = b, gt(a, b)

is equivalenttca > b andge(a, b) is equivalent tcea >= b. Note that unlike the built-itmp() , these
functions can return any value, which may or may not be interpretable as a Boolean value. Bgthtine
Reference Manudbr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean

operations:

not _(o)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation. The result is affected by tienzero __() and__len __() methods.)

truth (o)
ReturnTrue if ois true, and~alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

and _(a, b
__and__(a,b
Return the bitwise and a@f andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (&, b
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent to' 0. The namesinvert() and
__invert __() were added in Python 2.0.

Ishift (a, b)
__Ishift __(a, b
Returna shifted left byb.

mod(a, b)
__mod__(a,b)
Returna %b.

3.10. operator — Standard operators as functions. 59

mul (a, b)
__mul__(a,b
Returna* b, for aandb numbers.

neg(o)
__neg__(0)
Returno negated.

or _(a,h
_or__(ab
Return the bitwise or oh andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a,b
Returna** b, for aandb numbers. New in version 2.3.

rshift (a, b)
__rshit __(a,b
Returna shifted right byb.

sub (a, b)
__sub__(a, b
Returna - b.

truediv (a,b)
__truediv __(a, b
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor __(a,b)
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a, b
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

countOf (a, b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value ad at indexb.

60 Chapter 3. Python Runtime Services

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrencelmih a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artiis an integer.

sequencelncludes (...
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a,b, 9
__setitem __(a,b,9
Set the value o at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objdote: Be careful not to misinterpret
the results of these functions; ongCallable() has any measure of reliability with instance objects. For example:

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodzte __() method.

isMappingType (0)
Returns true if the objed supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeai supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objett&arning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals frorto 256 to their character equivalents.

3.10. operator — Standard operators as functions. 61

>>>
>>>
>>>
>>>
>>>

import operator

d={

keys = range(256)

vals = map(chr, keys)

map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the

operator module.
Operation Syntax Function
Addition a+hb add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq O0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b)
Bitwise And a&hb and_(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion T a invert(a)
Bitwise Or al b or _(a, b)
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b
Identity aisnot b is _not(a, b)
Indexed Assignment o[kl = v setitem(o, k, V)
Indexed Deletion del of K] delitem(o, K)
Indexing o[K] getitem(o, K)
Left Shift a<<b Ishift(a, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>b rshift(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqi:j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s%o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<b It(a, b)
Ordering a<=b le(a, b)
Equality a==>b eq(a, b)
Difference al= b ne(a, b)
Ordering a>=bh ge(a, b)
Ordering a>bhb gt(a, b)

Inspect — Inspect live objects

Chapter 3. Python Runtime Services

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

3.11.1 Types and members
The getmembers() function retrieves the members of an object such as a class or module. The eleven functions

whose names begin with “is” are mainly provided as convenient choices for the second argugetmeimbers()
They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 63

Note:

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method (8]
im_func function object containing implementation of method
im_self instance to which this method is bound,Mone
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

(1) Changed in version 2.2m _class

getmembers (objec{, predicatd)

used to refer to the class that defined the method.

64

Chapter 3. Python Runtime Services

Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opt&diehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path)
Return a tuple of values that describe how Python will interpret the file identifiqgehthyif it is a module, or
None if it would not be identified as a module. The return tupl¢ iame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packafiixis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’(or
rb’), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in timp module; see the documentation for that module for more information on
module types.

getmodulename (path)
Return the name of the module named by thegdéh, without including the names of enclosing packages. This
uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of irhdd__. An object passing this test has aget__
attribute but not a__set__ attribute, but beyond that the set of attributes variemame__ is usually sensible,
and__doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescrip-
tor() test, simply because the other tests promise more — you can, e.g., count on havingftime iattribute
(etc) when an object passes ismethod().

isdatadescriptor (objec)
Return true if the object is a data descriptor.

Data descriptors have both_.a get _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa_haeene _ and __doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New in
version 2.3.

3.11. inspect — Inspect live objects 65

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WigheError if
the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Eror s raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is retuangsl: varargs
varkw, defaultd . argsis a list of the argument names (it may contain nested ligtgargsandvarkware the
names of th& and** arguments oNone. defaultsis a tuple of default argument values; if this tuple mas
elements, they correspond to the lagiements listed imrgs

getargvalues (framé
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, locals) . argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valuefoﬂmat
Format a pretty argument spec from the four values returnegttargvalues() . The other four arguments

66 Chapter 3. Python Runtime Services

are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, tie lifespan
of all objects which can be accessed from the objects which form the cycle can become much longerjeven if
Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are
explicitly broken to avoid the delayed destruction of objects and increased memory consumption which ogcurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made dgtermin-
istic by removing the cycle in finally clause. This is also important if the cycle detector was disabled when
Python was compiled or usirgy .disable() . For example:

def handle_stackframe_without_leak():

frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionakontextargument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

getframeinfo (frame[, contexl])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefriame the last entry represents the outermost
call onframés stack.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fsthme The first entry in the list representisceback the last entry represents where the
exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexl])
Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller; the
last entry represents the outermost call on the stack.

trace ([contexl])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents

3.11. inspect — Inspect live objects 67

where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayabdaxs _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, fiIe]])
Print up tolimit stack trace entries fromaceback If limit is omitted orNone, all entries are printed. ffile
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up timit stack trace entries frontracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): > (2) it prints the exceptiontype and value after the stack trace; (3) ifypeis
SyntaxError andvaluehas the appropriate format, it prints the line where the syntax error occurred with a
caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way instead of using the deprecated variables.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback tajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Thrtis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by

68 Chapter 3. Python Runtime Services

sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mtaxError exceptions, it contains several lines

that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments te@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit])

A shorthand foformat _list(extract _tb(tb, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (th)
This function returns the current line number set in the traceback object. This function was necessary because
in versions of Python prior to 2.3 when th@ flag was passed to Python ttietb _lineno was not updated
correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelineno from file namedfilename This function will never throw an exception — it will returh on
errors (the terminating newline character will be included for lines that are found).

3.13. linecache — Random access to text lines 69

If a file namedfilenameis not found, the function will look for it in the module search pas.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesling()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

Thepickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
unpickling) is alternatively known as “serialization”, “marshallirfggt “flattening”, however, to avoid confusion, the
terms used here are “pickling” and “unpickling”.

This documentation describes both thiekle module and thePickle module.

3.14.1 Relationship to other Python modules

Thepickle module has an optimized cousin called tiéckle module. As its name impliesPickle is written

in C, so it can be up to 1000 times faster thackle . However it does not support subclassing of Btekler()
andUnpickler() classes, because aRickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performanaePidkle . Other than that, the interfaces of

the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively descriiektbe and

cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caltedrshal , but in generabickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn't do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serializaidkle stores such objects only once, and ensures

that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

2Don’t confuse this with thenarshal module

70 Chapter 3. Python Runtime Services

e marshal cannot be used to serialize user-defined classes and their instandds. can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support /pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arisepitkée serialization format is guaranteed to be
backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constructeli data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpiegle reads and writes file objects, it

does not handle the issue of haming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform

the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspékle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

Refer to PEP 307 for more information.

If a protocolis not specified, protocol 0 is used.pifotocolis specified as a negative valuetfGHEST_PROTOCQL
the highest protocol version available will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You should
use theprotocol parameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtteggument to
thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a binary
format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picttlerip() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpiclkda€) method. Thepickle module
provides the following constant:

3.14. pickle — Python object serialization 71

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passeprataolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(object, file[, protoco[, bin]])
Write a pickled representation ahbjectto the open file objecfile. This is equivalent tdPickler(file,
protocol bin).dump(objec) .

If the protocol parameter is ommitted, protocol 0 is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version will be used.

Changed in version 2.3: Th®otocolparameter was added. Thi parameter is deprecated and only provided
for backwards compatibility. You should use thi@tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() = method that accepts a single string argument. It can thus be a file object opened for
writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdite and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalentdapickler(file).load()

file must have two methodsread() method that takes an integer argument, arebaline() method that
requires no arguments. Both methods should return a string. filaean be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.
dumps(objec{, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is ommitted, protocol O is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQLlthe highest protocol version will be used.

Changed in version 2.3: Th@otocolparameter was added. Thi& parameter is deprecated and only provided
for backwards compatibility. You should use th@tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&fikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may
also be raised during unpickling, including (but not necessarily limited\tt)buteError , EOFError
ImportError , andindexError

Thepickle module also exports two callablg®ickler andUnpickler

3In thepickle module these callables are classes, which you could subclass to customize the behavior. HowevePjditlthe module
these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details.

72 Chapter 3. Python Runtime Services

classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocolparameter is ommitted, protocol 0 is usedpidtocolis specified as a negative value, the highest
protocol version will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwise i@l format
is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object, a
StringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(objec)
Write a pickled representation abjectto the open file object given in the constructor. Either the binary or
Ascll format will be used, depending on the value of bieflag passed to the constructor.

clear _memd)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3clear _memo() was only available on the picklers createddssickle . In the
pickle module, picklers have an instance variable calteemowhich is a Python dictionary. So to clear the
memo for apickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simpuliease _memo() .

It is possible to make multiple calls to tlteimp() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondingnpickler instance. If the same
object is pickled by multiplelump() calls, theload() will all yield references to the same objéct

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag &i¢kldre factory.

file must have two methodsyead() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for finding
what'’s called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the safiekler instance, the object is not pickled again — a reference to it is pickled andrpikler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

3.14. pickle — Python object serialization 73

Note: thenoload() method is currently only available dinpickler objects created with thePickle
module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?
The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex numbers

e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

¢ built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for details)
Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will Be raised

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class attibutés not restored in
the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects

that are being serialized. This protocol provides a standard way for you to define, customize, and control how your

objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section 3.14.6
for more details.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

74 Chapter 3. Python Runtime Services

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsnit __() method is normallynotinvoked. If it is desirable that
the__init __() method be called on unpickling, an old-style class can define a methgetinitargs _ 0,
which should return &uple containing the arguments to be passed to the class constructor (irit __()). The
__getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

New-style types can provide_a getnewargs __() method that is used for protocol 2. Implementing this method

is needed if the type establishes some internal invariants when the instance is created, or if the memory allocation is
affected by the values passed to thenew__() method for the type (as it is for tuples and strings). Instances of a
new-style typeC are created using

obj = C._new_ (C, * arg9

whereargsis the result of calling__getnewargs __() on the original object; if there is no_getnewargs __() ,
an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbistate __() , itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled stdte If

there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines bathgetstate __() and__setstate __() , the state object needn’t

be a dictionary and these methods can do what they Want.

Warning: For new-style classes, if_getstate __() returns a false value, the setstate __() method
will not be called.

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementeduce __() method. If
provided, at pickling time__reduce __() will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned, it
must be of length two or three, with the following semantics:

e A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling __ with a true value. Oth-
erwise, arlnpicklingError will be raised in the unpickling environment. Note that as usual, the callable
itself is pickled by name.

¢ Atuple of arguments for the callable objectMwone. Deprecated since release 2.8Ise the tuple of arguments

instead
e Optionally, the object’s state, which will be passed to the object'setstate __() method as described in
section 3.14.5. If the object has nasetstate __() method, then, as above, the value must be a dictionary

and it will be added to the object’'s_dict __.

6These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedirpthenodule.

3.14. pickle — Python object serialization 75

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of argu-
ments; it should return the unpickled object.

If the second item wablone, then instead of calling the callable directly, itsbasicnew __() method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.8Ise the tuple of arguments instead

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable with
thecopy _reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface asdoee __() method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fiiekle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
Ascll characters. The resolution of such names is not defined hyickke module; it will delegate this resolution

to user defined functions on the pickler and unpickler

To define external persistent id resolution, you need to sepehsistent _id attribute of the pickler object and
thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a @estsistent _id() method that

takes an object as an argument and returns eiMbae or the persistent id for that object. Whislone is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugpt@rsistent _load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly differ@ittkler andcPickle . The description given
here works the same for both implementations. Users opitide module could also use subclassing to effect the same results, overriding the
persistent _id() andpersistent _load() methods in the derived classes.

76 Chapter 3. Python Runtime Services

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpickler'persistent _load attribute can also be set to a Python list, in which

case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickfe Settingpersistent _load to a list is usually used in conjunction with timeload()

method on the Unpickler.

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

3.14. pickle — Python object serialization 77

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets unpickled
and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different depending on
whether you're usingickle orcPickle .0,

In thepickle module, you need to derive a subclass frdnpickler , overriding thdoad _global() method.

load _global() should read two lines from the pickle data stream where the first line will the name of the module
containing the class and the second line will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it finds to the unpickler’s stack. Later
on, this class will be assigned to the class __ attribute of an empty class, as a way of magically creating an
instance without calling its class’s_init __() . Your job (should you choose to accept it), would be to have

load _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner wittPickle , but not by much. To control what gets unpickled, you can set the unpickler’s

find _global attribute to a function oNone. If it is None then any attempts to unpickle instances will raise an
UnpicklingError . If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and performing any necessary imports, and it may
raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in pittkée or cPickle

78 Chapter 3. Python Runtime Services

class TextReader:
""Print and number lines in a text file.""
def __init__ (self, file):
self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def _ getstate_ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,'w’))

If you want to see thatickle works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):

3.14. pickle — Python object serialization 79

Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upiekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to theickle module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster thpickle because the former is implemented in C. Second, in

the cPickle module the callableRickler() and Unpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pickle andcPickle are identical, so it is possible to upéckle and
cPickle interchangeably with existing pickl¥s

There are additional minor differences in API betwe@ickle andpickle , however for most applications, they
are interchangable. More documentation is provided irpibkle module documentation, which includes a list of
the documented differences.

3.16 copy _reg — Reqister pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. bjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunction should be used as a “reduction” function for objects of tiyges type must not be a
“classic” class object. (Classic classes are handled differently; see the documentatiorpfokitne module
for details.)functionshould return either a string or a tuple containing two or three elements.

The optionakonstructorparameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returnedfioyctionat pickling time. TypeError will be raised if
objectis a class oconstructoris not callable.

See thepickle module for more details on the interface expecteflinttionandconstructor

3.17 shelve — Python object persistence

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

80 Chapter 3. Python Runtime Services

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The opfilaiggbararameter has the same
interpretation as thitag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocolparameter. Changed in version 2.3: Titetocolparameter was added. Thmary parameter
is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the optional
writebackparameter is set tdrue, all entries accessed are cached in memory, and written back at close time;
this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries are accessed,
it can consume vast amounts of memory for the cache, and it can make the close operation very slow since all
accessed entries are written back (there is no way to determine which accessed entries are mutable, nor which
ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts
to those requiring persistent storage.

3.17.1 Restrictions

e The choice of which database package will be used (sudbrasgdbm or bsddb) depends on which interface
is available. Therefore it is not safe to open the database directly disingThe database is also (unfortunately)
subject to the limitations afbm, if it is used — this means that (the pickled representation of) the objects stored
in the database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk. The__del __ method of theShelf class calls thelose method, so the programmer generally need
not do this explicitly.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

classShelf (dict[, protocoI:None[, Writeback:FaIsé, binary:None]]])
A subclass ofserDict.DictMixin which stores pickled values in tlikct object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified with
the protocolparameter. See th@ckle documentation for a discussion of the pickle protocols. Changed in
version 2.3: Therotocolparameter was added. Thimary parameter is deprecated and provided for backwards
compatibility only.

If the writebackparameter i§rue , the object will hold a cache of all entries accessed and write them back to
thedict at sync and close times. This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI:None{, writeback:Falsé, binary:None]]])
A subclass oShelf which exposefirst , next ,previous ,last andset _location which are avail-
able in thebsddb module but not in other database modules. d@iceobject passed to the constructor must sup-
port those methods. This is generally accomplished by calling obsdifb.hashopen , bsddb.btopen

3.17. shelve — Python object persistence 81

or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the same interpretation as
for theShelf class.

classDbfilenameShelf (filename{, flag="c’ [protocoI:None[, writeback:Falsé, binary:None]]]])
A subclass oShelf which accepts filenameinstead of a dict-like object. The underlying file will be opened
usinganydbm.open . By default, the file will be created and opened for both read and write. The opfiagal
parameter has the same interpretation as fooffen function. The optionaprotocol writeback andbinary
parameters have the same interpretation as fostedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d['xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Module dbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbm interface.

Modulegdbm (section 8.7):

82 Chapter 3. Python Runtime Services

GNU database interface, based ondhbeninterface.

Modulepickle (section 3.14):
Object serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):
e A shallow copyconstructs a new compound object and then (to the extent possible) mederéncesnto it to
the objects found in the original.
e A deep copyonstructs a new compound object and then, recursively, insgptssinto it of the objects found
in the original.
Two problems often exist with deep copy operations that don't exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.
e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. Thepy module does not use tl@py _reg registration module.

In order for a class to define its own copy implementation, it can define special methadpy () and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the __deepcopy __() implementation needs to make a deep copy of a component, it should cadlepeopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

3.18. copy — Shallow and deep copy operations 83

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules pf/¢’ files. Therefore, the Python maintainers reserve the right

to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and de-
serializing Python objects, use thigkle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constructegl data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppddee; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C'dong int type has only 32 bits, a Python long integer object is returned instead. While of a different type,

the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, filg
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modevp’ or
‘Wb’).
If the value has (or contains an object that has) an unsupported tyjady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read balciatg)

load (file)
Read one value from the open file and return it. If no valid value is read, E&$¢Error , ValueError or
TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

84 Chapter 3. Python Runtime Services

loads (string)
Convert the string to a value. If no valid value is found, rei8@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingween() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manuair details).

Warning messages are normally writtersys.stderr , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

The printing of warning messages is done by calshgwwarning() , which may be overidden; the default imple-
mentation of this function formats the message by callorghatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclgssebtion
UserWarning The default category fovarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\ti@ning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

3.20. warnings — Warning control 85

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the foracfion messagecategory module lineno), where:

actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

messagés a string containing a regular expression that the warning message must match (the match is compiled
to always be case-insensitive)

categoryis a class (a subclassWfarning) of which the warning category must be a subclass in order to match

moduleis a string containing a regular expression that the module name must match (the match is compiled to
be case-sensitive)

linenois an integer that the line number where the warning occurred must mateio enatch all line numbers

Since theWarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alW options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagystetderr).

3.20.3 Available Functions

warn (messag[e, categor)[, stackleve]])

Issue a warning, or maybe ignore it or raise an exception.categoryargument, if given, must be a warning
category class (see above); it defaultdJserWarning . Alternativelymessagean be aVarning instance,

in which casecategorywill be ignored andnessage. __class __ will be used. In this case the message text
will be str(message) . This function raises an exception if the particular warning issued is changed into an
error by the warnings filter see above. T$tacklevelargument can be used by wrapper functions written in
Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer tteprecation() 's caller, rather than to the source a@éprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit ~ (message, category, filename, Iinénmodule{, registry]])

This is a low-level interface to the functionality affarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pjth
stripped; if no registry is passed, the warning is never suppressedsagenust be a string andategorya
subclass oWarning or messagenay be aVarning instance, in which casgategorywill be ignored.

86

Chapter 3. Python Runtime Services

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation cdsmatwarning(message category file-
name lineno) and writes the resulting string fde, which defaults tesys.stderr . You may replace this
function with an alternative implementation by assigningvarnings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (actior{, messag[e categor)[, module[, Iinenc{, appencl]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaaitpéndis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calikeovarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbg statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offrx mode
typd , wheresuffixis a string to be appended to the module name to form the filename to searofofie,
is the mode string to pass to the built@pen() function to open the file (this can B for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCEPY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduléPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/(RESOURQCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a tripfide, pathname descriptio) wherefile is an open file

object positioned at the beginningathnameds the pathname of the file found, adéscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnefile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (hames containing dots). In ordeRtMfinkat
is, submoduléM of packageP, usefind _module() andload _module() to find and load packadge and
then usdind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding

3.21. imp — Access the import internals 87

compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileeargument is an open file, afitenameis the corresponding

file name; these can done and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedyey _suffixes() , describing what kind of module

must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspatiError)
is raised.

Important: the caller is responsible for closing tfilee argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namég
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, elsealse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to ensure
thread-safety when importing modules. On platforms without threads, this function does nothing. New in
version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in version
2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thrngjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

88 Chapter 3. Python Runtime Services

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise anmportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (namég
Returnl if there is a built-in module calledamewhich can be initialized again. Retush if there is a built-in
module callechamewhich cannot be initialized again (segt _builtin()). ReturnQ if there is no built-in
module callechame

is _frozen (nameg
ReturnTrue if there is a frozen module (seeit _frozen()) calledname or False if there is no such
module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tilmargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializethain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEeneargument is used to construct
the name of the initialization function: an external C function caliedt * nam€) ’ in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thie argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or *.pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincnd _module() has been extended and
load _module() has beenaddedin1.4.)

3.21. imp — Access the import internals 89

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the moduléknee . The knee module can be found irDemo/imputil”’ in the Python source distribution.

3.22 pkgutii — Package extension utility

New in version 2.3.

This module provides a single function:

extend _path (path, namg

Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s__init__.py’:

from pkgutil import extend_path
__path__ = extend_path(_path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the pack-
age. This is useful if one wants to distribute different parts of a single logical package as multiple directories.

It also looks for *.pkg’ files beginning wheré matches theameargument. This feature is similar togth’ files
(see thesite module for more information), except that it doesn't special-case lines startingmgibrt

A ‘*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found*ipkg'file are
added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Iltems are only appended to the copy at the end.

Itis assumed thatys.path isasequence. ltemssgys.path that are not (Unicode or 8-bit) strings referring
to existing directories are ignored. Unicode itemssga.path that cause errors when used as filenames may
cause this function to raise an exception (in line vaghpath.isdir() behavior).

90

Chapter 3. Python Runtime Services

3.23 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optmals argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key

" __name__' setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familiays.psl and sys.ps2 , and
input buffering.

interact ([bannel[, readfunc{, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instalterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witAnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, filenamé, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &lmcisin
always makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbols the optional grammar start symbol, which should be eiiegle’ (the default)
or’eval

Returns a code object (the samecampile(source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise®verflowError or ValueError if the command contains an invalid literal.

3.23.1 Interactive Interpreter Objects

runsource (source[, filenam{, symboﬂ])
Compile and run some source in the interpreter. Arguments are the samecasfuite _command() ; the
default forfilenameis '<input>" , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling thghowsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requiredpmpile _command() returned None.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnsFalse .

The return value can be used to decide whether teysg@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahewtraceback() is called to display a traceback. All
exceptions are caught excepgstemExit , which is allowed to propagate.

3.23. code — Interpreter base classes 91

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Ifflenamels given, it is stuffed into the exception instead of the default filename provided by Python's
parser, because it always usestring>’ when reading from a string. The output is written by wrie()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by theite() method.

write (data)
Write a string to the standard error streasyq.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.23.2 Interactive Console Objects

The InteractiveConsole class is a subclass titeractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
—since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreterisource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the
buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended.
The return value igrue if more input is requiredFalse if the line was dealt with in some way (this is the
same asunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in functen_input() ;
a subclass may replace this with a different implementation.

3.24 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use ttede module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print ‘or
‘... next

92 Chapter 3. Python Runtime Services

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, filenam{, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objsduifceis valid
Python code. In that case, the filename attribute of the code object willdmame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raisedbyntaxError s raised if there is invalid Python
syntax, andOverflowError orValueError ifthere is an invalid literal.

The symbolargument determines whethsurceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

classCompile ()
Instances of this class havecall __() methods indentical in signature to the built-in functemmpile()
but with the difference that if the instance compiles program text containingfature __ statement, the
instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have call __() methods identical in signature tompile _command() ; the
difference is that if the instance compiles program text containing fature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.24. codeop — Compile Python code 93

3.25 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tegeamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscenat depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘ ". By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stufff:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
["

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (..))N))

The PrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, strearrﬂ)
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteachaht statement for in-
specting values. The default parameters for formatting are used.

94 Chapter 3. Python Runtime Services

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationafifjectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation olbject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representedexgifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", '/usr/local/lib/pythonl1.5’, ’/usr/loca
Illib/pythonl.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.25.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation object This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don’t need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@€rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.25. pprint — Data pretty printer 95

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of gaferepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versioplgEctas a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains tli) of objects that are part of the current presentation context
(direct and indirect containers fabjectthat are affecting the presentation) as the keys; if an object needs to
be presented which is already representedointext the third return value should be true. Recursive calls to
theformat() method should add additionaly entries for containers to this dictionary. The fourth argument,
maxlevels gives the requested limit to recursion; this will Bdf there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argutegatgives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

3.26 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelpsif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedrepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.26.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defa@ilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulixdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The def@dt is

maxother

96 Chapter 3. Python Runtime Services

This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner agxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used Bpr() . This uses the type ahbjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr _typq obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In the
method nametype is replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.26.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>', '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.27 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instanceafsswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable.

function (code, gIobaIE, name[, argdefs]])

3.27. new — Creation of runtime internal objects 97

Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedaeoo _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Ino-

tab)
This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nana@ne namemust be a string.

classobj (name, baseclasses, dict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.28 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ’ somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsitsipesfix and
sys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first lib/python2.3/site-packages’ and then lib/site-python’ (on UNIx). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addssifdgath and also inspects the newly
added path for configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped. Lines starting witmport are executed.

For example, suppossys.prefix andsys.exec _prefix are set to/usr/local’. The Python 2.3.4 library is
then installed in/usr/local/lib/python2.3’ (where only the first three characterssyfs.version are used to form the
installation path name). Suppose this has a subdirectasylocal/lib/python2.3/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedstgs.path , in this order:

98 Chapter 3. Python Runtime Services

lusr/local/lib/python2.3/site-packages/bar
lusr/localllib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rateedstomize , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-hix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.29 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using

execfile()) in its own (the moduleauser ’s) global namespace. Errors during this phase are not caught; that’s up
to the program that imports theser module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.28):
Site-wide customization mechanism.

3.29. user — User-specific configuration hook 99

3.30 __builtin __ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.duiltin ~ __.open is the full name
for the built-in functionopen() . See section 2.1, “Built-in Functions.”

3.31 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "_main__"
main()
3.32 __future __ — Future statement definitions
__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they're import-
ing.

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import of
__future __ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statement in__future__.py’ is of the form:

FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag)"

where, normally, OptionalRelease is less then MandatoryRelease, and both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of MandatoryReleases that have not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

100 Chapter 3. Python Runtime Services

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no
longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also Hene, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the builtin furmtigile() to
enable the feature in dynamically compiled code. This flag is stored icottmpiler _flag attribute on_Future
instances.

No feature description will ever be deleted fromfuture __.

3.32. __future __ — Future statement definitions 101

102

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii _letters
The concatenation of thascii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase lettefabcdefghijklmnopqgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii _uppercase
The uppercase lettetABCDEFGHIJKLMNOPQRSTUVWXYZhis value is not locale-dependent and will not
change.
digits
The string’0123456789’
hexdigits
The string0123456789abcdefABCDEF

letters
The concatenation of the strinisvercase anduppercase described below. The specific value is locale-

103

dependent, and will be updated wHenale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string 'abcdefghijklmnopqgrstuvwxyz’ . Do not change its definition — the effect on the routines
upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of Ascli characters which are considered punctuation characters iCtlozale.

printable
String of characters which are considered printable. This is a combinatiodigdt , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string '"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String
Methods” (section 2.3.6) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (9, base])
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘0X’ means 16,0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (s[, basé)
Deprecated since release 2.Qse thedong() built-in function.

Convert strings to a long integer in the givebhase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asfoi() . Atrailing ‘I "or ‘L’

is not allowed, except if the base is 0. Note that when invoked withasior with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize ('word)
Return a copy ofvord with only its first character capitalized.

104 Chapter 4. String Services

capwords (9)
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index iswhere the substringubis found such thatubis wholly contained irg] start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suki, starl[, end]])
Like find() but find the highest index.

index (s, suk{, starl[, end]])
Like find() but raiseValueError when the substring is not found.

rindex (s, suk[, starl{, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, sut{, starl{, end]])
Return the number of (non-overlapping) occurrences of substriban string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (9)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irffrominto the character at the same positiondnfrom andto must have the same length.

Warning: Don't use strings derived frohowercase anduppercase as arguments;in some locales, these
don't have the same length. For case conversions, alwayswse() andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumembaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahencstlit-1

elements).

splitfields (s[, sep[, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (Words[, sep])
This function behaves identically foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ifondields() method on string
objects; use thin() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removethdfsis omitted oNone, whitespace characters

4.1. string — Common string operations 105

are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.8h@hgparameter was added.
Thecharsparameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removedh#rsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.ZlEigparameter was added. The
charsparameter cannot be passed in 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and Nuine, charsmust be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.&harke
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

swapcase ()
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usibtp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9
Return a copy o8, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leaswidth characters wide, created by padding the stamgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxreplacé)
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxreplaceas given, the firstnaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usingitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Thhedule is always available.

Regular expressions use the backslash charaétgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with*. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

106 Chapter 4. String Services

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second edition of the book no longer
covers Python at all, but the first edition covered writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidB are both regular expressions,
thenAB is also a regular expression. In general, if a stpngatchesA and another string matchesB, the string

pgwill match AB. This holds unlesé or B contain low precedence operations; boundary conditions betd el

B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactexs,’ Bkeor

‘0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast’ . (In the rest of this section, we’'ll write RE’s iithis special style I

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, lik¢ *or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline. TAFALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, adLAILINE
mode also matches before a newlifieo ; matches both 'foo’ and 'foobar’, while the regular expression
foo$; matches only 'foo’. More interestingly, searching ffwo.$ in 'fool\nfoo2\n’ matches 'foo2’
normally, but 'fool’ inMULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ; will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+' Causes the resulting RE to match 1 or more repetitions of the precedingtiREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedindaBE.will match either 'a’ or
‘ab’.

*?,+?,?? The *’, ‘+', and ?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched againsgH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchnon-
greedyor minimal fashion; affew characters as possible will be matched. Usiig | in the previous
expression will match ongH1>" .

4.2. re — Regular expression operations 107

{m}

{m, n}

{m, n}?

(.)

..)

(?iLmsux)

Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For examplé&{6} ;will match exactly six &’ characters, but not five.

Causes the resulting RE to match freamto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For exampdé3,5} ; will match from 3 to 5 &’ characters. Omitting

m specifies a lower bound of zero, and omittingpecifies an infinite upper bound. As an example,
a{4,}b ; will match aaaab or a thousandd’ characters followed by &, but notaaab. The comma
may not be omitted or the modifier would be confused with the previously described form.

Causes the resulting RE to match froamto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefsJike'; and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For examplgakm$] ; will match any of the charactera”, ‘k’, ‘mi, or ‘$’; Ta-z] ; will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subth as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘-’ inside a

set, precede it with a backslash, or place it as the first character. The gddktermwill match’] , for
example.

You can match the characters not within a rangedayplementinghe set. This is indicated by including
a '’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character exced”, and[™"] ; will match any character except”.

A|B, where A and B can be arbitrary RES, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by fhén' this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separateld laye tried from left to right. When

one pattern completely matches, that branch is accepted. This means thatraatehesB will not be

tested further, even if it would produce a longer overall match. In other words), tlopérator is never
greedy. To match a litera) *, use\| ;, or enclose it inside a character class, a§{jin ..

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefatsr*) ’, use\(; or

\) , or enclose them inside a character cld¢k:[)] .

This is an extension notation (2'*following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group(?P< name-...) is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sat’; ‘L', ‘m, ‘s’, ‘u’, ‘x’.) The group matches the empty string;
the letters set the corresponding flagsIl(,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that the(?x) | flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

108

Chapter 4. String Services

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the greamotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namename Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if
the group were not named. So the group named 'id’ in the example above can also be referenced as the
numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, suchagoup(’id’) or m.end(’id") , and also by
name in pattern text (for exampl€?P=id)) and replacement text (such\assid>).

(?P=namg Matches whatever text was matched by the earlier group naaed
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=..) Matchesifl... ymatches next, but doesn't consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) ;will match’lsaac ' only if it's followed by 'AsimoVv’

(?L..) Matches if'... ; doesn't match next. This is a negative lookahead assertion. For exafsphs
(?!Asimov) jwill match’lsaac ' only if it's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match.for that ends at the current
position. This is called positive lookbehind assertiof{f?<=abc)def ;will find a match in abcdef ’,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaningahat or alb | are allowed, bufa*,
andfa{3,4} ,are not. Note that patterns which start with positive lookbehind assertions will never match
at the beginning of the string being searched; you will most likely want to ussetiieh() function
rather than thenatch() function:

>>> import re

>>> m = re.search('(?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
‘egg’

(?<L..) Matches if the current position in the string is not preceded by a match.for. This is called axegative
lookbehind assertianSimilar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length. Patterns which start with negative lookbehind assertions may match at the
beginning of the string being searched.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exariplenatches the characte$’:

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example/(.+) \1 ;matchesthe the’ or’55 55 | butnotthe end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit

4.2. re — Regular expression operations 109

of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [' and ‘]’ of a character class, all numeric escapes are
treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-
alphanumeric, non-underscore character. Note\thais defined as the boundary betwegn and\W,
so the precise set of characters deemed to be alphanumeric depends on the valueNt6E@BEand
LOCALEflags. Inside a character randd, ; represents the backspace character, for compatibility with
Python’s string literals.

\B Matches the empty string, but only when itnist at the beginning or end of a word. This is just the
opposite of\b , so is also subject to the settingsldCALEandUNICODE

\d Matches any decimal digit; this is equivalent to the e8] ..

\D Matches any non-digit character; this is equivalent to thg'€e8] .

\s Matches any whitespace character; this is equivalent to thHe S&t\r\fiv] 5

\S Matches any non-whitespace character; this is equivalent to ti{e $8nh\r\fiv] .

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character and the
underscore; this is equivalent to the $atzA-Z0-9 _] ;. With LOCALE it will match the sef[0-9 _],
plus whatever characters are defined as alphanumeric for the current local®llQODDEIs set, this
will match the characterf0-9 _] | plus whatever is classified as alphanumeric in the Unicode character
properties database.

\W When theLOCALEandUNICODHETlags are not specified, matches any non-alphanumeric character; this
is equivalent to the s€fa-zA-Z0-9 _] . With LOCALE it will match any character not in the set
T0-9 _],, and not defined as alphanumeric for the current local&JNfCODEis set, this will match
anything other thafj0-9 _] ;and characters marked as alphanumeric in the Unicode character properties
database.

\Z Matches only at the end of the string.
Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sexe#ieh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning WwitH ° matches only at the start
of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only

110 Chapter 4. String Services

if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmstional
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile("a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

|

IGNORECASE
Perform case-insensitive matching; expressions ikeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w, \W,, \b , and\B, dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defauthatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the : ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.

U

UNICODE

Make \w, "W, \b ;, and\B , dependent on the Unicode character properties database. New in version 2.0.

4.2. re — Regular expression operations 111

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egBmaitieea *

in a character class or preceded by an unescaped backslash, all characters from the leftm&sttsocigh

the end of the line are ignored.

search (pattern, string{, flags])

Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondindgMatchObject instance. ReturiNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, strini, flags])

split

If zero or more characters at the beginningwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

(pattern, strini, maxsplit = 0])
Split string by the occurrences giattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.")
[Words', 'words’, 'words’, "]

>>> re.splitC(\W+)’, 'Words, words, words.")
[Words', ’, ', 'words’, ', ’, 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall ~ (pattern, string

Return a list of all non-overlapping matchespaitternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2.

finditer (pattern, string

Return an iterator over all non-overlapping matches for thepRiernin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2.

sub (pattern, repl, strin&, count])

Return the string obtained by replacing the leftmost non-overlapping occurrenpest&in string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That iss‘converted to a single newline character,
‘\r " is converted to a linefeed, and so forth. Unknown escapes sudh asre left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\)’,
r'static PyObject®\npy_\1(void)\n{’,

'def myfunc():’)

‘static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrenceatfern The function takes a single
match object argument, and returns the replacement string. For example:

112

Chapter 4. String Services

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return '~
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

[

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; for examgpld(“(?i)b+", "x", "bbbb BBBB") '
returns’x x’

The optional argumerttountis the maximum number of pattern occurrences to be replamaditmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matchsgio('x*’, -, 'abc’) ' returns’-a-b-c-’

In addition to character escapes and backreferences as described &pavame> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ' is therefore equivalent to\2 ', but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 ' would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0”. The backreferencag<0> ’ substitutes in the entire substring matched by the RE.

subn (pattern, repl, strini, count])
Perform the same operationsigh() , but return a tuplé new_string, number of_subs made .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos[, endpo§])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding
MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheregtring, usesearch() instead.

The optional second paramefmsgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametendpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fromsto endpos- 1 will be searched for a match. éindposs less
thanpos no match will be found, otherwise, ik is a compiled regular expression objestmatch(string,
0, 50) is equivalenttax.match(string[:50], 0)

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendposparameters have the same meaning as fomaeh() method.

4.2. re — Regular expression operations 113

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (' string)
Identical to thefindall() function, using the compiled pattern.

finditer (string)
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildtiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(Bl< id>) ; to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (templat¢
Return the string obtained by doing backslash substitution on the templatetsiriptate as done by theub()
method. Escapes such &s * are converted to the appropriate characters, and numeric backreferédces (*
‘\2 ') and named backreference$g&l> ’, ‘\g<name>) are replaced by the contents of the corresponding

group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without argugmnasung,
defaults to zero (the whole match is returned). HBraupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anlIndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result iSone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tffgP< name»...) | syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&rror
exception is raised.

A moderately complicated example:

m = re.match(r'(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchn.group(1l) is'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

114 Chapter 4. String Services

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defaultsrte.

start ([group])

end (| group])
Return the indices of the start and end of the substring matchegtoloy, group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a groum that did contribute to the match, the substring matched by ggqeguivalent tam.group(@))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, aftar=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group), m.end(group)) . Note that ifgroupdid not
contribute to the match, this {s1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() method of theRegexObject . This is the
index into the string at which the RE engine started looking for a match.

endpos
The value ofendposvhich was passed to ttleearch() ormatch() method of theRegexObject . This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupName if no group was matched at all. For example, the
expressionga)b ;, ((a)(b)) 5, and((ab)) will havelastindex == if applyied to the strindab’ ,
while the expressioffa)(b) ;will have lastindex == , if applyied to the same string.

lastgroup
The name of the last matched capturing groupiNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string

The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalergédanf() . Regular expressions are generally more powerful, though
also more verbose, thastanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf() format tokens and regular expressions.

4.2. re — Regular expression operations 115

scanf() Token | Regular Expression
%cC [.J

%5c {.{5}]

%d T-+]2\d+

%e %E %f, %g
%i

[-+120d+(\\d*)?\d*\\d+) ([eE][-+]?\d+)?
[-+]2(0[xX]NdA-Fa-f]+|0[0-7]*\d+)

%0 o[0-71*

%S \S+ 1

%u {\d"'J

%X %X O[xX][\dA-Fa-f]+ |

To extract the filename and numbers from a string like

lusr/shin/sendmail - 0 errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a RuntimeEr-
ror exception with the messageximum recursion limit exceeded. For example,

>>> import re
>>> 5 = 'Begin ' + 1000¥a very long string
>>> re.match('Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.3/sre.py”, line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

) 1

+ ‘end’

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th®, pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recasBagin [a-zA-Z0-9 _]*?end . As a further benefit, such
regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strinfnittises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

116 Chapter 4. String Services

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed fogck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
g int integer
1 unsigned int long
1 long integer
‘L unsigned long long
‘q long long long Q)
‘Q unsigned long long long (1)
f float float
d’ double float
‘s’ charf] string
‘P’ char[] string
‘P void * integer

Notes:

(1) The ‘q’ and ‘Q conversion codes are available in native mode only if the platform C compiler supptotgC
long , or, on Windows,__int64 . They are always available in standard modes. New in version 2.2.

A format character may be preceded by an integral repeat count. For example, the formadistrinmeans exactly
the same athhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5§’ format character, the count is interpreted as the size of the string, not a repeat count like for the other format
characters; for exampl&,0s’ means a single 10-byte string, whiltDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&8e, means a single, empty string (whilgc’ means

0 characters).

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

4.3. struct — Interpret strings as packed binary data 117

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thatrdfpack() , the ‘p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthe1’, ‘L', ‘q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typdUAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘= native standard
< little-endian standard
> big-endian standard
i network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesjnt andlong are 4 bytestong long (__int6é4 on Windows)is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betwee@and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or wighlilyte' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sdXHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for

118 Chapter 4. String Services

that type with a repeat count of zero. For example, the forfihal’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.13):
Packed binary storage of homogeneous data.

Modulexdrlib (section??):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980's by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of eDiffer delta begins with a two-letter code:

Code | Meaning
line unique to sequence 1

+ 7 line unique to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

context _diff (a, b[fromfile[, tofile [fromfiledat(ﬁ, tofiledate[, n [Iineterm]]]]]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsathigh defaults to three.

By default, the diff control lines (those witt¥* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td" so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings féromfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returnedtiye.ctime() . If not specified, the strings default to blanks.

4.4. difflib — Helpers for computing deltas 119

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

get _close _matches (word, possibilitieg, n[, cutoff]])
Return a list of the best “good enough” matchegord is a sequence for which close matches are desired
(typically a string), andpossibilitiesis a list of sequences against which to mavebrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
['apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

ndiff (a, b[Iinejunk[, charjunk]])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default isNone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound character
(‘#"). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which lines are
so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level functid8 _CHARACTERIUNK() , which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ".join(diff),
- one

?

+ ore
"
two
three

tree
emu

+ + 0

restore (sequence, whigh
Return one of the two sequences that generated a delta.

Given asequenc@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

120 Chapter 4. String Services

Example:

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ".join(restore(diff, 1)),

one

two

three

>>> print ”.join(restore(diff, 2)),

ore

tree

emu

unified _diff (a, b, fromfild], tofile [, fromfiledat¢, tofiledatd, n [, lineterm]]]1]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with- , +++, or @@are created with a trailing newline. This

is helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument té” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings finomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returned tioye.ctime() . If not specified, the strings default to blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.
IS _LINE _JUNK(line)

Return true for ignorable lines. The litiee is ignorable ifline is blank or contains a singlét®, otherwise it is
not ignorable. Used as a default for paramétezjunkin ndiff() before Python 2.3.

IS _CHARACTERIUNK ch)
Return true for ignorable characters. The charachds ignorable ifch is a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistigd iDobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumernisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. PaNsing for b is equivalent to
passingambda x: 0 ;in other words, no elements are ignored. For example, pass:

4.4. difflib — Helpers for computing deltas 121

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don't want to synch up on blanks or hard tabs.
The optional argumen@ andb are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequencesetiseseg?() to set the commonly used sequence once and call
set _seql() repeatedly, once for each of the other sequences.

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchthaf]i: i+k] is equal to
b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i’, j, k') meeting
those conditions, the additional conditidks>= k', i <= ', and ifi == i’,] <= | are also met. In other

words, of all maximal matching blocks, return one that starts earliestamd of all those maximal matching
blocks that start earliest & return the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That ptesbots from matching
the’ abcd’ atthe tail end of the second sequence directly. Instead onlglied’ can match, and matches
the leftmostabcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of the formy n), and means that
ali:i+n] == Db[j: j+n] . The triples are monotonically increasingiiand;.

The last triple is a dummy, and has the vaflen(a), len(b), 0) . Itisthe only triple withn ==

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[0, 0, 2), (3, 2, 2), (5, 4, 0)]

122 Chapter 4. String Services

get _opcodes ()
Return list of 5-tuples describing how to tuarinto b. Each tuple is of the fornitag, i1, i2, j1, j2). The
first tuple hadl == j1 == 0, and remaining tuples hav& equal to tha2 from the preceeding tuple, and,
likewise,j1 equal to the previougR.

Thetagvalues are strings, with these meanings:

Value | Meaning
'replace’ al i1: i2] should be replaced by j1: j2] .
‘delete’ al il:i2] should be deleted. Note thdt == j2 in this case.
'insert’ b[j1: j2] should be inserted &f i1: i1] . Note thail == i2 in this case.
‘'equal’ alil:i2] == Db[j1:j2] (the sub-sequences are equal).
For example:

>>> a = "gabxcd"

>>> b = "abycdf"

>>> s = SequenceMatcher(None, a, b)

>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, afi1:i2], j1, j2, b[j1:j2]))
delete a[0:1] (q) b[0:0] ()

equal a[l:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])
Return a generator of groups with uprtdines of context.

Starting with the groups returned lyet _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same formagets_opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T.
Note that this isl.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to compute et _matching _blocks() or get _opcodes() hasn't already been
called, in which case you may want to tquick _ratio() or real _quick _ratio() first to get an
upper bound.

quick _ratio ()
Return an upper bound aatio() relatively quickly.

This isn't defined beyond that it is an upper boundatio() , and is faster to compute.

real _quick _ratio ()
Return an upper bound aatio() very quickly.

This isn't defined beyond that it is an upper boundatio() , and is faster to compute than eithatio()
orquick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougfuick _ratio() andreal _quick _ratio() are always at least as largeratio()

4.4. difflib — Helpers for computing deltas 123

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> g.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuaitip@ value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():
print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements
a[8] and b[17] match for 6 elements
a[14] and b[23] match for 15 elements
a[29] and b[38] match for O elements

Note that the last tuple returned bgt _matching _blocks() s always a dummylen(a), len(b), 0) ,
and this is the only case in which the last tuple element (hnumber of elements matdbed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functiomet _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

124 Chapter 4. String Services

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim to mé@imal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer class has this constructor:

classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained
from thereadlines() method of file-like objects. The delta generated also consists of newline-terminated
strings, ready to be printed as-is via thetelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = ' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. ".splitlines(1)

>>> |en(textl)

4

>>> text1[0][-1]

\n'

>>> text2 = " 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

. ".splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating@iffer ~ object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:

4.4. difflib — Helpers for computing deltas 125

>>> result = list(d.compare(textl, text2))

result s a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,
! 3. Simple is better than complex.\n’,
3. Simple is better than complex.\n’,
++ \n’,
- 4. Complex is better than complicated.\n’,
? - - " \n,
'+ 4. Complicated is better than complex.\n’,

? ++++ S\
'+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

3. Simple is better than complex.
++

4. Complex is better than complicated.

W o+ !

4. Complicated is better than complex.

++++)
5. Flat is better than nested.

+ 0+ 0

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vi#g#teng interpolation operator.

Thefpformat module defines the following functions and an exception:
fix (x,dig9

Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.dijs <= 0, the
decimal point is suppressed.

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifs <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.

126 Chapter 4. String Services

Return value is a string.

exceptionNotANumber
Exception raised when a string passetix() orsci() asthexparameter does not look like a number. This
is a subclass dfalueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnory
fileg). See the description of file objects for operations (section 2.3.9).

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, tH&tringlO will start empty.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care. If both
are used, 8-hit strings that cannot be interpreted asAskiti (that use the 8th bit) will causeldnicodeError
to be raised whegetvalue() is called.

The following methods o6tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeSkiinglO object'sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer.

4.7 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of thetringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcBtinglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiSainglO module in that case.

Unlike the memory files implemented by tB&inglO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as piaiall strings.

Another difference from th&tringlO module is that callingstringlO() with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

4.6. StringlO — Read and write strings as files 127

OutputType
The type object of the objects returned by calltginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functiomgap() andfill() , as well asTextWrapper
the class that does all the work, and a utility functaedent() . If you're just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an inSiart& afpper

for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraph fext (a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesiVrapper , documented belowvidth

defaults to70.
fill (texq, width[, ...]])
Wraps the single paragraph text and returns a single string containing the wrapped paragté[gh. is

shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Both wrap() andfill() work by creating arextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

An additional utility functiondedent() , is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (tex®
Remove any whitespace that can be uniformly removed from the left of every ltegtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s ="
hello
world

)

print repr(s) # prints ’ hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (...

TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

128 Chapter 4. String Services

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the saniextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer tharwidth , TextWrapper guarantees that no output line will be longer tieidth characters.

expand _tabs
(default: True) If true, then all tab characters textwill be expanded to spaces using #ngand _tabs()
method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedthgg.whitespace) remaining after tab
expansion will be replaced by a single spalete: If expand _tabs is false andeplace _whitespace
is true, each tab character will be replaced by a single space, whichtise same as tab expansion.

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of the
first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix _sentence _endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of ! ’, “1 ’, or * ?’, possibly followed by one of*’ or *’ ’, followed by a space. One problem
with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm reliestoimg.lowercase for the definition of “lowercase letter,”
and a convention of using two spaces after a period to separate sentences on the same line, it is specific to
English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are longer
thanwidth . If it is false, long words will not be broken, and some lines may be longerwhdih . (Long
words will be put on a line by themselves, in order to minimize the amount by whiitth is exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (texd
Wraps the single paragraph fext (a string) so every line is at mostidth characters long. All wrapping

4.8. textwrap — Text wrapping and filling 129

options are taken from instance attributes ofTlextWrapper instance. Returns a list of output lines, without
final newlines.

fill (tex)
Wraps the single paragraphtiext, and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search._function
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functi¢esmicoder decoder stream.reader, stream writer)
taking the following arguments:

encoder and decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

stream_readerandstream.writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Stasaps/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors a'srict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, sucP)asignore’ (ignore malformed data
and continue without further noticexmicharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) antolackslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name defineggiater _error()

In case a search function cannot find a given encoding, it should ndtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, @kupError s raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHmbkupé) for
the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

130 Chapter 4. String Services

Raises d.ookupError in case the encoding cannot be found.

register _error (. name, error handler
Register the error handling functi@mror_handlerunder the nameame error_handlerwill be called during
encoding and decoding in case of an error, whameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains informa-

tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, excépticodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup _error (namg
Return the error handler previously register under the naanee

Raises d ookupError in case the handler cannot be found.

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (. exceptiol
Implements theeplace error handling.

ignore _errors (exceptiof
Implements thégnore error handling.

xmicharrefreplace _errors _errors (exception
Implements thexmlicharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements théackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodin&, errors[, buffering]]])
Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultstact’ which causes ¥alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builbpen() function. It defaults to line buffered.
EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gijait encoding and then written to
the original file as strings using tlmutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tiput.

errors may be given to define the error handling. It defaultsstdct’ , Which cause¥alueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:
BOM

4.9. codecs — Codec registry and base classes 131

BOMBE

BOMLE

BOMUTF8

BOMUTF16

BOMUTF16_BE

BOMUTF16_LE

BOMUTF32

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte order,
BOMis an alias forBOMUTF16, BOMLE for BOMUTF16_LE and BOMBE for BOMUTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

49.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #wecode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACE
'xmicharrefreplace’ Replace with the appropriate XML character reference (only for encoding).

'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedregister _error

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the objeaputand returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.gp1252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdtict’ handling.

132 Chapter 4. String Services

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objedput and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Semdings.utf _8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass @fodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for &streamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are predefined:

e’strict’ RaiseValueError (or a subclass); this is the default.

e’'ignore’ Ignore the character and continue with the next.

e'replace’ Replace with a suitable replacement character

e’xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $friemWriter object.

The set of allowed values for thegrors argument can be extended witkgister _error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite¢) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

4.9. codecs — Codec registry and base classes 133

In addition to the above methods, tBéreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strean{, errors])

read

Constructor for é&streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $frimReader object.

The set of allowed values for thegrors argument can be extended witkgister _error()

([size])

Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.qg. if optional encoding endings or state markers are available on
the stream, these should be read too.

readline ([size])

Read one line from the input stream and return the decoded data.

Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method — there is currently no support for line breaking using the codec decoder due
to lack of line buffering. Sublcasses should however, if possible, try to implement this method using their own
knowledge of line breaking.

size if given, is passed as size argument to the streasadline() method.

readlines ([sizehint])

Read all lines available on the input stream and return them as list of lines.
Line breaks are implemented using the codec’s decoder method and are included in the list entries.
sizehint if given, is passed asizeargument to the stream’sad() method.

reset ()

Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

134

Chapter 4. String Services

In addition to the above methods, tBéreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned lopkup() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tistreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfacesStfeamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkup() function to construct the instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes pro-
viding objects of the&streamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®@gaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStoéamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping
tables. The following table lists the codecs by nhame, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

4.9. codecs — Codec registry and base classes 135

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

e an IBM EBCDIC code page

e an IBM PC code page, which isscil compatible

Codec Aliases Languages
ascii 646, us-ascii English
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eurc
cp737 Greek
cp775 IBM775 Baltic langua
cp850 850, IBM850 Western Eurc
cp852 852, IBM852 Central and E
cp855 855, IBM855 Bulgarian, By
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norw
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp1006 Urdu
cp1026 ibm1026 Turkish
cpl140 ibm1140 Western Eurc
cpl1250 windows-1250 Central and E
cpl251 windows-1251 Bulgarian, By
cpl252 windows-1252 Western Eurc
cp1253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl1255 windows-1255 Hebrew
cpl256 windows1256 Arabic
cpl2s7 windows-1257 Baltic langua
cp1258 windows-1258 Vietnamese
latin_1 iS0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1 West Europe
is08859 2 iS0-8859-2, latin2, L2 Central and E
is08859 3 is0-8859-3, latin3, L3 Esperanto, M
is08859 4 is0-8859-4, latin4, L4 Baltic langua
i508859 5 i50-8859-5, cyrillic Bulgarian, By
is08859 6 is0-8859-6, arabic Arabic
is08859 7 is0-8859-7, greek, greek8 Greek

is08859 8 is0-8859-8, hebrew Hebrew

508859 9 i5s0-8859-9, latin5, L5 Turkish

is08859 10 | is0-8859-10, latin6, L6 Nordic languages

is08859 13 | is0-8859-13 Baltic languages

is08859 14 | is0-8859-14, latin8, L8 Celtic languages

is08859 15 | is0-8859-15 Western Europe

136 Chapter 4. String Services

Codec | Aliases | Languages

koi8_r Russian

koi8_u Ukrainian

mac_cyrillic | maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
mac_greek | macgreek Greek

mac_iceland | maciceland Icelandic

mac_latin2 | maclatin2, maccentraleuropeCentral and Eastern Europe
mac_roman | macroman Western Europe
mac_turkish | macturkish Turkish

utf_16 U16, utfl6 all languages

utf_16_be UTF-16BE all languages (BMP only)
utf_16_le UTF-16LE all languages (BMP only)
utf_7 u7 all languages

utf_8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that
any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose
base64.codec base64, base-64 byte string Convert operand to MIME base64
hex_codec hex byte string Convert operand to hexadecimal represents
idna Unicode string| Implements RFC 3490. New in version 2.3
mbcs dbcs Unicode string| Windows only: Encode operand according t
palmos Unicode string| Encoding of PalmOS 3.5
punycode Unicode string| Implements RFC 3492. New in version 2.3
quopri_codec quopri, quoted-printable, quotedprintahleébyte string Convert operand to MIME quoted printable
raw_unicode_escape Unicode string| Produce a string that is suitable as raw Unic
rot_13 rotl3 byte string Returns the Caesar-cypher encryption of th
string_escape byte string Produce a string that is suitable as string lite
undefined any Raise an exception for all conversion. Can |
unicode_escape Unicode string| Produce a string that is suitable as Unicode
unicode_internal Unicode string| Return the internal represenation of the ope
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds uponpgheycode encoding and
stringprep

These RFCs together define a protocol to supporta®oH characters in domain names. A domain name containing
non-Ascll characters (such as “www.Alliancefrancgaise.nu”) is converted intasaii-compatible encoding (ACE,

such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places where
arbitrary characters are not allowed by the protocol, such as DNS queries, HdstPfields, and so on. This

4.9. codecs — Codec registry and base classes 137

conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: itinea codec allows to convert between Unicode and the ACE.
Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, sinittpés andftplib , accept Unicode host names

(httplib then also transparently sends an IDNA hostname imdthse field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The modulesncodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version latbel The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII (label)
Convert a label tascli, as specified in RFC 349QseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based ottheteData.txt’ file version 3.2.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

lookup (namé
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found{eyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charantehr as a string. If no name is definedefaultis returned,
or, if not given,ValueError s raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giverialueError s raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definet&fault
is returned, or, if not giveriValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode chanagighr as float. If no such value is definedkfault
is returned, or, if not giveriValueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chavadtér as string.

bidirectional (‘unichr)

138 Chapter 4. String Services

Returns the bidirectional category assigned to the Unicode chauaithir as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaitler as integer. Return8 if no
combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode chanawighr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional @rtherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanatteras string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringinistr. Valid values forform are 'NFC’, 'NFKC’, 'NFD’,
and 'NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of thgtringprep procedure are part of the profile. One example strengprep profile is
nameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself

4.11. stringprep — Internet String Preparation 139

was generated using tinekstringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a setringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in _table _al(codé
Determine whetherodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in _table _b1(codd
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table _b2(code
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(code
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normalization).

in _table _cl11(code
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in _table _c12(code
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

in _table _c11 _c12(codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in _table _c21(code
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in _table _c22(code
Determine whetherodeis in tableC.2.2 (Non-ASCII control characters).

in _table _c21 _c22(codg
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in _table _c3(codg
Determine whethecodeis in tableC.3 (Private use).

in _table _c4(codg
Determine whethetodeis in tableC.4 (Non-character code points).

in _table _c5(codg
Determine whethetodeis in tableC.5 (Surrogate codes).

in _table _c6(codg
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in _table _c7(codg
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in _table _c8(codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in _table _c9(codég
Determine whethetodeis in tableC.9 (Tagging characters).

in _table _d1(codd
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

in _table _d2(codg
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

140 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.
test.test _support Support for Python regression tests.

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

collections High-performance datatypes

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar Functions for working with calendars, including some emulation of thexttal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, which pgasc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by runningydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by

141

the UNIX man command. The argument fiydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argumgshdddooks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to an
existing Python source file, then documentation is produced for that file.

Specifying a-w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying ak flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to thexuman command. The synopsis line of a module is the first line
of its documentation string.

You can also useydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers.pydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost:1234/ in your preferred Web browsepydoc -g will start the server and additionally
bring up a smalllkinter -based graphical interface to help you search for documentation pages.

Whenpydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter and
typed import spam ’

5.2 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

142 Chapter 5. Miscellaneous Services

This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test docstrings represent reality 143

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")

if n+1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
try:

result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if _name__ == "_ main__"
_test()

If you run ‘example.py’ directly from the command linejoctest

$ python example.py
$

works its magic:

There’s no output! That's normal, and it means all the examples worked -\Psthe script, andloctest prints a
detailed log of what it's trying, and prints a summary at the end:

$ python example.py -v
Running example.__doc__
Trying: factorial(5)
Expecting: 120

ok

0 of 1 examples failed in example.__doc__

Running example.factorial. __doc___

Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L

ok

And so on, eventually ending with:

144

Chapter 5. Miscellaneous Services

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:
1 tests in example
8 tests in example.factorial
9 tests in 2 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive uselaftest ! Jump in. The docstrings indoctest.py’
contain detailed information about all aspectslo€test , and we’ll just cover the more important points here.

5.2.1 Normal Usage

In normal use, end each modWNewith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if _name__ == "_ main__"
_test()

If you want to test the module as the main module, you don't need to pasgadttood() ; in this case, it will test
the current module.

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outpuTest failed.’

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passiregbose=1 to testmod() , or prohibit it by passingerbose=0 . In
either of those casesys.argv is not examined byestmod()

In any casetestmod() returns a 2-tuple of intéf, t), wheref is the number of docstring examples that failed
andt is the total number of docstring examples attempted.

5.2. doctest — Test docstrings represent reality 145

5.2.2 Which Docstrings Are Examined?

See the docstrings imoctest.py’ for all the details. They're unsurprising: the module docstring, and all function, class
and method docstrings are searched. Optionally, the tester can be directed to exclude docstrings attached to objects
with private names. Objects imported into the module are not searched.

In addition, ifM. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings foundMramtest __ are searched even if

the tester has been directed to skip over private names in the rest of the module. In outpu,ia key _test __
appears with name

<name of M>.__ test K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.
While private names reached frods globals can be optionally skipped, all names reached fvbm_test __ are
searched.

5.2.3 What's the Execution Context?

By default, each tim¢éestmod() finds a docstring to test, it usesapyof Ms globals, so that running tests on a
module doesn’t change the module’s real globals, and so that one Msairit leave behind crumbs that accidentally
allow another test to work. This means examples can freely use any names defined at topMemedtiinames defined
earlier in the docstring being run.

You can force use of your own dict as the execution context by pagibg=your _dict totestmod() instead.
Presumably this would be a copy M __dict __ merged with the globals from other imported modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The various
“File” lines in between can be left out (unless they add significantly to the documentation value of the example).

5.2.5 Advanced Usage

Several module level functions are available for controlling how doctests are run.

debug (module, namge
Debug a single docstring containing doctests.

Provide themodule(or dotted name of the module) containing the docstring to be debugged amartie
(within the module) of the object with the docstring to be debugged.

The doctest examples are extracted (see funttistsource()), and written to a temporary file. The Python
debuggerpdb, is then invoked on that file. New in version 2.3.

146 Chapter 5. Miscellaneous Services

testmod ()
This function provides the most basic interface to the doctests. It creates a local instance Tésasss, runs
appropriate methods of that class, and merges the results into the Gésbat instancemaster .

To get finer control thatestmod() offers, create an instance éster with custom policies, or run meth-
ods ofmaster directly. SeeTester. __doc __ for details.

testsource (module, name
Extract the doctest examples from a docstring.

Provide thenodule(or dotted name of the module) containing the tests to be extracted andrtieéwithin the
module) of the object with the docstring containing the tests to be extracted.

The doctest examples are returned as a string containing Python code. The expected output blocks in the
examples are converted to Python comments. New in version 2.3.

DocTestSuite ([module])
Convert doctest tests for a module tar@ttest . TestSuite

The returnedlestSuite is to be run by the unittest framework and runs each doctest in the module. If any
of the doctests fail, then the synthesized unit test fails, abba@restTestFailure exception is raised
showing the name of the file containing the test and a (sometimes approximate) line number.

The optionamoduleargument provides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Example using one of the many ways that timétest module can use @estSuite

import unittest
import doctest
import my_module_with_doctests

suite = doctest.DocTestSuite(my_module_with_doctests)
runner = unittest.TextTestRunner()
runner.run(suite)

New in version 2.3.Warning: This function does not currently searh__test __ and its search technique
does not exactly matdestmod() in every detail. Future versions will bring the two into convergence.

5.2.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine—just make sure the leading whitespace is
rigidly consistent (you can mix tabs and spaces if you're too lazy to do it rightjdetest is not in the business of
guessing what you think a tab means).

5.2. doctest — Test docstrings represent reality 147

>>> # comments are ignored
>>> x = 12

>>> X

12

>>> jif x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!I"

no

NO

Nom

>>>

Any expected output must immediately follow the firrab> or’...
pected output (if any) extends to the next> ' or all-whitespace line.

line containing the code, and the ex-

The fine print:
e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output.
e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

e If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
need to double the backslash in the docstring version. This is simply because you're in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> jf "yes" == \\
yt+ o\
"es":
print 'yes’
yes

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
'>>> ' line that triggered it.

5.2.7 Warnings

1. doctest s serious about requiring exact matches in expected output. If even a single character doesn’t match,
the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn't
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs
will be printed in any particular order, so a test like

148 Chapter 5. Miscellaneous Services

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True
>>>

instead. Another is to do

>>> d = foo().items()

>>> d.sort()

>>> d

[CHarry’, ’broomstick’), ('Hermione’, ’hippogryph’)]

There are others, but you get the idea.
Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to
the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the forni/2.**J are safe across all platforms, and | often contrive doctest examples to produce
numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

2. Be careful if you have code that must only execute once.
If you have module-level code that must only execute once, a more foolproof definitidagif) is

def _test():
import doctest, sys
doctest.testmod()

5.2. doctest — Test docstrings represent reality 149

3. WYSIWYG isn't always the case, starting in Python 2.3. The string form of boolean results changed from
and’l’ to’'False’ and'True’ in Python 2.3. This makes it clumsy to write a doctest showing boolean
results that passes under multiple versions of Python. In Python 2.3, by default, and as a special case, if an
expected output block consists solely’df and the actual output block consists solelykedlse’ |, that's
accepted as an exact match, and similarlyfor versusTrue’ . This behavior can be turned off by passing
the new (in 2.3) module constaDONTACCEPTTRUE_FOR_1 as the value ofestmod() ’s new (in 2.3)
optional optionflagsargument. Some years after the integer spellings of booleans are history, this hack will
probably be removed again.

5.2.8 Soapbox

The first word in “doctest” is “doc,” and that's why the author wrdtectest : to keep documentation up to date. It
so happens thatoctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There'’s an art to this that needs to be learned—it may not be natural at first.
Examples should add genuine value to the documentation. A good example can often be worth many words. If
possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example of each
kind of exception that can be raised. You're probably testing for endcases and subtle cases anyway in an interactive
shell: doctest wants to make it as easy as possible to capture those sessions, and will verify they continue to work

as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect them
many times over as the years go by and things change. I'm still amazed at how often ondaftast examples
stops working after a “harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, deftesta __ dict instead. That's
what it’s for.

5.3 unittest — Unit testing framework

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’'s Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework.umtigest module provides classes that make it
easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

test case
A test cases the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base clasbestCase , which may be used to create new test cases.

test suite
A test suitds a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.

150 Chapter 5. Miscellaneous Services

The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported througrest€ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usiFestCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture.RtfitttionTestCase |, existing

functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;

if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of th&estCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by thestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single methad) , which accepts destCase or TestSuite object

as a parameter, and returns a result object. The GlastResult is provided for use as the result object. PyUnit
provide theTextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern sharedithgst

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions fromrtiedom module:

5.3. unittest — Unit testing framework 151

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

if _name__ =='_ main__"
unittest.main()

A testcase is created by subclassumgttest. TestCase . The three individual tests are defined with methods
whose names start with the lettdesst . This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call &ssertEqual() to check for an expected resudssert () to verify a condition;
or assertRaises() to verify that an expected exception gets raised. These methods are used instead of the
assert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if a
tearDown() method is defined, the test runner will invoke that method after each test. In the exaatple()
was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse output,
and no requirement to be run from the command line. For example, the last two lines may be replaced with:

suite = unittest. TestSuite()
suite.addTest(unittest.makeSuite(TestSequenceFunctions))
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

152 Chapter 5. Miscellaneous Services

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly wsgtiest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing aest cases— single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instancesTddt@ase class in theunittest module. To make
your own test cases you must write subclasseBestCase , or useFunctionTestCase

An instance of alestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of @estCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridetindest() method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofagsert*() or fail*() methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case asfailure. Other exceptions that do not arise from checks made througistet*()

andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atép() , which the testing framework
will automatically call for us when we run the test:

5.3. unittest =~ — Unit testing framework 153

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thenTest() = method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thearDown() method will be run regardless of whether or nahTest() succeeded.
Such a working environment for the testing code is callégtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes suchDafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

154 Chapter 5. Miscellaneous Services

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
‘incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

Here we have not provided minTest() method, but have instead provided two different test methods. Class
instances will now each run one of thest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite |, represented by the claggstSuite in theunittest module:

widgetTestSuite = unittest. TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__(self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

5.3. unittest =~ — Unit testing framework 155

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creatdastCase subclass with many similarly named test functions, there is
a convenience function calledakeSuite() provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,'test’)

Note that when using thenakeSuite() function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names usiogii@ built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added tdrastSuite just asTestCase instances can be added to a
TestSuite

suitel modulel.TheTestSuite()
suite2 module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module, sisigetssts. py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

e If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code
Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to @estCase subclass.

For this reason, PyUnit providesmainctionTestCase class. This subclass @kstCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

156 Chapter 5. Miscellaneous Services

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use dfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatssertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

classFunctionTestCase (testFunt{, setu;{, tearDowr{, description]]])
This class implements the portion of thiestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated intmdtest -based test framework.

classTestSuite ([testﬁ)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregedisis diven,
it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module ©estCase class. When loading from a mod-
ule, it considers allestCase -derived classes. For each such class, it creates an instance for each method with
a name beginning with the strinte’st .

defaultTestLoader
Instance of th& estLoader class which can be shared. If no customization offthstLoader is needed,
this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbositﬂ]])
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ([module[, defauItTes[t, argv[, testRunne[r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

1 ’

if __name__ == "'_ _main__"
unittest.main()

5.3. unittest =~ — Unit testing framework 157

In some cases, the existing tests may have be written usindattest module. If so, that module provides a
DocTestSuite class that can automatically builchittest. TestSuite instances from the existing test code.
New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if theetUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passezbals If resultis omitted orNone, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])
failUnless (expnl, msg|)
Signal a test failure i€xpris false; the explanation for the error will pesgif given, otherwise it will beNone.

assertEqual (first, seconﬂ, msg|)

failUnlessEqual (first, secongl, msg])
Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as the
first parameter tdailUnless() : the default value fomsgcan be computed to include representations of
bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, seconﬂ, msg|)
Test thatfirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations of
bothfirst andsecond

assertAlmostEqual (first, secon@, pIaces{, ms])
failUnlessAlmostEqual (first, secongl, placeg, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given number

158 Chapter 5. Miscellaneous Services

of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertNotAlmostEqual (first, secon@, places{, msg]])

faillfAlImostEqual (first, secongl, placeg, msg| |)
Test thafirst andsecondare not approximately equal by computing the difference, rounding to the given number
of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertRaises (exception, callable,)..

failUnlessRaises (- exception, callable,)..
Test that an exception is raised wheadlableis called with any positional or keyword arguments that are also
passed t@ssertRaises() . The test passes éxceptions raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed &xception

faillf (expl{, msg])
The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris true,
with msgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytdst() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object.eéStCase instances, this will always be,
but this method is also implemented by thestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription 0
Returns a one-line description of the testName if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if availabNnre:.

5.3.6 TestSuite Objects

TestSuite objects behave much likEestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests toTestSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

5.3. unittest — Unit testing framework 159

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passall &pote that
unlike TestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of aestSuite object, therun() method is invoked by &estRunner rather than by the
end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top afnittest may want access to theestResult object generated by running
a set of tests for reporting purposesi@stResult instance is returned by theestRunner.run() method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test
runs. The collections contain tuples (ofestcase tracebach , wheretracebackis a string containing a formatted
version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an ex-
ception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

failures
A list containing pairs offestCase instances and the formatted tracebacks for tests which signalled a failure
in the code under test. Changed in version 2.2: Contains formatted tracebacks insgaéxaf _info()
results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of thdestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest (tes)
Called when the test cagestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, erp
Called when the test cagestraises an exception without signalling a test failuegr is a tuple of the form
returned bysys.exc _info() : (type value traceback.

addFailure (test, er)
Called when the test cagestsignals a failure.err is a tuple of the form returned bgys.exc _info()
(type valug traceback.

addSuccess (tes)
This method is called for a test that does not fagktis the test case object.

One additional method is available fdestResult objects:

160 Chapter 5. Miscellaneous Services

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

TheTestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; thenittest ~ module provides an instance that can be shared atefla@ltTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inTibstCase -derived classestCaseClass

loadTestsFromModule (modulg
Return a suite of all tests cases contained in the given module. This method seancdléfor classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy oTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returiieséCase or TestSuite in-
stance. For example, if you have a modampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() ,andtest _three()),the spec-

ifier 'SampleTests.SampleTestCase’ would cause this method to return a suite which will run all three
test methods. Using the specifiSampleTests.SampleTestCase.test _two’ would cause it to re-

turn a test suite which will run only thiest _two() test method. The specifier can refer to modules and
packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.

loadTestsFromNames (name%, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

The following attributes of &estLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
‘test’

sortTestMethodsUsing
Function to be used to compare method names when sorting thgetTestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.3. unittest =~ — Unit testing framework 161

5.4 test — Regression tests package for Python

Thetest package contains all regression tests for Python as well as the mddsteest _support and
test.regrtest . test.test _support is used to enhance your tests whist.regrtest drives the test-
ing suite.

Each module in théest package whose name starts witkst _’ is a testing suite for a specific module or feature.
All new tests should be written using theittest module; usingunittest is not required but makes the tests
more flexible and maintenance of the tests easier. Some older tests are writterdtwies¢ and a “traditional”
testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for thiest package use thenittest module and follow a few guidelines. One is to

have the name of all the test methods start witsst _' * as well as the module’s name. This is needed so that

the methods are recognized by the test driver as test methods. Also, no documentation string for the method should
be included. A comment (such a&Tests function returns only True or False ") should be used to

provide documentation for test methods. This is done because documentation strings get printed out if they exist and
thus what test is being run is not stated.

A basic boilerplate is often used:

162 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test feature_one(self):
Test feature one.
. testing code ...

def test_feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

if __name__ =="'_ main__"
test_main()
This boilerplate code allows the testing suite to be rutdsy.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:
e The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also "private” code.

e Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

e Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

e Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as many
different paths through the code are taken.

e Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not crop
up again if the code is changed in the future.

e Make sure to clean up after your tests (such as close and remove all temporary files).

5.4. test — Regression tests package for Python 163

e Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

e Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests Using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself automat-
ically starts running all regression tests in thet package. It does this by finding all modules in the package whose
name starts withtest _’, importing them, and executing the functitest _main() if present. The names of tests

to execute may also be passed to the script. Specifying a single regressiqytiesh (fegrtest.py test_spam.py)

will minimize output and only print whether the test passed or failed and thus minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this by using
the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifyiral as an option for

-u enables all possible resources. If all but one resource is desired (a more common case), a comma-separated list of
resources that are not desired may be listed afterThe commangython regrtest.py -uall,-audio,-largefile will
runtest.regrtest with all resources except ttaidio andlargefile resources. For a list of all resources and more
command-line options, rupython regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executedion. On U
you can runmake testat the top-level directory where Python was built. On Windows, executibgt from your
‘PCBuild’ directory will run all regression tests.

5.5 test.test _support — Utility functions for tests

Thetest.test _support module provides support for Python’s regression tests.
This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

164 Chapter 5. Miscellaneous Services

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass offestSkipped . Raised when a resource (such as a network connection) is not available. Raised
by therequires() function.

Thetest.test _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about a
running testverboses set bytest.regrtest

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTFN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test _support module defines the following functions:

forget (module_.nameg
Removes the module namedodule namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resourcé
Returns True if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resourc{, msg])
RaisesResourceDenied if resourceis not available.msgis the argument t&ResourceDenied if it is
raised. Always returns true if called by a function whasename__is’ __main __’ . Used when tests are
executed byest.regrtest

findfile (filenamé
Return the path to the file namdéitename If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe3d
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefixtest _’ and executes the tests individually. This is the preferred way to execute tests.

run _suite (suite{, testclasi)
Execute thaunittest. TestSuite instancesuite The optional argumenestclassaccepts one of the test
classes in the suite so as to print out more detailed information on where the testing suite originated from.

5.6 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name droatlithenodule

if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first

5.6. math — Mathematical functions 165

place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats:

acos (X)
Return the arc cosine of

asin (x)
Return the arc sine of

atan (X
Return the arc tangent af

atan2 (y, %
Returnatan(y / X).

ceil (X)

Return the ceiling ok as a float.
cos (X)

Return the cosine of.
cosh (X)

Return the hyperbolic cosine &f
degrees (X)

Converts angle from radians to degrees.
exp (X)

Returne** x.

fabs (x)
Return the absolute value »f

floor (Xx)
Return the floor ok as a float.

fmod (x, y)
Returnfmod(X, V), as defined by the platform C library. Note that the Python expressiéfny may not
return the same result.

frexp (X
Return the mantissa and exponenkais the pai{ m, €) . mis afloat anceis an integer such that == m *
2** e. If xis zero, returng0.0, 0) , otherwised.5 <= abs(m) < 1.

hypot (x,Y)
Return the Euclidean distancgrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i) .
log (x[, basﬂ)
Returns the logarithm of to the givenbase If the baseis not specified, returns the natural logarithmxof
Changed in version 2.®aseargument added.

logl0 (X)
Return the base-10 logarithm xf

modf (X)
Return the fractional and integer partsxofBoth results carry the sign of The integer part is returned as a
float.

pow(X,)

166 Chapter 5. Miscellaneous Services

Returnx** y.

radians (X)

Converts angle from degrees to radians.
sin (X)

Return the sine of.
sinh (x)

Return the hyperbolic sine af
sqrt (X)

Return the square root a&f
tan (X)

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constapit

The mathematical constaat

Note: Themath module consists mostly of thin wrappers around the platform C math library functions. Behavior in
exceptional cases is loosely specified by the C standards, and Python inherits much of its math-function error-reporting
behavior from the platform C implementation. As a result, the specific exceptions raised in error cases (and even
whether some arguments are considered to be exceptional at all) are not defined in any useful cross-platform or cross-
release way. For example, whetimeaith.log(0) returns-Inf or raisesvalueError or OverflowError isn't

defined, and in cases whemeath.log(0) raisesOverflowError , math.log(OL) may raiseValueError

instead.

See Also:

Modulecmath (section 5.7):
Complex number versions of many of these functions.

5.7 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axist@entinuous from above.

acosh (x)
Return the hyperbolic arc cosinexf There is one branch cut, extending left from 1 along the real axisto -
continuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

5.7. cmath — Mathematical functions for complex numbers 167

asinh (x)
Return the hyperbolic arc sine af There are two branch cuts, extending left fraij to +-ooj , both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release. The
correct branch cuts should extend along the imaginary axis, oneXjomp toooj and continuous from the
right, and one from%j down to ocj and continuous from the left.

atan (x)
Return the arc tangent af There are two branch cuts: One extends fljmalong the imaginary axis teoj ,
continuous from the left. The other extends frohy -along the imaginary axis taej , continuous from the
left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)
Return the hyperbolic arc tangentxf There are two branch cuts: One extends from 1 along the real axis to
oo, continuous from above. The other extends from -1 along the real axis toentinuous from above. (This
should probably be changed so the right cut becomes continuous from the other side.)

cos (x)
Return the cosine of.
cosh (x)
Return the hyperbolic cosine &f
exp (X)
Return the exponential valug™* x.
log (x)
Return the natural logarithm &f There is one branch cut, from 0 along the negative real axisst@entinuous
from above.
logl0 (x)
Return the base-10 logarithm xf This has the same branch cutiag()
sin (X)
Return the sine of.
sinh (x)
Return the hyperbolic sine af
sqrt (X)
Return the square root &f This has the same branch cutiag()
tan (X)
Return the tangent of.
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapi, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in madhalés . The reason for having two
modules is that some users aren't interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will

168 Chapter 5. Miscellaneous Services

understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In Iserles, A., and
Powell, M. (eds.)The state of the art in numerical analys{Slarendon Press (1987) pp165-211.

5.8 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functandom() , which generates a random float uniformly in

the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instanceaoftbe.Random class.

You can instantiate your own instancesRdndomto get generators that don't share state. This is especially useful
for multi-threaded programs, creating a different instancRaridomfor each thread, and using thempahead()
method to ensure that the generated sequences seen by each thread don’t overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that case,
override theandom() , seed() , getstate() , setstate() andjumpahead() methods.

As an example of subclassing, trendom module provides th&/ichmannHill class which implements an al-
ternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier
versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version 2.3: Substi-
tuted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argusnesu be any hashable objectxlifs omitted or
None, current system time is used; current system time is also used to initialize the generator when the module
is first imported. Ifx is notNone or an int or longhash(x) is used instead. IXis an int or longx is used
directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be peetstatsg)
to restore the state. New in version 2.1.

setstate (stat
stateshould have been obtained from a previous cajjdtstate() , andsetstate() restores the internal
state of the generator to what it was at the teaéstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current ste&te non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjuction with multiple instances of tfeandom class: setstate() or seed() can be used to force all
instances into the same internal state, and fherpahead() can be used to force the instances’ states far
apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specificrstigps ahead,

5.8. random — Generate pseudo-random numbers 169

jumpahead(n) jumps to another state likely to be separated by many steps..
Functions for integers:

randrange ([start,] stop{, step])
Return a randomly selected element fromange(start, stop step . This is equivalent to
choice(range(start, stop step) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integdt such thalh <= N <= b.

Functions for sequences:

choice (seq
Return a random element from the non-empty sequeege

shuffle (x[, random])
Shuffle the sequencein place. The optional argumerandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functioandom() .

Note that for even rather smaddin(x) , the total number of permutations wfs larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

sample (population, §
Return ak length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occur-
rence is a possible selection in the sample.

To choose a sample from a range of integers,xuaage as an argument. This is especially fast and space
efficient for sampling from a large populatiosample(xrange(10000000), 60)

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real numblrsuch thath <= N < b.

betavariate (alpha, beta
Beta distribution. Conditions on the parameters @pgha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, araic is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betwepn ®Ranhdned values
range betweemean - arc/2 andmean + arc/2 and are normalized to between 0 gid

Deprecated since release 2.3. Instead, use(mean+ arc * (random.random() - 0.5))
%math.pi .

expovariate (lambd
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammavariate (alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersafpka > 0 andbeta > 0.

170 Chapter 5. Miscellaneous Services

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate ~ (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 gnda2idkappais the concentration parameter, which
must be greater than or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @

paretovariate (alpha
Pareto distributionalphais the shape parameter.

weibullvariate (‘alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

Alternative Generator

classWichmannHill ([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus thewhseed method described below. Because this class is implemented in pure Python, it is
not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is
small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1s8e@ for details.
whseed does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more
than about 2**24 distinct internal states in all.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generatorACM Transactions on Modeling and Computer Simulatfoh 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.9 whrandom — Pseudo-random number generator

Deprecated since release 2.1serandom instead.

Note: This module was an implementation detail of ta@dom module in releases of Python prior to 2.1. Itis no
longer used. Please do not use this module directlyrarséom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaaretbm .
Instances of thevhrandom class conform to the Random Number Generator interface described in s&2tibhney
also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, Y, z])
Initializes the random number generator from the integeysandz. When the module is first imported, the
random number is initialized using values derived from the current time, yif andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the parametérshartenot all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

5.9. whrandom — Pseudo-random number generator 171

choice (seq
Chooses a random element from the non-empty sequssgamnd returns it.

randint (a, b
Returns a random integst such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b
Returns a random real numkérsuch that<=N<b.

When imported, thevhrandom module also creates an instance of Wlwandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitherwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.8):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.10 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect _left (list, iten[, Io[, hi]])
Locate the proper insertion point fdemin list to maintain sorted order. The parameterandhi may be used
to specify a subset of the list which should be considered; by default the entire list is ustedn iff already
present infist, the insertion point will be before (to the left of) any existing entries. The return value is suitable

for use as the first parameterlist.insert() . This assumes théist is already sorted. New in version 2.1.
bisect _right (list, iten], o[, hi]])
Similar tobisect _left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.
bisect (...

Alias for bisect _right()

insort _left (list, iten[, Io[, hi]])
Insertitemin list in sorted order. This is equivalent list.insert(bisect.bisect _left(list, item
lo, hi), item). This assumes théistis already sorted. New in version 2.1.

172 Chapter 5. Miscellaneous Services

insort _right (list, itenq, Io[, hi]])
Similar toinsort _left() , but insertingtemin list after any existing entries @em New in version 2.1.

insort (..)
Alias forinsort _right()

5.10.1 Examples

Thebisect() function is generally useful for categorizing numeric data. This examplelisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[’E’, 7A1, 1Bl’ lDi’ 1F1, 1Al]

The bisect module can be used with the Queue module to implement a priority queue (example courtesy of Fredrik
Lundh):

import Queue, bisect

class PriorityQueue(Queue.Queue):
def _put(self, item):
bisect.insort(self.queue, item)

usage

queue = PriorityQueue(0)
queue.put((2, "second"))
queue.put((1, "first"))
queue.put((3, "third"))
priority, value = queue.get()

5.11 heapg — Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for whidieag k] <= heag2* k+1] andheag k] <= heag2* k+2] for all k, counting ele-
ments from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is théteaff0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a "min

5.11. heapq — Heap queue algorithm 173

heap” in textbooks; a "max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surbesgif)] is the smallest item,
andheapsort() maintains the heap invariant!

To create a heap, use a list initializedlto, or you can transform a populated list into a heap via fundiieepify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heapify (X)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item
Pop and return the smallest item from theap and also push the netem The heap size doesn’t change. If the
heap is emptyindexError is raised. This is more efficient thdreappop() followed byheappush() |,
and can be more appropriate when using a fixed-size heap. Note that the value returned may be léeyet than
That constrains reasonable uses of this routine.

Example of use:

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush(heap, item)

>>> sorted = []
>>> while heap:
sorted.append(heappop(heap))

>>> print sorted

[0, 1, 2, 3, 4, 5, 6,7, 8, 9]
>>> data.sort()

>>> print data == sorted
True

>>>

5.11.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whiclf k] <= a[2* k+1] anda[K] <= a[2* k+2] for all k, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
thata[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
arek, nota[K] :

174 Chapter 5. Miscellaneous Services

7 8 9 10 11 12 13 14

1516 17 18 1920 21 22 2324 2526 2728 29 30

In the tree above, each cdlis topping2* k+1 and2* k+2. In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule
becomes that a cell and the two cells it tops contain three different items, but the top cell "wins” over the two topped
cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to
remove it and find the "next” winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not "better” than the last 0'th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the "win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what | used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organikéslivery important that the initial sort produces

the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the
value "wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

5.12 array — Efficient arrays of numeric values

1The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at "progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

5.12. array — Efficient arrays of numeric values 175

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1
b’ signed char int 1
‘B’ unsigned char | int 1
o’ Py_UNICODE | Unicode character 2
'h signed short int 2
'H’ unsigned short| int 2
i signed int int 2
T unsigned int long 2
T signed long int 4
L unsigned long | long 4
T float float 4
'd’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed throughtéhesize attribute. The values stored far and’I’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecodé, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list or a string. The list or string is passed to the new afrayiist() , fromstring() ,
or fromunicode() method (see below) to add initial items to the array.

ArrayType
Obsolete alias foarray .

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tuple(address length giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
ray.buffer _info()[1] * array.itemsize . This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such asadffpin operations. The
returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C ot+C(the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is

176 Chapter 5. Miscellaneous Services

maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in the Python/C API Reference Manual

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of valuesRuntimeError s raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (x)
Return the number of occurencesxah the array.

extend (a)
Append array items frora to the end of the array. The two arrays must hexactlythe same type code; if not,
TypeError will be raised.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witiead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthatif thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using thdromfile() method).

fromunicode (9)
Extends this array with data from the given unicode string. The array must be a type 'u’ array; otherwise a
ValueError is raised. Useaafray.fromstring(ustr.decode(enc)) ' to append Unicode data to an
array of some other type.

index (X)
Return the smallestsuch that is the index of the first occurence »fn the array.

insert (i, X)
Insert a new item with value in the array before position Negative values are treated as being relative to the
end of the array.

pop([i])
Removes the item with the indéxXrom the array and returns it. The optional argument defaultd tcso that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witead() method won't do.

remove (X)
Remove the first occurence xfrom the array.

reverse ()
Reverse the order of the items in the array.
tofile ()
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

5.12. array — Efficient arrays of numeric values 177

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thiefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a type 'u’ array; otherwise a ValueError is raised. Use
array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representadag typecode initializer) . The

initializer is omitted if the array is empty, otherwise it is a string if typecodeis 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes‘(), so long as tharray() function has been imported usifigm array import array

Examples:

array(’l")

array('c’, 'hello world’)

array('u’, uhello \textbackslash u2641’)
array(l', [1, 2, 3, 4, 5)])

array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section??):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)
The Numeric Python extension (NumPy) defines another array typehtge@numpy.sourceforge.net/ for
further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.13 sets — Unordered collections of unique elements

New in version 2.3.

Thesets module provides classes for constructing and manipulating unordered collections of unique elements. Com-
mon uses include membership testing, removing duplicates from a sequence, and computing standard math operations
on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin - set len(sed , andfor x in set Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

Most set applications use tl&et class which provides every set method exceptfohash __() . For advanced
applications requiring a hash method, themutableSet class adds a_hash __() method but omits methods
which alter the contents of the set. Bdlet andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a setnstance(obj, BaseSet)

The set classes are implemented using dictionaries. As a result, sets cannot contain mutable elements such as lists

178 Chapter 5. Miscellaneous Services

or dictionaries. However, they can contain immutable collections such as tuples or instahoesutdbleSet
For convenience in implementing sets of sets, inner sets are automatically converted to immutable form, for example,
Set([Set(['dog]) is transformed t&et([ImmutableSet(['dog’)])

classSet ([iterable])
Constructs a new emp8et object. If the optionaiterable parameter is supplied, updates the set with elements
obtained from iteration. All of the elementsiterableshould be immutable or be transformable to an immutable
using the protocol described in section 5.14.3.

classimmutableSet ([iterable])
Constructs a new emptyinmutableSet object. If the optionaiterable parameter is supplied, updates the set
with elements obtained from iteration. All of the element&énable should be immutable or be transformable
to an immutable using the protocol described in section 5.14.3.

BecausdmmutableSet objects provide a__hash __() method, they can be used as set elements or as
dictionary keys.ImmutableSet objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

5.13.1 Set Objects

Instances ofet andimmutableSet both provide the following operations:

Operation Equivalent | Result
len() cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s<=t test whether every elementdnis int
s.issuperset(t) s>=t test whether every elementtiis in s
s.union(t) s—t new set with elements from borandt
s.intersection(t) s&t new set with elements commondgandt
s.difference(t) s-t new set with elements isbut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy af
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructi@et(lidec’) &
'chs’ in favor of the more readabl8et(’abc’).intersection('cbs’) . Changed in version 2.3.1:

Formerly all arguments were required to be sets.

In addition, bothSet andimmutableSet support set to set comparisons. Two sets are equal if and only if every
element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each othe] 86 the following returnFalse : a<b, a==b, or a>b.
Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output litthert() method is undefined
for lists of sets.

The following table lists operations availablelmmutableSet but not found inSet :

Operation | Result
hash(s) \ returns a hash value far

5.13. sets — Unordered collections of unique elements 179

The following table lists operations availableSet but not found innmmutableSet

Operation Equivalent | Result
s.union _update(t) s—=t return ses with elements added fromn
s.intersection _update(t) s&=t return ses keeping only elements also foundtin
s.difference _update(t) s-=t return ses after removing elements found in
ssymmetric _difference _update(t) s™=t return seswith elements frons or t but not both
s.add(x) add elemenx to sets
s.remove(X) removex from sets; raises KeyError if not present
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaises KeyError if en
s.clear() remove all elements from sst
Note, the non-operator versions of union _update() , intersection _update() ,
difference _update() , and symmetric _difference _update() will accept any iterable as an ar-

gument. Changed in version 2.3.1: Formerly all arguments were required to be sets.

5.13.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, 'Jane’, 'Jack’, 'Janice’])
>>> programmers = Set(['Jack’, 'Sam’, 'Susan’, 'Janice’])
>>> managers = Set(['Jane’, 'Jack’, 'Susan’, 'Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference

>>> engineers.add('Marvin’) # add element

>>> print engineers
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees.issuperset(engineers) # superset test

False

>>> employees.union_update(engineers) # update from another set

>>> employees.issuperset(engineers)

True

>>> for group in [engineers, programmers, managers, employees]:
group.discard(’'Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

Set(['Janice’, 'Jack’, 'Sam’)

Set(['Jane’, 'Zack’, 'Jack’])

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack’])

5.13.3 Protocol for automatic conversion to immutable
Sets can only contain immutable elements. For convenience, mBabl®bjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has an
__as_immutable __() method which returns an immutable equivalent.

180 Chapter 5. Miscellaneous Services

SinceSet objects have a_as _immutable __() method returning an instancelofimutableSet , itis possible
to construct sets of sets.

A similar mechanism is needed by thecontains __() andremove() methods which need to hash an ele-
ment to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily _immutable __() method which returns the element wrapped by a class that provides tem-
porary methods for_hash __() , __eq__() ,and__ne__() .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the _as_temporarily = _immutable __() method which returns th&et object
wrapped by a new classTemporarilylmmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyimmutableSet . In other words, sets of mutable sets are not thread-safe.

5.14 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Standardization helps avoid the readability and reliability problems which arise when many different individuals create
their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation toddtbulate(f) which produces a sequent®), f(1),
This toolbox providesmap() andcount() which can be combined to forimap(f, count()) and produce
an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provided bgeheor
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the module.

Whether cast in pure python form or C code, tools that use iterators are more memory efficient (and faster) than their
list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and where needed
instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases — at some point, lists
grow large enough to severely impact memory cache performance and start running slowly.

See Also:
The Standard ML Basis Library{;he Standard ML Basis Library
Haskell, A Purely Functional Languadegfinition of Haskell and the Standard Libraries

5.14.1 Itertool functions
The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterableg
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next

5.14. itertools — Functions creating iterators for efficient looping 181

iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

def chain(*iterables):
for it in iterables:
for element in it:
yield element

count ([n])
Make an iterator that returns consecutive integers startingmvithnot specifiedn defaults to zero. Does not
currently support python long integers. Often used as an argumémiaim() to generate consecutive data
points. Also, used witlizip() to add sequence numbers. Equivalent to:

def count(n=0):
while True:
yield n
n+=1

Note,count() does not check for overflow and will return negative numbers after excesgigaxint
This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element

Note, this is the only member of the toolkit that may require significant auxiliary storage (depending on the
length of the iterable).

dropwhile (predicate, iterablg
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not prodacy output until the predicate is true, so it may have a lengthy
start-up time. Equivalent to:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

ifilter (predicate, iterabl

182 Chapter 5. Miscellaneous Services

Make an iterator that filters elements from iterable returning only those for which the predidateeis If
predicateis None, return the items that are true. Equivalent to:

def fifilter(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if predicate(x):
yield x

ifilterfalse (predicate, iterable
Make an iterator that filters elements from iterable returning only those for which the predi¢atisés . If
predicateis None, return the items that are false. Equivalent to:

def fifilterfalse(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

imap (function, *iterable$
Make an iterator that computes the function using arguments from each of the iteratfl@sctiinis set to
None, thenimap() returns the arguments as a tuple. Likap() but stops when the shortest iterable is
exhausted instead of filling iNone for shorter iterables. The reason for the difference is that infinite iterator
arguments are typically an error forap() (because the output is fully evaluated) but represent a common and
useful way of supplying argumentsitnap() . Equivalent to:

def imap(function, *iterables):
iterables = map(iter, iterables)
while True:
args = [i.next() for i in iterables]
if function is None:
yield tuple(args)
else:
yield function(*args)

islice (iterable,[start,] stop[, step])
Make an iterator that returns selected elements from the iterab#artfis non-zero, then elements from the
iterable are skipped until start is reached. Afterward, elements are returned consecutivelsigpesset
higher than one which results in items being skippedtdpis None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slisiicg() does
not support negative values fetart, stop or step Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line report may list a name field on every third line).
Equivalent to:

5.14. itertools — Functions creating iterators for efficient looping 183

def islice(iterable, *args):
s = slice(*args)
next, stop, step = s.start or O, s.stop, s.step or 1
for cnt, element in enumerate(iterable):
if cnt < next:
continue
if stop is not None and cnt >= stop:
break
yield element
next += step

izip (*iterables)
Make an iterator that aggregates elements from each of the iterableszip{ke except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
iterables = map(iter, iterables)
while iterables:
result = [i.next() for i in iterables]
yield tuple(result)

Changed in version 2.3.1: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception.

repeat (objec{, times])
Make an iterator that returrbjectover and over again. Runs indefinitely unlesstthesargument is specified.
Used as argument fmap() for invariant parameters to the called function. Also used vzif() to create

an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object

starmap (function, iterabl¢g
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used in-
stead ofimap() when argument parameters are already grouped in tuples from a single iterable (the data
has been “pre-zipped”). The difference betwémap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())

takewhile (predicate, iterablg
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

184 Chapter 5. Miscellaneous Services

def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break

5.14.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
print 'Check %d is for $%.2f % (checknum, amount)

Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):

print cube
1
8
27
>>> reportlines = ['EuroPython’, 'Roster’, ”, ’alex’, ”, 'laura’,
", 'martin’, 7, 'walter’, ”, 'samuele’]

>>> for name in islice(reportlines, 3, None, 2):
print name.title()

Alex
Laura
Martin
Walter
Samuele

This section shows how itertools can be combined to create other more powerful itertools. Neteuthatate()
anditeritems() already have efficient implementations in Python. They are only included here to illustrate how
higher level tools can be created from building blocks.

5.14. itertools — Functions creating iterators for efficient looping 185

def take(n, seq):
return list(islice(seq, n))

def enumerate(iterable):
return izip(count(), iterable)

def tabulate(function):
"Return function(0), function(1), ..."
return imap(function, count())

def iteritems(mapping):
return izip(mapping.iterkeys(), mapping.itervalues())

def nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

def all(seq, pred=bool):
"Returns True if pred(x) is True for every element in the iterable"
return False not in imap(pred, seq)

def any(seq, pred=bool):
"Returns True if pred(x) is True at least one element in the iterable"
return True in imap(pred, seq)

def no(seq, pred=bool):
"Returns True if pred(x) is False for every element in the iterable"
return True not in imap(pred, seq)

def quantify(seq, pred=bool):
"Count how many times the predicate is True in the sequence"
return sum(imap(pred, seq))

def padnone(seq):
"Returns the sequence elements and then returns None indefinitely”
return chain(seq, repeat(None))

def ncycles(seq, n):
"Returns the sequence elements n times"
return chain(*repeat(seq, n))

def dotproduct(vecl, vec2):
return sum(imap(operator.mul, vecl, vec2))

def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) ==
yield result
for elem in it
result = result[1:] + (elem,)
yield result

def tee(iterable):
"Return two independent iterators from a single iterable"
def gen(next, data={}, cnt=[0]):
dpop = data.pop

for—i—in—count():

186

SouHy

if i == cnt[0]: Chapter 5.

item = data[i] = next()
cnt[0] += 1
else:

tarm = AnAan/i)

Miscellaneous Services

5.15 ConfigParser = — Configuration file parser

This module defines the cla@onfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

Warning: This library doesotinterpret or write the value-type prefixes used in the Windows Registry extefpded
version of INI syntax.

The configuration file consists of sections, led bjsattion] *hea