
multiexpand
Trigger multiple expansions

in one expansion step∗

Bruno Le Floch†‡

Released 2015/03/03

Contents
1 Two user commands 1

2 Implementation 2
2.1 Common to the ε-TEX and non-ε-TEX cases 2
2.2 Without ε-TEX’s \numexpr 3
2.3 With ε-TEX . 5

1 Two user commands
• For n > 0, expanding \MultiExpand{n}\macro twice gives the n-th

expansion of \macro.

• For n > 0, expanding \MultiExpandAfter{n}\macroA\macroB twice
expands \macroB n times before expanding \macroA.

Note that neither functions work for n = 0.
These can typically be combined as

∗This file describes version v1.3, last revised 2015/03/03.
†E-mail: blflatex@gmail.com
‡I have gathered ideas from various posts in the {TeX} community at http://tex.

stackexchange.com. Thanks to their authors.

1

http://tex.stackexchange.com
http://tex.stackexchange.com

\MultiExpand{7}%
\MultiExpandAfter{4}\a\MultiExpandAfter{7}\b%
\MultiExpandAfter{3}\c\d

which would expand \d 3 times, then \c 5 times (2 of the 7 times were used
to expand \MultiExpandAfter{3}), then \b twice (4−2), and finally \a five
times (7−2). Note that all this happens in precisely two steps of expansion.

In some cases, one needs to achieve the same effect in one step
only. For this, we use the first expansion of \MultiExpand, which
is \romannumeral \multiexpand, or of \MultiExpandAfter, which is
\romannumeral \multiexpandafter. In detail, expanding \romannumeral
\multiexpand{n} once expands the following token n times, and similarly
for \romannumeral \multiexpandafter{n}.

These are especially useful when we want to expand several times a very
specific token which is buried behind many others. For instance, expanding
the following code once
\expandafter\macroA\expandafter\macroB
\romannumeral\multiexpandafter{4}\macroC\macroD

will expand \macroD 4 times before the three other macros.
Note: as we mentionned, this breaks for n = 0. But in this case, consider

using \expandafter\empty, or a variant thereof.

2 Implementation
1 〈∗package〉

We work inside a group, to change the catcode of @. So we will only do
\gdefs. Note that this code can be read several times with no issue; no need
to bother to check whether it was already read or not.
2 \begingroup
3 \catcode ‘\@=11

2.1 Common to the ε-TEX and non-ε-TEX cases

For the “lazy”, who do not want to use \romannumeral, we provide
\MultiExpand and \MultiExpandAfter, simple shorthands. A drawback
is that they require two steps of expansion rather than only one.
4 \gdef \MultiExpand {\romannumeral \multiexpand }
5 \gdef \MultiExpandAfter {\romannumeral \multiexpandafter }

2

2.2 Without ε-TEX’s \numexpr

No need for the usual \begingroup\expandafter\endgroup to prevent
\numexpr from being set to \relax, because we are already in a group.
6 \expandafter\ifx\csname numexpr\endcsname\relax

A helper.
7 \long\gdef\multiexpand@gobble#1{}

The user commands \multiexpand and \multiexpandafter, to be used
after \romannumeral. They only differ a little bit.
8 \gdef\multiexpand{\multiexpand@aux\multiexpand@}
9 \gdef\multiexpandafter{\multiexpand@aux\multiexpand@after}

The user commands receives a number, and to accept various forms of num-
bers we hit it with \number. If it is non-positive, stop the \romannumeral
expansion with 0 and a space. Otherwise, reverse the number, to make it
easy to subtract 1.
10 \long \gdef \multiexpand@aux #1#2%
11 {\expandafter \multiexpand@test \number #2;#1}
12 \long \gdef \multiexpand@test #1;#2%
13 {%
14 \ifnum #1>0
15 \multiexpand@reverse #1{?\multiexpand@reverse@end }?;;#2%
16 \fi
17 0 %
18 }

The macro \multiexpand@reverse puts characters from the number one by
one (as #1) after the semicolon, to reverse the number. After the last digit,
#1 is {?\multiexpand@reverse@end}. The question mark is removed by
\multiexpand@gobble, and the reverse@end macro cleans up. In particu-
lar, one should not forget to close the conditional using #5, which is the trail-
ing \fi. At this stage, #4 is the function that distinguishes \multiexpand
from \multiexpand@after, and #3 is the reversed number.
19 \gdef \multiexpand@reverse #1#2;%
20 {\multiexpand@gobble #1\multiexpand@reverse #2;#1}
21 \gdef \multiexpand@reverse@end #1;?#2#3;#4#50
22 {#5\multiexpand@iterate #41#3;}

The macro \multiexpand@iterate applies a 〈function〉 a certain number of
times to what follows in the input stream. It expects to receive 〈function〉
〈nines〉 1〈reversed number〉;. The argument 〈nines〉, made entirely of the
digit 9, is used to compute carries when subtracting 1, and is initally empty.

3

As a concrete example, after \multiexpand{302} the successive calls to
\multiexpand@iterate would go as follows.

\multiexpand@iterate \multiexpand@ 1203;
\multiexpand@iterate \multiexpand@ 1103;
\multiexpand@iterate \multiexpand@ 1003;
\multiexpand@iterate \multiexpand@ 9 103;
\multiexpand@iterate \multiexpand@ 99 13;
\multiexpand@iterate \multiexpand@ 1992;
\multiexpand@iterate \multiexpand@ 1892;
\multiexpand@iterate \multiexpand@ 1792;

Note in particular how carries are done in several steps. The details are
left as an exercise to the reader. The most common case is when #2 is
empty and #3 is a non-zero digit. Then \number is expanded, triggering
\ifcase which shifts #3 by one unit, and #1 takes care of expanding the
tokens are required by \multiexpand or \multiexpandafter. If #3 is 0,
then \multiexpand@zero is called, closing the conditional with #1, and
iterating, this time with a non-empty 〈nines〉, which are the argument #2 of
a new call to \multiexpand@iterate. Those 〈nines〉 are put back into the
number by \multiexpand@iterate, unless the next significant digit is also
0, in which case \multiexpand@zero is called again, until finding a non-zero
digit; at each step, one more 9 is added to the 〈nines〉. If all digits are zero,
we reach ; this way, and end, after cleaning up.
23 \gdef \multiexpand@iterate #1#21#3%
24 {%
25 \ifx ;#3\multiexpand@end \fi
26 \ifx 0#3\multiexpand@zero \fi
27 \expandafter \multiexpand@iterate
28 \expandafter #1%
29 \number 1#2%
30 \ifcase #3 \or 0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\fi
31 #1%
32 }
33 \gdef\multiexpand@zero#1#2\number1#3\ifcase#4\fi#5%
34 {#1\multiexpand@iterate#59#31}
35 \gdef\multiexpand@end#1#2\ifcase#3\fi#4{#10 }

Finally, the two different expansion commands.
36 \gdef\multiexpand@#1;{#1\expandafter;}
37 \gdef\multiexpand@after#1;{#1\expandafter;\expandafter}

4

2.3 With ε-TEX
38 \else

With ε-TEX, everything is much easier, since the engine knows how to
subtract 1.

The main looping macros expect their arguments as an integer followed
by a semicolon. As long as the argument is at least 2, decrement it, and
expand what follows. Once the argument is 1 (or less: the macros are not
meant to handle that case), call \multiexpand@end to clean up and stop
looping.
39 \gdef \multiexpand@ #1;%
40 {%
41 \ifnum #1<2 \multiexpand@end \fi
42 \expandafter \multiexpand@
43 \the \numexpr #1-1\expandafter ;%
44 }
45 \gdef \multiexpand@after #1;%
46 {%
47 \ifnum #1<2 \multiexpand@end \fi
48 \expandafter \multiexpand@after
49 \the \numexpr #1-1\expandafter ;\expandafter
50 }

The looping macros are used within an overarching \romannumeral ex-
pansion, which we end with a 0 and a space, as well as the appropriate
\expandafter. Here, #1 is \fi which needs to remain to close the condi-
tional, #2 is \expandafter, and there is a trailing \expandafter in the case
of \multiexpand@after.
51 \gdef \multiexpand@end #1#2#3;{#10#2 }

Finally, user commands, used as \romannumeral \multiexpand(after).
Those evaluate their argument, and pass it to \multiexpand@(after). The
argument might contain \par tokens (who knows)
52 \long \gdef \multiexpand #1%
53 {\expandafter \multiexpand@ \the \numexpr #1;}
54 \long \gdef \multiexpandafter #1%
55 {\expandafter \multiexpand@after \the \numexpr #1;}

56 \fi

Close the group.
57 \endgroup

58 〈/package〉

5

Change History

v1.0
General: First version with docu-

mentation 1
v1.1

General: Version submitted to
CTAN 1

v1.2
General: Change ME prefix to

multiexpand 1
Use less expandafter for large
arguments 1

v1.3
General: Support TeX with no

numexpr 3

6

	Two user commands
	Implementation
	Common to the e-TeX and non-e-TeX cases
	Without e-TeX's `numexpr
	With e-TeX

