
An Easily Embeddable Web Server for Remote SimulationMonitoringDavid M. Beazley and Sotiria LampoudiDepartment of Computer ScienceUniversity of ChicagoChicago, Illinois 60637fbeazley,slampoudg@cs.uchicago.eduAbstractWe present an embedded web server library knownas SWILL (Simple Web Interface Link Library)that facilitates the addition of a remote monitor-ing capability to scienti�c applications by the scien-tists themselves. Unlike framework-based solutions,SWILL utilizes a collection of low-level I/O �lterfunctions that make it possible to reroute nearly ar-bitrary program output to a collection of dynamicallygenerated web pages. This approach not only sim-pli�es the use of the library, but makes it possibleto add an embedded web server to existing programswith very few modi�cations to the source code. Inaddition, the library fully supports SPMD-style MPIprograms and allows for the parallel generation ofweb pages. We provide an overview of SWILL anddescribe how it can be incorporated into existing sci-enti�c software.1 IntroductionFor the past decade, considerable attention hasbeen given to the problem of building more inter-active, extensible, and user-friendly scienti�c soft-ware. For example, e�orts in computational steer-ing, distributed computing, and scripting languagesall claim to break the traditional batch processingcycle and provide software with greater 
exibility[11, 8, 5, 3]. However, despite the success of thesee�orts, the simple fact remains: large-scale produc-tion simulations run uninterrupted for tens to hun-dreds of hours on the largest machines available.A common problem faced by scientists conductingthese long-running experiments is that of monitor-ing their progress long after the interactive interfacehas been detached or the program has been sub-mitted as a batch processing job. For example, ascientist may want to examine the simulation state

to see if a numerical instability has occurred (andto stop the job if necessary). Similarly, it is oftenuseful to obtain diagnostic information or visualiza-tions of live simulation data at intermediate stagesof the computation. In some cases, it may be use-ful to make carefully controlled adjustments to therunning computation in some manner; for example,a scientist might want to change the frequency atwhich output �les are generated or to start tracinga parameter of interest. Unfortunately, most simu-lation codes do not allow this sort of user interactionafter a simulation has started. In fact, in many casesthe only way to monitor a simulation is to examineits log �les or directories for the presence of newoutput. Even then, it can be di�cult to obtain anaccurate picture of simulation state unless �les areo�oaded to another machine and examined with adata analysis tool.A very simple and practical solution to the moni-toring and control problem is to instrument simula-tion software in a way that allows users to accessthe running simulation through an ordinary webbrowser. For example, a simple web-based simu-lation monitor using scripting language techniquesis brie
y described in [2]. Similarly, many advancedsimulation frameworks such as Cactus now providespecial web server modules [6]. Unfortunately, themain problem with these approaches is that theirweb interfaces are often tightly coupled to the un-derlying framework. As a result, it may be di�cultto apply this work to existing scienti�c software{much of which may be home grown, adapted fromso-called \legacy" systems, or custom tailored to en-vironments not supported by the particular frame-work.To address this limitation, we have developed aneasy to use library called SWILL (Simple Web In-terface Link Library), that is designed to add anembedded web server capability to existing scien-ti�c software. Unlike framework-based solutions, a



key feature of the implementation is its minimalis-tic API in which the output of standard I/O libraryfunctions is intercepted and rerouted to dynamicallygenerated web pages. Hence, simulation functionsneed not be altered to include SWILL-speci�c I/Ocalls, as we trap their output and reroute it to theweb browser. In addition, the library fully supportslarge scale message passing applications written us-ing MPI.2 Scienti�c SoftwareConsider the implementation of a typical scien-ti�c simulation: First, there are procedures for nu-merical integration, matrix solvers, boundary con-ditions, initial conditions, and data management.Next, there is a time-stepping loop that actuallyruns the steps of the simulation. For example:for (i = 0; i < nsteps; i++) {compute_forces();integrate();boundary_conditions();redistribute_data();if (!(i % output_freq)) {write_output();}} Within the time-stepping loop, there are callsto I/O functions responsible for producing check-points, data �les, images, and other types of out-put. Finally, an application often de�nes a vari-ety of debugging and diagnostic functions that areused to help verify the correctness of the application.These functions do not typically appear in the in-ner simulation loop. However, they may be enabledduring application development or while debuggingsimulation parameters. For example, in a molecu-lar dynamics code, a debugging function might bewritten to look at the distribution of atoms acrosssubcells so that a measure of load-balancing couldbe obtained:void debug_cells() {/* Examine cell structure */...printf("Max per cell : %d\n",max);printf("Avg per cell : %g\n",avg);printf("Empty cells : %d\n",nempty);...}

A critical aspect of the implementation is thateven though execution is tightly controlled by thetime-stepping loop, a considerable amount of ad-ditional functionality is contained within the ap-plication. Furthermore, much of this functionalityrepresents the types of operations a scientist wouldmost want to access through a web interface. For in-stance, even though it makes no sense to repeatedlycall a debugging function as part of the inner loop,it may be extremely useful to periodically call sucha function from a web interface. Similarly, it may beuseful to utilize some of the existing I/O proceduresto produce on-demand snapshots of simulation data.3 Web ServersIn order for a simulation to function as a webserver, it must create a network socket and lis-ten for incoming HTTP requests. The form of atypical request is shown in Figure 1. Once re-ceived, the request is parsed into a URL, a col-lection of HTTP headers, and a set of form vari-ables (if any). The URL is always contained in the�rst line of the request and may optionally includeURL-encoded form variable values as shown. TheHTTP headers follow the �rst line and are termi-nated by a blank line. Although most of the head-ers can be ignored, they are sometimes used to con-trol other aspects of the connection such as cachingand authentication. For instance, in the �gure, the\Authorization:" �eld contains a base-64 encodedname:password string that a server could decode toverify the identity of a user.To send a response back to the browser, the serverwrites a set of HTTP headers followed by the rawdata back to the client as shown in Figure 2. A min-imal response includes information about the proto-col, �le type, and content length.Although the implementation of a simple webserver is a straightforward exercise, it adds consid-erable complexity to the traditional �le I/O modelfound in most simulations. A user implementing aweb server from scratch, has to worry about the de-tails of network programming, parsing of requests,decoding of special data formats, user authentica-tion, and issues related to error handling. In ad-dition, responses must be annotated with HTTPmetadata such as MIME types and length �elds(which for dynamically generated output, can notbe determined until after all of the output has beencreated). On a parallel machine, additional imple-mentation di�culties arise. For instance, it proba-bly does not make sense to run an independent web2



GET /foo.html?step=1000&file=dat%2E45 HTTP/1.0Referer: http://schlitz:8080/infoConnection: Keep-AliveUser-Agent: Mozilla/4.73 [en] (X11; U; SunOS 5.8 sun4u)Pragma: no-cacheHost: schlitz:8080Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*Accept-Encoding: gzipAccept-Language: enAccept-Charset: iso-8859-1,*,utf-8Authorization: Basic ZGF2ZTpmb28xMjM=Figure 1: Example of an HTTP requestHTTP/1.0 200 OKContent-Type: text/htmlContent-Length: 17283Connection: closeServer: SWILL/0.1<HTML><HEAD>...</HTML> Figure 2: Example of an HTTP responseserver on each node of the machine due to the di�-culty of coordinating its operation with the parallelexecution model of the entire application. There-fore, an application might run a server on a masternode (node 0) and have it coordinate actions withall of the other nodes using MPI primitives. In thiscase, the master node serves as a proxy responsiblefor broadcasting the incoming request to the rest ofthe nodes and collecting their output in a way thatallows a reasonable response to be produced.Although a web server interface can be imple-mented in a library, there is a tendency for suchlibraries to provide their own set of dedicated I/Ofunctions. This forces signi�cant portions of the ap-plication to be modi�ed and results in the devel-opment of additional code that largely mirrors thefunctionality of existing I/O procedures. Clearlythis complicates software development and limitsthe usefulness of the web interface since scientistsare unlikely to support two di�erent I/O modelsduring the early stages of application development(which is precisely when a remote monitoring capa-bility is most useful).

4 SWILL OverviewSWILL takes an alternative approach to the sci-enti�c web server problem. Rather than providing alarge programming API or a web-enabled problemsolving framework, it overrides the default behaviorof common I/O operations and allows already exist-ing functions to generate web pages. For example,to adapt our earlier example to SWILL, a scientistcould modify the simulation loop as follows:swill_init(3737);swill_handle("stdout>cells.txt",debug_cells,0);for (i = 0; i < nsteps; i++) {compute_forces();integrate();boundary_conditions();redistribute_data();if (!(i % output_freq)) {write_output();}3



/* Check for connections */swill_poll();} In this example, the swill init() function opensa network port for receiving incoming connections.The swill handle() function registers a docu-ment \cells.txt" and speci�es that the functiondebug cells() should be called when a requestfor this document arrives. The special modi�er>stdout speci�es that anything written to standardoutput should be redirected to the web-page duringthe execution of the handler function. Finally, thefunction swill poll(), inserted into the simulationloop, checks for incoming connections and serves re-quests (if any).With these minor modi�cations, a scientist will�nd that their application has now been turned intoa simple web server. Furthermore, when they re-quest the document \cells.txt", they will receive theoutput of debug cells() even though no modi�ca-tions were made to that function. Moreover, the sci-entist will �nd that none of the default I/O behaviorof their application has been changed. For instance,if the debug cells() function is called from outsidethe web server, its output is directed to standardoutput in the normal fashion.SWILL also provides support for more standardtypes of web server operations. For example, a usermight add the following code to serve an individ-ual �le, to serve a directory of �les, or to add userauthentication:swill_init(3737);swill_file("desc.html","./html/desc.html");swill_directory("./htdocs");swill_auth("beazley","pfm123");Thus, using these functions, the web interface toan application can be built using a collection ofstatic HTML �les and a set of handler functionsresponsible for creating dynamic output.Although SWILL is easy to use with functionsthat produce text, it is also possible to produce im-ages using common graphics libraries. As an exam-ple, consider the use of gd; a simple open sourcegraphics library for producing PNG and JPEG im-ages [4]. To create a simple PNG image �le, a sci-entist might write a general purpose function likethis:voidmake_image(FILE *f) {int black,white;gdImagePtr im;

im = gdImageCreate(64,64);black = gdImageColorAllocate(im,0,0,0);white = gdImageColorAllocate(im,255,255,255);gdImageLine(im,0,0,63,63,white);...gdImagePng(im,f);gdImageDestroy(im);} This function could be used as a normal part ofthe simulation loop (e.g., to produce images at pe-riodic intervals). However, the function can alsobe used in the web interface by registering it withSWILL as follows:swill_handle("image.png",make_image,0);In this case, access to the document \image.png"invokes the make image function which create aPNG image. This image is then be captured bySWILL and returned as a web page{all without cre-ating any temporary �les or having to modify partsof the gd library.5 Execution ModelSWILL is based entirely on a polling model of ex-ecution. In order to use the library, an applicationmust �rst initialize the library and then make ex-plicit calls to swill poll() at selected points ofexecution. Although rarely used in conventionalclient-server applications, polling is particularly wellsuited for scienti�c applications. For one, a scientistwould rarely want a remote server to return resultsbased on inconsistent or partially computed simu-lation data (e.g., a snapshot taken in the middleof numerical integration step). Nor would a scien-tist want the web server interface to consume somuch CPU time that it negatively a�ects applica-tion performance. Thus, polling allows a scientistto precisely control the points at which it is safe toexamine simulation data as well as the frequency atwhich the web interface will be monitored for in-coming connections. Another reason to use pollingis that on parallel machines, the web server interfacemay want to invoke functions that utilize MPI func-tions in their underlying implementation. Giventhat MPI libraries are generally not thread-safe, norcan MPI functions be used within a collection ofchild processes created with fork, it is not practi-cal to construct a web server library that supportsconcurrent operation in this environment.When requests are received by the server library,they are parsed into a URL, a collection of HTTP4



headers, and a collection of form variables if sup-plied. From this information, the library eitherissues an error message, serves data from prereg-istered �les or directories, or passes control to aregistered handler function. For handler functions,SWILL executes a user-de�ned callback functionwith the following prototype:int handler(FILE *f, void *clientdata);The �rst argument to the handler is a writable �leobject that the handler function may use to gener-ate output. The second argument is a user-de�nablevalue that is supplied by the user when the handlerfunction is �rst registered with SWILL. This argu-ment is typically used to hold objects or other ap-plication speci�c data that pertains to the outputbeing generated. For example, if an application hadan integrated visualization capability, the clientdataargument might be used to refer to a speci�c visu-alization object and used in a handler function likethis:intmake_plot(FILE *f, void *clientdata) {Plot *p = (Plot *) clientdata;draw_image(p); /* Make image */writepng(p,f); /* Write PNG file */}...main() {Plot *ke;Plot *vel;...ke = KineticPlot();vel = VelocityPlot();swill_register("ke.png", make_plot, ke);swill_register("vel.png", make_plot, vel);} When the handler function executes, all datawritten to its �le object is collected and stored bySWILL. This data may include plain text, HTML,or binary data. When the handler completes itsexecution, this data is packaged into an appropri-ately formatted HTTP response and sent back tothe browser{thus completing the request.When the swill poll() function services an in-coming request, it does not return to the caller un-til the associated handler function has completed itsexecution. Thus, the handlers have complete controlof the running simulation and full access to simula-tion data while they execute. The lack of concur-rency also eliminates the need for complicated lock-ing algorithms, assures us that only one handler will

execute at once, and makes it safe for handler func-tions to perform complex operations such as sendingmessages to other nodes in a parallel machine.6 I/O HandlingA central feature of SWILL is its I/O layer. Whenhandler functions are invoked by the server, theyare given a standard �le object. This object canbe passed to pre-existing I/O functions and usedexactly like a normal �le. The only di�erence is thatwhen common I/O operations such as fprintf(),fputs(), write(), and fwrite() are applied to thisobject, their output is intercepted by SWILL andused to generate a web page.To intercept common I/O operations, SWILL uti-lizes a feature of shared libraries that allows it to in-sert �lter functions for common library calls[12, 9].Replacements for the standard I/O functions arewritten and the dlsym() function is used to trans-parently pass control to the real implementation ofeach function as illustrated in Figure 3. To identifydata intended for display on a web page, SWILL�rst opens a dummy �le /dev/null for writing andpasses it as the �le parameter to the user de�nedhandler functions. Then, when I/O operations areperformed, the �lter functions check for the use ofthis �le object and redirects I/O to the web interfaceas necessary. In Figure 3, the swill file variablecontains a reference to a dummy �le opened priorto the execution of the handler function. Then, inthe implementation of fwrite(), a check is madeagainst this �le and I/O is redirected to a specialSWILL speci�c function as shown. Otherwise, con-trol is passed to the original fwrite() function inthe C library.Although this approach introduces an extra levelof indirection to common I/O operations, it o�ers anumber of advantages. First, the use of a dummy�le object makes it easy to add SWILL to an ex-isting application since it doesn't break the typesystem nor does it require existing code to be re-compiled (applications must be relinked with theSWILL library however). In addition, if a programperforms an un�ltered I/O operation (such as call-ing fcntl on the dummy �le object), it has no danger-ous side e�ects. Second, the use of dlsym()makes itpossible to intercept common I/O operations with-out having to worry about their underlying imple-mentation. This is important because libraries forsupporting threads or parallel I/O often providetheir own implementations of standard I/O func-tions. Provided that these libraries are packaged as5



/* fwrite filter */extern FILE *swill_file; /* Reference to handler file */ssize_tfwrite(const void *buf, size_t size, size_t nitems, FILE *stream) {typedef ssize_t (*fwritetype)(const void *, size_t, size_t, FILE *);static fwritetype real_fwrite = 0;/* Obtain the real implementation of fwrite() *//* This only executes once */if (!real_fwrite) {real_fwrite = (fwritetype) dlsym(RTLD_NEXT,"fwrite");assert(real_fwrite);}if (stream == swill_file) {/* Redirect I/O to the web page */return swill_fwrite(buf,size,nitems,stream);} else {/* Call the real fwrite function */return (*real_fwrite)(buf,size,nitems,stream);}} Figure 3: Example of a SWILL I/O �ltershared libraries and they appear after SWILL onthe link line, the I/O �lters will work regardless ofthe underlying implementation.Currently, SWILL pro-vides �lters for the printf(), fprintf(), fputs(),fputc(), fwrite(), and write() functions in theC standard library. The implementation of these�lters are similar to the code in Figure 3{adding�lters for new functions is straightforward. In addi-tion, the library allows output to standard outputto be captured as illustrated in section 4. As for theperformance impact of this approach, the use of a�lter only introduces an extra function call and ahandful of comparisons operators to each I/O op-eration. Given that applications tend to performbulk I/O operations and that I/O operations ofteninvolve a trap to the operating system kernel, thisextra overhead is negligible compared to the overallcost of performing I/O.7 Handling of HTTP MetadataOne problem with supporting a web interface isthat applications must deal with a variety of meta-data related to the HTTP connection. This infor-

mation includes content types, caching behavior,and access to form variables. There is very lit-tle than can be done to incorporate this aspect ofthe interface in the I/O model previously described.However, SWILL tries to hide as much of this com-plexity from the user as possible.For example, content types are implicitly deter-mined by �le su�xes. Thus, a handler function for\cells.txt" implies that the resulting output will beplain text whereas \cells.html" implies HTML. Sim-ilarly, binary data for dynamically generated im-ages can be speci�ed using a su�x such as �.jpgor �.png. If it is ever necessary to explicitly ac-cess or set HTTP header �elds, the following pair offunctions can be used:char *swill_getheader(char *name);void swill_setheader(char *name, char *val);Similarly, if a handler function wants to receivevariables speci�ed on an HTML form. The followingfunctions are used:char *swill_getvar(char *name);int swill_getint(char *name);double swill_getdouble(char *name);6



Thus, if a scientist wanted to write a handlerfunction that accepted input from a form, the codemight look like this:voidweb_make_plot(FILE *f, void *clientdata) {Plot *p = (Plot *) clientdata;double xmin,xmax;double ymin,ymax;xmin = swill_getdouble("xmin");xmax = swill_getdouble("xmax");ymin = swill_getdouble("ymin");ymax = swill_getdouble("ymax");make_plot(p,xmin,xmax,ymin,ymax);writepng(p,f);}8 MPI SupportOne of the most common techniques for writ-ing parallel applications is to use a SPMD-styleprogramming model where each processor executesthe same sequence of operations, but with di�erentdata. In this case, the main simulation loop re-mains unchanged except individual functions suchas compute forces() and integrate() now utilizeMPI functions.SWILL uses a similar programming model inwhich all of its internal functions are modi�ed tosupport parallelism, but the high level API remainsunchanged. Thus, if a scientist wanted to useSWILL with an MPI program, it would work thesame way as in previous examples. That is,/* Initialize MPI */MPI_Init(&argc, &argv);/* Initialize SWILL */swill_init(3737);swill_handle("stdout>cells.txt",debug_cells,0);for (i = 0; i < nsteps; i++) {compute_forces();integrate();boundary_conditions();redistribute_data();if (!(i % output_freq)) {write_output();}/* Check for connections */swill_poll();}

Internally, parallelism is handled by modify-ing the behavior of the server and its connec-tion protocol. First, although all nodes must callswill init(), the function only opens a port forincoming connections on the master node (rank 0).Second, the swill poll() function is turned intoa global operation that must be performed by allnodes. In this case, the master node polls for a in-coming connection and broadcasts a status to allof the other nodes. If no request is received, themaster sends an empty request to the nodes andswill poll() returns. If a request for a simple �leis made or the master node encounters an HTTPerror, it services the request on its own and broad-casts an empty request to the nodes. Otherwise,the master broadcasts the incoming HTTP requestto all of the other nodes at which point an appro-priate handler function is invoked. In this case, thehandler function runs in parallel where it may useMPI functions, if necessary. Once all of the handlerfunctions return, their output is gathered by themaster and concatenated to form a response. Thisprocess is illustrated in Figure 4.The implementation of SWILL's �le serving ca-pability is tailored to the SPMD model of parallelprogramming. Indeed, many applications that wehave encountered are written in a manner that ei-ther takes advantage of a shared �lesystem or by-passes the issue of where output �les reside alto-gether, by passing all output to the master nodeand performing all �le I/O there. There is an alter-native pattern of �lesystem usage, however, that,while not catered to explicitly by SWILL's �leserv-ing capability, nonetheless does not present a prob-lem to our implementation. This is the scenarioof node-dependent �le content, occasionally seen inBeowulf clusters. While there is no function for reg-istering a �le or directory in a way that will returnconcatenated copies of its contents from each node,this can be accomplished by registering a functionthat will perform that role. Thus, node-speci�c tem-porary �les and log �les can still be accessed viaa registered function that outputs their content toa SWILL-accessible �le on each or a subset of thenodes.9 Use with FrameworksAn increasing number of scientists are migratingtheir applications to scripting languages and otheradvanced simulation environments. These environ-ments tend to complicate the execution and I/Omodel of an application. Despite this, it is possi-7



HTTP Request?Node 0Node 0 Node 1 Node 2 Node 3 ... Node n?HHHHHHHjXXXXXXXXXXXXXzRequest broadcast? ? ? ? ?Execute handler function on all nodes? ? ? ? ?Node 0 Node 1 Node 2 Node 3 Node n...? ������� ������������9 Collect responsesNode 0?HTTP ResponseFigure 4: HTTP request handling with SWILL and MPIble to use SWILL in this setting. For instance, if aframework provides its own I/O abstraction layer,it may be possible to support SWILL as a new typeof I/O device. Alternatively, it may be possible torely on the I/O �ltering approach described in thispaper.
As an example, consider an application built asan extension to Python, a popular scripting lan-guage used in a wide variety of scienti�c applications[13]. If SWILL is linked to a dynamically loadablePython extension module, the SWILL I/O �ltersare still applied to the I/O procedures used by thatmodule. Thus, it is still possible to use the webinterface as before. A much more interesting situa-tion arises if the Python interpreter itself is linkedwith SWILL. In this case, I/O performed by thePython interpreter as well as I/O performed by dy-namically loadable modules can be routed throughthe �lters. In this case, it is possible to generateweb pages from I/O operations occurring in multi-ple languages. Furthermore, if a scripting interfaceto SWILL is built, it would be possible to imple-ment the handler functions as script functions thatexecute a mix of interpreted and compiled proce-dures.

10 DiscussionThe primary distinction between SWILL and pre-vious approaches to the web monitoring problemis SWILL's layering of the web-content generationonto preexisting I/O functions. However, this ap-proach requires applications to use a fairly standardI/O programming model. If a program uses a highlyspecialized or non-standard I/O API, SWILL maynot be able to capture its I/O operations. For in-stance, it may not be possible to capture operationsperformed through a parallel I/O library. On theother hand, the �les generated by such a libraryare unlikely to be of much interest through a webinterface (i.e., it is unlikely that a scientist wouldactually want to download a huge data�le throughtheir web browser on a remote machine).Another aspect of the implementation is that theI/O �ltering process requires the real implemen-tation of the I/O functions to be contained in ashared library. In practice, this is not an issue be-cause virtually all modern machines provide sharedlibrary support and bundle common system librariesas shared objects1.On the subject of performance, one major concern1There is a cult of scientists that insist on compiling theirapplications as static executables to achieve slight perfor-mance improvements. In reality, the performance gains ofstatic linking are marginal and there is very little reason todo this, given the degree to which it restricts application 
ex-ibility and extensibility.8



caused by this approach is the performance impactthe web interface might have on large parallel sys-tems. In particular, each invocation of the pollingfunction minimally involves a blocking broadcastfrom the master node. Clearly, it would be a badidea for an application to spin on the polling func-tion or to issue a polling operation every few mi-croseconds. A much more realistic implementationmight poll after every few timesteps of a simulation.In this case, the polling operation might only exe-cute every few seconds{a process that is not going toadd a signi�cant performance overhead to most ap-plications. It is also important to note that SWILLis primarily intended to support infrequent web ac-cess (i.e., a scientist periodically checking on theirsimulation). Because of this, SWILL would not beappropriate as a means for servicing thousands ofrequests during program execution. Similarly, thelibrary is not designed to support bulk data transferof huge �les through a high speed HTTP connection.Finally, it is important to note that the use ofa web interface introduces a variety of considera-tions related to security, networking, and reliability.Since SWILL relies on polling, special care needsto be given to avoid network connectivity problems.For instance, a user would not want a bad networkconnection to freeze the simulation in an in�niteI/O wait state. Similarly, a user certainly wouldn'twant their application to come under attack from anoutsider. To deal with these situations, the librarycan apply timeouts to recover from dead connec-tions. In addition, it is possible to apply basic userauthentication and IP address �ltering to incomingconnections211 Related WorkA substantial number of research projects havepreviously addressed the problem of simulationmonitoring and remote control. Much of this workcan be found in the general area of computationalsteering [11, 16]. With computational steering sys-tems, the primary focus is on adding �ne-grainedcontrol and interactivity to scienti�c systems. Todo this, applications are often instrumented withaccess points, built around data
ow systems, or im-plemented on top of a complex middleware layer[14, 15]. In certain cases, a scripting language in-2No privileged system resources or daemons are requiredby SWILL. Hence, the application server runs with user per-missions. Of course, if security is more important than sci-ence, a �rewall can be used to restrict all access (except forwhen giving a Supercomputing demo).

terface has been used to provide interactive access[7, 3]. A common aspect of these systems is thatthe interactive interface tends to be tightly coupledto the underlying application. Furthermore, a lotof this work tends to focus on high-end interactivevisualization such as that found in virtual environ-ments. If a steering system provides remote simu-lation access, it is often achieved through the useof special network protocols or a complex middle-ware layer{ thus requiring the use of special clientsoftware on the user's machine.Research in distributed computing and compu-tational grids have also addressed the problem ofremote access to simulations. For example, systemssuch as Globus and Legion provide mechanisms forcontrolling and manipulating remotely running ap-plications [8, 5]. However, much of this work tendsto focus on the problem of coordinating heteroge-neous computing resources rather than the problemof monitoring application speci�c simulation data.In certain cases, web access has been added as afeature to various application frameworks. For ex-ample, Cactus provides a web interface module thatallows certain parts of a simulation to be monitoredand controlled [6].12 Current StatusCurrently, SWILL is written to support applica-tions written in ANSI C. The implementation con-tains approximately 3000 semicolons, most of whichare related to the parsing and handling of HTTP re-quests. MPI support is isolated to a single moduleresponsible for broadcasting requests and collectingresponses. The I/O �lters are isolated to a singlemodule and require the use of the dynamic loaderand shared libraries. If necessary, SWILL can beused without the use of I/O �lter functions. How-ever, its ease of use is diminished in this con�gura-tion.In the future, it may be possible to extend theI/O �lters and the handler function mechanism tosupport programs written in Fortran and C++. ForC++, it might be possible to de�ne a new IOStreamclass that allows I/O operations to be transparentlyredirected to the SWILL library. For Fortran, onewould need to capture a di�erent set of I/O opera-tions and provide an alternative calling conventionfor the handler functions.9



13 Conclusions and AvailabilityThe use of an embedded web server is a simpleand e�ective way to provide remote access to longrunning scienti�c simulations. SWILL makes it easyto add this capability to existing software by allow-ing web pages to be dynamically generated from ex-isting I/O functionality. In addition, SWILL's sup-port for MPI simpli�es the task of interacting withsimulations running on large parallel machines andclusters.SWILL is freely available under a GPL license.More information can be obtained athttp://systems.cs.uchicago.edu/swill14 AcknowledgmentsMuch of the early work on SWILL was derivedfrom a web server interface built for the SPaSMmolecular dynamics code at Los Alamos NationalLaboratory. SPaSM is currently maintained by Pe-ter Lomdahl and Tim Germann in the theoreticalphysics division. In addition, we acknowledge MikeSliczniak for his early contributions to the SWILLproject.References[1] G. Allen, W. Benger, T. Goodale, et al, Cac-tus Grid Computing: Review of Current Devel-opment, Submitted to European Conference onParallel Computing (Euro-Par) (2001), Manch-ester 28-31.[2] D.M. Beazley and P.S. Lomdahl, Controllingthe Data Glut in Large-Scale Molecular Dy-namics Simulations, Computers in Physics,Vol. 11, No. 3. (1997), p. 230-238.[3] D.M. Beazley and P.S. Lomdahl, LightweightComputational Steering of Very Large ScaleMolecular Dynamics Simulations, in Proceed-ings of Supercomputing'96, (1996).[4] T. Boutell, gd: A Graphics Library for FastImage Creation, http://www.boutell.com/gd[5] S. Chapin, J. Karpovich, A. Grimshaw, The Le-gion Resource Management System, JSSPP'99,San Juan, Puerto Rico, (1999).

[6] T. Dramlitsch, G. Allen, E. Seidel, E�cientTechniques for Distributed Computing, Submit-ted to the Tenth IEEE International Sympo-sium on High Performance Distributed Com-puting (HPDC10), San Francisco, CA. (2001).[7] Dubois, P.F., Making Applications Pro-grammable, Computers in Physics 8, 1 (1994).p. 70-73.[8] I. Foster, C. Kesselman, S. Tuecke, TheAnatomy of the Grid: Enabling Scalable Vir-tual Organizations, (to be published in Intl. J.Supercomputer Applications, 2001).[9] R.A. Gingell, M.L. Xuong, T. Dang, M.S.Weeks, Shared Libraries in SunOS, USENIXSummer Conference. (1987).[10] W. Gropp, E. Lusk, A Skellum, UsingMPI: Portable Parallel Programming with theMessage-Passing Interface, MIT Press. (1999).[11] W. Gu, J. Vetter, K. Schwan. Computationalsteering annotated bibliography, Sigplan no-tices, 32 (6): 40-4 (June 1997).[12] J. R. Levine, Linkers & Loaders. Morgan Kauf-mann Publishers, 2000.[13] M. Lutz, Programming Python, 2nd Ed.,O'Reilly & Associates, (2001).[14] M. M. Muralidhar, Discover: An Environ-ment for Web-based Interaction and Steeringof High-Performance Scienti�c Applications,Concurrency-Practice And Experience Concur-rency. (2000).[15] S.G. Parker and C.R. Johnson, SCIRun: A Sci-enti�c Programming Environment for Compu-tational Steering, In Proceedings of Supercom-puting'95, (1995).[16] J. Vetter, K. Schwan, High Performance Com-putational Steering of Physical Simulations,Proc. Int'l Parallel Processing Symp., Geneva,pp. 128-132, (1997).
10


