An Easily Embeddable Web Server for Remote Simulation
Monitoring

David M. Beazley and Sotiria Lampoudi
Department of Computer Science
Unwversity of Chicago
Chicago, Illinois 60637
{beazley,slampoud}@cs.uchicago.edu

Abstract

We present an embedded web server library known
as SWILL (Simple Web Interface Link Library)
that facilitates the addition of a remote monitor-
ing capability to scientific applications by the scien-
tists themselves. Unlike framework-based solutions,
SWILL utilizes a collection of low-level I/0 filter
functions that make it possible to reroute nearly ar-
bitrary program output to a collection of dynamically
generated web pages. This approach not only sim-
plifies the use of the library, but makes it possible
to add an embedded web server to existing programs
with very few modifications to the source code. In
addition, the library fully supports SPMD-style MPI
programs and allows for the parallel generation of
web pages. We provide an overview of SWILL and
describe how it can be incorporated into existing sci-
entific software.

1 Introduction

For the past decade, considerable attention has
been given to the problem of building more inter-
active, extensible, and user-friendly scientific soft-
ware. For example, efforts in computational steer-
ing, distributed computing, and scripting languages
all claim to break the traditional batch processing
cycle and provide software with greater flexibility
[11, 8, 5, 3]. However, despite the success of these
efforts, the simple fact remains: large-scale produc-
tion simulations run uninterrupted for tens to hun-
dreds of hours on the largest machines available.

A common problem faced by scientists conducting
these long-running experiments is that of monitor-
ing their progress long after the interactive interface
has been detached or the program has been sub-
mitted as a batch processing job. For example, a
scientist may want to examine the simulation state

to see if a numerical instability has occurred (and
to stop the job if necessary). Similarly, it is often
useful to obtain diagnostic information or visualiza-
tions of live simulation data at intermediate stages
of the computation. In some cases, it may be use-
ful to make carefully controlled adjustments to the
running computation in some manner; for example,
a scientist might want to change the frequency at
which output files are generated or to start tracing
a parameter of interest. Unfortunately, most simu-
lation codes do not allow this sort of user interaction
after a simulation has started. In fact, in many cases
the only way to monitor a simulation is to examine
its log files or directories for the presence of new
output. Even then, it can be difficult to obtain an
accurate picture of simulation state unless files are
offloaded to another machine and examined with a
data analysis tool.

A very simple and practical solution to the moni-
toring and control problem is to instrument simula-
tion software in a way that allows users to access
the running simulation through an ordinary web
browser. For example, a simple web-based simu-
lation monitor using scripting language techniques
is briefly described in [2]. Similarly, many advanced
simulation frameworks such as Cactus now provide
special web server modules [6]. Unfortunately, the
main problem with these approaches is that their
web interfaces are often tightly coupled to the un-
derlying framework. As a result, it may be difficult
to apply this work to existing scientific software—
much of which may be home grown, adapted from
so-called “legacy” systems, or custom tailored to en-
vironments not supported by the particular frame-
work.

To address this limitation, we have developed an
easy to use library called SWILL (Simple Web In-
terface Link Library), that is designed to add an
embedded web server capability to existing scien-
tific software. Unlike framework-based solutions, a



key feature of the implementation is its minimalis-
tic API in which the output of standard I/O library
functions is intercepted and rerouted to dynamically
generated web pages. Hence, simulation functions
need not be altered to include SWILL-specific I/O
calls, as we trap their output and reroute it to the
web browser. In addition, the library fully supports
large scale message passing applications written us-
ing MPI.

2 Scientific Software

Consider the implementation of a typical scien-
tific simulation: First, there are procedures for nu-
merical integration, matrix solvers, boundary con-
ditions, initial conditions, and data management.
Next, there is a time-stepping loop that actually
runs the steps of the simulation. For example:

for (i = 0; i < nsteps; i++) {
compute_forces();
integrate();
boundary_conditions();
redistribute_data();

if (M (i % output_freq)) {
write_output();

}

Within the time-stepping loop, there are calls
to I/O functions responsible for producing check-
points, data files, images, and other types of out-
put. Finally, an application often defines a vari-
ety of debugging and diagnostic functions that are
used to help verify the correctness of the application.
These functions do not typically appear in the in-
ner simulation loop. However, they may be enabled
during application development or while debugging
simulation parameters. For example, in a molecu-
lar dynamics code, a debugging function might be
written to look at the distribution of atoms across
subcells so that a measure of load-balancing could
be obtained:

void debug_cells() {
/* Examine cell structure */

%d\n" ,max) ;
hg\n" ,avg) ;
: hd\n",nempty) ;

printf ("Max per cell :
printf ("Avg per cell :
printf ("Empty cells

A critical aspect of the implementation is that
even though execution is tightly controlled by the
time-stepping loop, a considerable amount of ad-
ditional functionality is contained within the ap-
plication. Furthermore, much of this functionality
represents the types of operations a scientist would
most want to access through a web interface. For in-
stance, even though it makes no sense to repeatedly
call a debugging function as part of the inner loop,
it may be extremely useful to periodically call such
a function from a web interface. Similarly, it may be
useful to utilize some of the existing I/O procedures
to produce on-demand snapshots of simulation data.

3 Web Servers

In order for a simulation to function as a web
server, it must create a network socket and lis-
ten for incoming HTTP requests. The form of a
typical request is shown in Figure 1. Once re-
ceived, the request is parsed into a URL, a col-
lection of HTTP headers, and a set of form vari-
ables (if any). The URL is always contained in the
first line of the request and may optionally include
URL-encoded form variable values as shown. The
HTTP headers follow the first line and are termi-
nated by a blank line. Although most of the head-
ers can be ignored, they are sometimes used to con-
trol other aspects of the connection such as caching
and authentication. For instance, in the figure, the
“Authorization:” field contains a base-64 encoded
name:password string that a server could decode to
verify the identity of a user.

To send a response back to the browser, the server
writes a set of HI'TP headers followed by the raw
data back to the client as shown in Figure 2. A min-
imal response includes information about the proto-
col, file type, and content length.

Although the implementation of a simple web
server is a straightforward exercise, it adds consid-
erable complexity to the traditional file I/O model
found in most simulations. A user implementing a
web server from scratch, has to worry about the de-
tails of network programming, parsing of requests,
decoding of special data formats, user authentica-
tion, and issues related to error handling. In ad-
dition, responses must be annotated with HTTP
metadata such as MIME types and length fields
(which for dynamically generated output, can not
be determined until after all of the output has been
created). On a parallel machine, additional imple-
mentation difficulties arise. For instance, it proba-
bly does not make sense to run an independent web



GET /foo.html7step=1000&file=dat’2E45 HTTP/1.0

Referer: http://schlitz:8080/info
Connection: Keep-Alive

User-Agent: Mozilla/4.73 [en] (X11; U; SunOS 5.8 sundu)

Pragma: no-cache
Host: schlitz:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8
Authorization: Basic ZGF2ZTpmb28xMjM=

Figure 1: Example of an HTTP request

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 17283
Connection: close
Server: SWILL/0.1

<HTML>
<HEAD>

</HTML>

Figure 2: Example of an HTTP response

server on each node of the machine due to the diffi-
culty of coordinating its operation with the parallel
execution model of the entire application. There-
fore, an application might run a server on a master
node (node 0) and have it coordinate actions with
all of the other nodes using MPI primitives. In this
case, the master node serves as a proxy responsible
for broadcasting the incoming request to the rest of
the nodes and collecting their output in a way that
allows a reasonable response to be produced.

Although a web server interface can be imple-
mented in a library, there is a tendency for such
libraries to provide their own set of dedicated I/0O
functions. This forces significant portions of the ap-
plication to be modified and results in the devel-
opment of additional code that largely mirrors the
functionality of existing I/O procedures. Clearly
this complicates software development and limits
the usefulness of the web interface since scientists
are unlikely to support two different I/O models
during the early stages of application development
(which is precisely when a remote monitoring capa-
bility is most useful).

4 SWILL Overview

SWILL takes an alternative approach to the sci-
entific web server problem. Rather than providing a
large programming API or a web-enabled problem
solving framework, it overrides the default behavior
of common I/O operations and allows already exist-
ing functions to generate web pages. For example,
to adapt our earlier example to SWILL, a scientist
could modify the simulation loop as follows:

swill_init (3737);
swill_handle("stdout>cells.txt",
debug_cells,0);

for (i = 0; i < nsteps; i++) {
compute_forces();
integrate();
boundary_conditions();
redistribute_data();

if ('(i % output_freq)) {
write_output();

3



/* Check for connections */
swill_poll();

In this example, the swill_init () function opens
a network port for receiving incoming connections.
The swill handle() function registers a docu-
ment “cells.txt” and specifies that the function
debug_cells() should be called when a request
for this document arrives. The special modifier
>stdout specifies that anything written to standard
output should be redirected to the web-page during
the execution of the handler function. Finally, the
function swill poll(), inserted into the simulation
loop, checks for incoming connections and serves re-
quests (if any).

With these minor modifications, a scientist will
find that their application has now been turned into
a simple web server. Furthermore, when they re-
quest the document “cells.txt”, they will receive the
output of debug_cells() even though no modifica-
tions were made to that function. Moreover, the sci-
entist will find that none of the default I/O behavior
of their application has been changed. For instance,
if the debug_cells () function is called from outside
the web server, its output is directed to standard
output in the normal fashion.

SWILL also provides support for more standard
types of web server operations. For example, a user
might add the following code to serve an individ-
ual file, to serve a directory of files, or to add user
authentication:

swill_init(3737);
swill_file("desc.html","./html/desc.html");
swill_directory("./htdocs");
swill_auth("beazley","pfm123");

Thus, using these functions, the web interface to
an application can be built using a collection of
static HTML files and a set of handler functions
responsible for creating dynamic output.

Although SWILL is easy to use with functions
that produce text, it is also possible to produce im-
ages using common graphics libraries. As an exam-
ple, consider the use of gd; a simple open source
graphics library for producing PNG and JPEG im-
ages [4]. To create a simple PNG image file, a sci-
entist might write a general purpose function like
this:

void

make_image (FILE *f) {
int black,white;
gdImagePtr im;

im = gdImageCreate(64,64);

black = gdImageColorAllocate(im,0,0,0);

white = gdImageColorAllocate(im,255,255,255);
gdImageLine(im,0,0,63,63,white) ;

gdImagePng(im,f);
gdImageDestroy (im) ;

This function could be used as a normal part of
the simulation loop (e.g., to produce images at pe-
riodic intervals). However, the function can also
be used in the web interface by registering it with
SWILL as follows:

swill_handle("image.png" ,make_image,0) ;

In this case, access to the document “image.png”
invokes the make_image function which create a
PNG image. This image is then be captured by
SWILL and returned as a web page—all without cre-
ating any temporary files or having to modify parts
of the gd library.

5 Execution Model

SWILL is based entirely on a polling model of ex-
ecution. In order to use the library, an application
must first initialize the library and then make ex-
plicit calls to swill poll() at selected points of
execution. Although rarely used in conventional
client-server applications, polling is particularly well
suited for scientific applications. For one, a scientist
would rarely want a remote server to return results
based on inconsistent or partially computed simu-
lation data (e.g., a snapshot taken in the middle
of numerical integration step). Nor would a scien-
tist want the web server interface to consume so
much CPU time that it negatively affects applica-
tion performance. Thus, polling allows a scientist
to precisely control the points at which it is safe to
examine simulation data as well as the frequency at
which the web interface will be monitored for in-
coming connections. Another reason to use polling
is that on parallel machines, the web server interface
may want to invoke functions that utilize MPI func-
tions in their underlying implementation. Given
that MPI libraries are generally not thread-safe, nor
can MPI functions be used within a collection of
child processes created with fork, it is not practi-
cal to construct a web server library that supports
concurrent operation in this environment.

When requests are received by the server library,
they are parsed into a URL, a collection of HTTP



headers, and a collection of form variables if sup-
plied. From this information, the library either
issues an error message, serves data from prereg-
istered files or directories, or passes control to a
registered handler function. For handler functions,
SWILL executes a user-defined callback function
with the following prototype:

int handler (FILE *f, void *clientdata);

The first argument to the handler is a writable file
object that the handler function may use to gener-
ate output. The second argument is a user-definable
value that is supplied by the user when the handler
function is first registered with SWILL. This argu-
ment is typically used to hold objects or other ap-
plication specific data that pertains to the output
being generated. For example, if an application had
an integrated visualization capability, the clientdata
argument might be used to refer to a specific visu-
alization object and used in a handler function like
this:

int

make_plot(FILE *f, void *clientdata) {
Plot *p = (Plot *) clientdata;
draw_image (p) ; /* Make image */
writepng(p,f); /* Write PNG file */

main() {
Plot
Plot

*ke;
*vel;

ke = KineticPlot();

vel = VelocityPlot();
swill_register("ke.png", make_plot, ke);
swill_register("vel.png", make_plot, vel);

When the handler function executes, all data
written to its file object is collected and stored by
SWILL. This data may include plain text, HTML,
or binary data. When the handler completes its
execution, this data is packaged into an appropri-
ately formatted HTTP response and sent back to
the browser—thus completing the request.

When the swill poll() function services an in-
coming request, it does not return to the caller un-
til the associated handler function has completed its
execution. Thus, the handlers have complete control
of the running simulation and full access to simula-
tion data while they execute. The lack of concur-
rency also eliminates the need for complicated lock-
ing algorithms, assures us that only one handler will

execute at once, and makes it safe for handler func-
tions to perform complex operations such as sending
messages to other nodes in a parallel machine.

6 I/0 Handling

A central feature of SWILL is its I/O layer. When
handler functions are invoked by the server, they
are given a standard file object. This object can
be passed to pre-existing I/O functions and used
exactly like a normal file. The only difference is that
when common I/O operations such as fprintf (),
fputs(),write(), and fwrite() are applied to this
object, their output is intercepted by SWILL and
used to generate a web page.

To intercept common I/0 operations, SWILL uti-
lizes a feature of shared libraries that allows it to in-
sert filter functions for common library calls[12, 9].
Replacements for the standard I/O functions are
written and the dl1sym() function is used to trans-
parently pass control to the real implementation of
each function as illustrated in Figure 3. To identify
data intended for display on a web page, SWILL
first opens a dummy file /dev/null for writing and
passes it as the file parameter to the user defined
handler functions. Then, when I/O operations are
performed, the filter functions check for the use of
this file object and redirects I/O to the web interface
as necessary. In Figure 3, the swill file variable
contains a reference to a dummy file opened prior
to the execution of the handler function. Then, in
the implementation of fwrite(), a check is made
against this file and I/O is redirected to a special
SWILL specific function as shown. Otherwise, con-
trol is passed to the original fwrite() function in
the C library.

Although this approach introduces an extra level
of indirection to common I/O operations, it offers a
number of advantages. First, the use of a dummy
file object makes it easy to add SWILL to an ex-
isting application since it doesn’t break the type
system nor does it require existing code to be re-
compiled (applications must be relinked with the
SWILL library however). In addition, if a program
performs an unfiltered I/O operation (such as call-
ing fentl on the dummy file object), it has no danger-
ous side effects. Second, the use of d1sym() makes it
possible to intercept common I/O operations with-
out having to worry about their underlying imple-
mentation. This is important because libraries for
supporting threads or parallel I/O often provide
their own implementations of standard I/O func-
tions. Provided that these libraries are packaged as



/* furite filter */
extern FILE *swill_file;

ssize_t

/* Reference to handler file */

fwurite(const void *buf, size_t size, size_t nitems, FILE *stream) {
typedef ssize_t (*fwritetype) (const void *, size_t, size_t, FILE x);

static fwritetype real_fwrite = 0;

/* Obtain the real implementation of fwrite() */

/* This only executes once */
if ('real_fwrite) {

real_fwrite = (fwritetype) dlsym(RTLD_NEXT,"fwrite");

assert(real_fwrite);
}
if (stream == swill_file) {
/* Redirect I/0 to the web page */

return swill_fwrite(buf,size,nitems,stream);

} else {
/* Call the real fwrite function */

return (*real_fwrite) (buf,size,nitems,stream);

Figure 3: Example of a SWILL I/O filter

shared libraries and they appear after SWILL on
the link line, the I/O filters will work regardless of
the underlying implementation.

Currently, SWILL pro-
vides filters for the printf (), fprintf (), fputs(),
fputc(), furite(), and write() functions in the
C standard library. The implementation of these
filters are similar to the code in Figure 3-adding
filters for new functions is straightforward. In addi-
tion, the library allows output to standard output
to be captured as illustrated in section 4. As for the
performance impact of this approach, the use of a
filter only introduces an extra function call and a
handful of comparisons operators to each I/O op-
eration. Given that applications tend to perform
bulk I/O operations and that I/O operations often
involve a trap to the operating system kernel, this
extra overhead is negligible compared to the overall
cost of performing I/0.

7 Handling of HTTP Metadata

One problem with supporting a web interface is
that applications must deal with a variety of meta-
data related to the HTTP connection. This infor-

mation includes content types, caching behavior,
and access to form variables. There is very lit-
tle than can be done to incorporate this aspect of
the interface in the I/O model previously described.
However, SWILL tries to hide as much of this com-
plexity from the user as possible.

For example, content types are implicitly deter-
mined by file suffixes. Thus, a handler function for
“cells.txt” implies that the resulting output will be
plain text whereas “cells.html” implies HTML. Sim-
ilarly, binary data for dynamically generated im-
ages can be specified using a suffix such as *.jpg
or x.png. If it is ever necessary to explicitly ac-
cess or set HT'TP header fields, the following pair of
functions can be used:

char *swill_getheader(char *name) ;
void swill_setheader (char *name, char *val);

Similarly, if a handler function wants to receive
variables specified on an HTML form. The following
functions are used:

char #*swill_getvar(char *name);
int swill_getint (char *name);
double swill_getdouble(char *name) ;



Thus, if a scientist wanted to write a handler
function that accepted input from a form, the code
might look like this:

void

web_make_plot (FILE *f, void *clientdata) {
Plot *p = (Plot *) clientdata;
double xmin,xmax;
double ymin,ymax;

xmin = swill_getdouble("xmin");
xmax = swill_getdouble("xmax");
ymin = swill_getdouble("ymin");
ymax = swill_getdouble("ymax") ;
make_plot (p,xmin,xmax,ymin,ymax) ;
writepng(p,f);

8 MPI Support

One of the most common techniques for writ-
ing parallel applications is to use a SPMD-style
programming model where each processor executes
the same sequence of operations, but with different
data. In this case, the main simulation loop re-
mains unchanged except individual functions such
as compute_forces() and integrate() now utilize
MPI functions.

SWILL uses a similar programming model in
which all of its internal functions are modified to
support parallelism, but the high level API remains
unchanged. Thus, if a scientist wanted to use
SWILL with an MPI program, it would work the
same way as in previous examples. That is,

/* Initialize MPI */
MPI_Init(&argc, &argv);

/* Initialize SWILL */

swill_init(3737);

swill_handle("stdout>cells.txt",
debug_cells,0);

for (i = 0; i < nsteps; i++) {
compute_forces();
integrate();
boundary_conditions();
redistribute_data();
if (M (i % output_freq)) {

write_output();

}
/* Check for connections */
swill_poll();

Internally, parallelism is handled by modify-
ing the behavior of the server and its connec-
tion protocol. First, although all nodes must call
swill init (), the function only opens a port for
incoming connections on the master node (rank 0).
Second, the swill poll() function is turned into
a global operation that must be performed by all
nodes. In this case, the master node polls for a in-
coming connection and broadcasts a status to all
of the other nodes. If no request is received, the
master sends an empty request to the nodes and
swill poll() returns. If a request for a simple file
is made or the master node encounters an HTTP
error, it services the request on its own and broad-
casts an empty request to the nodes. Otherwise,
the master broadcasts the incoming HTTP request
to all of the other nodes at which point an appro-
priate handler function is invoked. In this case, the
handler function runs in parallel where it may use
MPI functions, if necessary. Once all of the handler
functions return, their output is gathered by the
master and concatenated to form a response. This
process is illustrated in Figure 4.

The implementation of SWILL’s file serving ca-
pability is tailored to the SPMD model of parallel
programming. Indeed, many applications that we
have encountered are written in a manner that ei-
ther takes advantage of a shared filesystem or by-
passes the issue of where output files reside alto-
gether, by passing all output to the master node
and performing all file I/O there. There is an alter-
native pattern of filesystem usage, however, that,
while not catered to explicitly by SWILL’s fileserv-
ing capability, nonetheless does not present a prob-
lem to our implementation. This is the scenario
of node-dependent file content, occasionally seen in
Beowulf clusters. While there is no function for reg-
istering a file or directory in a way that will return
concatenated copies of its contents from each node,
this can be accomplished by registering a function
that will perform that role. Thus, node-specific tem-
porary files and log files can still be accessed via
a registered function that outputs their content to
a SWILL-accessible file on each or a subset of the
nodes.

9 Use with Frameworks

An increasing number of scientists are migrating
their applications to scripting languages and other
advanced simulation environments. These environ-
ments tend to complicate the execution and I/O
model of an application. Despite this, it is possi-



HTTP Request

Request broadcast

‘ Node 0 ‘ ‘ Node 1 ‘ ‘ Node 2 ‘ ‘ Node 3 ‘

Node n

l l l

Execute handler function on all nodes

l l l

l
l

‘ Node 0 ‘ ‘ Node 1 ‘ ‘ Node 2 ‘ ‘ Node 3 ‘

Node n

- ¥

Node 0

HTTP Response

’// Collect responses

Figure 4: HTTP request handling with SWILL and MPI

ble to use SWILL in this setting. For instance, if a
framework provides its own I/O abstraction layer,
it may be possible to support SWILL as a new type
of I/O device. Alternatively, it may be possible to
rely on the I/O filtering approach described in this

paper.

As an example, consider an application built as
an extension to Python, a popular scripting lan-
guage used in a wide variety of scientific applications
[13]. If SWILL is linked to a dynamically loadable
Python extension module, the SWILL I/O filters
are still applied to the I/O procedures used by that
module. Thus, it is still possible to use the web
interface as before. A much more interesting situa-
tion arises if the Python interpreter itself is linked
with SWILL. In this case, I/O performed by the
Python interpreter as well as I/O performed by dy-
namically loadable modules can be routed through
the filters. In this case, it is possible to generate
web pages from I/O operations occurring in multi-
ple languages. Furthermore, if a scripting interface
to SWILL is built, it would be possible to imple-
ment the handler functions as script functions that
execute a mix of interpreted and compiled proce-
dures.

10 Discussion

The primary distinction between SWILL and pre-
vious approaches to the web monitoring problem
is SWILL’s layering of the web-content generation
onto preexisting I/O functions. However, this ap-
proach requires applications to use a fairly standard
I/0 programming model. If a program uses a highly
specialized or non-standard I/O API, SWILL may
not be able to capture its I/O operations. For in-
stance, it may not be possible to capture operations
performed through a parallel I/O library. On the
other hand, the files generated by such a library
are unlikely to be of much interest through a web
interface (i.e., it is unlikely that a scientist would
actually want to download a huge datafile through
their web browser on a remote machine).

Another aspect of the implementation is that the
I/O filtering process requires the real implemen-
tation of the I/O functions to be contained in a
shared library. In practice, this is not an issue be-
cause virtually all modern machines provide shared
library support and bundle common system libraries
as shared objects'.

On the subject of performance, one major concern

! There is a cult of scientists that insist on compiling their
applications as static executables to achieve slight perfor-
mance improvements. In reality, the performance gains of
static linking are marginal and there is very little reason to
do this, given the degree to which it restricts application flex-
ibility and extensibility.



caused by this approach is the performance impact
the web interface might have on large parallel sys-
tems. In particular, each invocation of the polling
function minimally involves a blocking broadcast
from the master node. Clearly, it would be a bad
idea for an application to spin on the polling func-
tion or to issue a polling operation every few mi-
croseconds. A much more realistic implementation
might poll after every few timesteps of a simulation.
In this case, the polling operation might only exe-
cute every few seconds—a process that is not going to
add a significant performance overhead to most ap-
plications. It is also important to note that SWILL
is primarily intended to support infrequent web ac-
cess (i.e., a scientist periodically checking on their
simulation). Because of this, SWILL would not be
appropriate as a means for servicing thousands of
requests during program execution. Similarly, the
library is not designed to support bulk data transfer
of huge files through a high speed HT'TP connection.

Finally, it is important to note that the use of
a web interface introduces a variety of considera-
tions related to security, networking, and reliability.
Since SWILL relies on polling, special care needs
to be given to avoid network connectivity problems.
For instance, a user would not want a bad network
connection to freeze the simulation in an infinite
I/O wait state. Similarly, a user certainly wouldn’t
want their application to come under attack from an
outsider. To deal with these situations, the library
can apply timeouts to recover from dead connec-
tions. In addition, it is possible to apply basic user
authentication and IP address filtering to incoming
connections?

11 Related Work

A substantial number of research projects have
previously addressed the problem of simulation
monitoring and remote control. Much of this work
can be found in the general area of computational
steering [11, 16]. With computational steering sys-
tems, the primary focus is on adding fine-grained
control and interactivity to scientific systems. To
do this, applications are often instrumented with
access points, built around dataflow systems, or im-
plemented on top of a complex middleware layer
[14, 15]. In certain cases, a scripting language in-

2No privileged system resources or daemons are required
by SWILL. Hence, the application server runs with user per-
missions. Of course, if security is more important than sci-
ence, a firewall can be used to restrict all access (except for
when giving a Supercomputing demo).

terface has been used to provide interactive access
[7, 3]. A common aspect of these systems is that
the interactive interface tends to be tightly coupled
to the underlying application. Furthermore, a lot
of this work tends to focus on high-end interactive
visualization such as that found in virtual environ-
ments. If a steering system provides remote simu-
lation access, it is often achieved through the use
of special network protocols or a complex middle-
ware layer— thus requiring the use of special client
software on the user’s machine.

Research in distributed computing and compu-
tational grids have also addressed the problem of
remote access to simulations. For example, systems
such as Globus and Legion provide mechanisms for
controlling and manipulating remotely running ap-
plications [8, 5]. However, much of this work tends
to focus on the problem of coordinating heteroge-
neous computing resources rather than the problem
of monitoring application specific simulation data.
In certain cases, web access has been added as a
feature to various application frameworks. For ex-
ample, Cactus provides a web interface module that
allows certain parts of a simulation to be monitored
and controlled [6].

12 Current Status

Currently, SWILL is written to support applica-
tions written in ANSI C. The implementation con-
tains approximately 3000 semicolons, most of which
are related to the parsing and handling of HTTP re-
quests. MPI support is isolated to a single module
responsible for broadcasting requests and collecting
responses. The I/O filters are isolated to a single
module and require the use of the dynamic loader
and shared libraries. If necessary, SWILL can be
used without the use of I/O filter functions. How-
ever, its ease of use is diminished in this configura-
tion.

In the future, it may be possible to extend the
I/0 filters and the handler function mechanism to
support programs written in Fortran and C++. For
C++, it might be possible to define a new IOStream
class that allows I/O operations to be transparently
redirected to the SWILL library. For Fortran, one
would need to capture a different set of I/O opera-
tions and provide an alternative calling convention
for the handler functions.



13 Conclusions and Availability

The use of an embedded web server is a simple
and effective way to provide remote access to long
running scientific simulations. SWILL makes it easy
to add this capability to existing software by allow-
ing web pages to be dynamically generated from ex-
isting I/O functionality. In addition, SWILL’s sup-
port for MPI simplifies the task of interacting with
simulations running on large parallel machines and
clusters.

SWILL is freely available under a GPL license.
More information can be obtained at

http://systems.cs.uchicago.edu/swill

14 Acknowledgments

Much of the early work on SWILL was derived
from a web server interface built for the SPaSM
molecular dynamics code at Los Alamos National
Laboratory. SPaSM is currently maintained by Pe-
ter Lomdahl and Tim Germann in the theoretical
physics division. In addition, we acknowledge Mike
Sliczniak for his early contributions to the SWILL
project.

References

[1] G. Allen, W. Benger, T. Goodale, et al, Cac-
tus Grid Computing: Review of Current Devel-
opment, Submitted to European Conference on
Parallel Computing (Euro-Par) (2001), Manch-
ester 28-31.

D.M. Beazley and P.S. Lomdahl, Controlling
the Data Glut in Large-Scale Molecular Dy-
namics Simulations, Computers in Physics,
Vol. 11, No. 3. (1997), p. 230-238.

D.M. Beazley and P.S. Lomdahl, Lightweight
Computational Steering of Very Large Scale
Molecular Dynamics Simulations, in Proceed-
ings of Supercomputing’96, (1996).

[4] T. Boutell, gd: A Graphics Library for Fast
Image Creation, http://www.boutell.com/gd
[5] S. Chapin, J. Karpovich, A. Grimshaw, The Le-
gion Resource Management System, JSSPP’99,
San Juan, Puerto Rico, (1999).

10

[6] T. Dramlitsch, G. Allen, E. Seidel, Efficient
Techniques for Distributed Computing, Submit-
ted to the Tenth IEEE International Sympo-
sium on High Performance Distributed Com-
puting (HPDC10), San Francisco, CA. (2001).

Dubois, P.F., Making Applications Pro-
grammable, Computers in Physics 8, 1 (1994).
p. 70-73.

I. Foster, C. Kesselman, S. Tuecke, The
Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations, (to be published in Intl. J.
Supercomputer Applications, 2001).

(8]

[9] R.A. Gingell, M.L. Xuong, T. Dang, M.S.
Weeks, Shared Libraries in SunOS, USENIX

Summer Conference. (1987).

[10] W. Gropp, E. Lusk, A Skellum, Using
MPI: Portable Parallel Programming with the

Message-Passing Interface, MIT Press. (1999).

[11] W. Gu, J. Vetter, K. Schwan. Computational
steering annotated bibliography, Sigplan no-

tices, 32 (6): 40-4 (June 1997).

[12] J. R. Levine, Linkers & Loaders. Morgan Kauf-
mann Publishers, 2000.

[13] M. Lutz, Programming Python,
O’Reilly & Associates, (2001).

ond Ed.,

[14] M. M. Muralidhar, Discover: An Environ-
ment for Web-based Interaction and Steering
of High-Performance Scientific Applications,
Concurrency-Practice And Experience Concur-

rency. (2000).

[15] S.G. Parker and C.R. Johnson, SCIRun: A Sci-
entific Programming Environment for Compu-
tational Steering, In Proceedings of Supercom-

puting’95, (1995).

[16] J. Vetter, K. Schwan, High Performance Com-
putational Steering of Physical Simulations,
Proc. Int’l Parallel Processing Symp., Geneva,

pp. 128-132, (1997).



