
Extending and Embedding the Python
Interpreter

Release 1.6

Guido van Rossum
Fred L. Drake, Jr., editor

September 18, 2000

BeOpen PythonLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI’s License Agreement. This Agreement
together with Python 1.6 may be located on the Internet using the following unique, persistent identifier (known as a
handle): 1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Acknowledgements

The following people have contributed sections to this document: Jim Fulton, Konrad Hinsen, Chris Phoenix, and Neil
Schemenauer.

Abstract

Python is an interpreted, object-oriented programming language. This document describes how to write modules in
C or C++ to extend the Python interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed the Python interpreter in another
application, for use as an extension language. Finally, it shows how to compile and link extension modules so that they
can be loaded dynamically (at run time) into the interpreter, if the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see thePython
Tutorial. ThePython Reference Manualgives a more formal definition of the language. ThePython Library Reference
documents the existing object types, functions and modules (both built-in and written in Python) that give the language
its wide application range.

For a detailed description of the whole Python/C API, see the separatePython/C API Reference Manual.

CONTENTS

1 Extending Python with C or C++ 1
1.1 A Simple Example. 1
1.2 Intermezzo: Errors and Exceptions. 2
1.3 Back to the Example. 4
1.4 The Module’s Method Table and Initialization Function. 4
1.5 Compilation and Linkage. 6
1.6 Calling Python Functions from C. 6
1.7 Format Strings forPyArg ParseTuple() . 8
1.8 Keyword Parsing withPyArg ParseTupleAndKeywords() 11
1.9 ThePy BuildValue() Function . 12
1.10 Reference Counts. 14
1.11 Writing Extensions in C++ . 18
1.12 Providing a C API for an Extension Module. 18

2 Building C and C++ Extensions onUNIX 23
2.1 Building Custom Interpreters. 24
2.2 Module Definition Options . 24
2.3 Example . 25
2.4 Distributing your extension modules. 25

3 Building C and C++ Extensions on Windows 27
3.1 A Cookbook Approach . 27
3.2 Differences Between UNIX and Windows . 28
3.3 Using DLLs in Practice . 28

4 Embedding Python in Another Application 31
4.1 Embedding Python in C++ . 31

i

ii

CHAPTER

ONE

Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Suchextension modulescan
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C
library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header"Python.h" .

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

1.1 A Simple Example

Let’s create an extension module called ‘spam’ (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library functionsystem() .1 This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

Begin by creating a file ‘spammodule.c’. (Historically, if a module is called ‘spam’, the C file containing its imple-
mentation is called ‘spammodule.c’; if the module name is very long, like ‘spammify ’, the module name can be just
‘spammify.c’.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

All user-visible symbols defined by"Python.h" have a prefix of ‘Py’ or ‘ PY’, except those defined in standard
header files. For convenience, and since they are used extensively by the Python interpreter,"Python.h" includes
a few standard header files:<stdio.h> , <string.h> , <errno.h> , and<stdlib.h> . If the latter header file
does not exist on your system, it declares the functionsmalloc() , free() andrealloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression
‘spam.system(string) ’ is evaluated (we’ll see shortly how it ends up being called):

1An interface for this function already exists in the standard moduleos — it was chosen as a simple and straightfoward example.

1

static PyObject *
spam_system(self, args)

PyObject *self;
PyObject *args;

{
char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return Py_BuildValue("i", sts);

}

There is a straightforward translation from the argument list in Python (e.g. the single expression"ls -l") to the
arguments passed to the C function. The C function always has two arguments, conventionally namedself andargs.

Theself argument is only used when the C function implements a built-in method, not a function. In the example,self
will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the interpreter
doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The functionPyArg ParseTuple() in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can returnNULL immediately (as we saw in
the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually aNULL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variable isNULLno exception has occurred. A second global variable stores the
“associated value” of the exception (the second argument toraise). A third variable contains the stack traceback
in case the error originated in Python code. These three variables are the C equivalents of the Python variables
sys.exc type , sys.exc value andsys.exc traceback (see the section on modulesys in the Python
Library Reference). It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one isPyErr SetString() . Its arguments are an exception object and a C string. The excep-
tion object is usually a predefined object likePyExc ZeroDivisionError . The C string indicates the cause of
the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function isPyErr SetFromErrno() , which only takes an exception argument and constructs the
associated value by inspection of the global variableerrno . The most general function isPyErr SetObject() ,
which takes two object arguments, the exception and its associated value. You don’t need toPy INCREF() the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set withPyErr Occurred() . This returns the current

2 Chapter 1. Extending Python with C or C++

exception object, orNULL if no exception has occurred. You normally don’t need to callPyErr Occurred() to
see whether an error occurred in a function call, since you should be able to tell from the return value.

When a functionf that calls another functiong detects that the latter fails,f should itself return an error value (e.g.
NULLor -1). It shouldnot call one of thePyErr *() functions — one has already been called byg. f ’s caller is
then supposed to also return an error indication toits caller, againwithoutcallingPyErr *() , and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling anotherPyErr *()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr Clear() . The only time C code should callPyErr Clear() is if it doesn’t want to pass the error on
to the interpreter but wants to handle it completely by itself (e.g. by trying something else or pretending nothing
happened).

Every failingmalloc() call must be turned into an exception — the direct caller ofmalloc() (or realloc())
must callPyErr NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
PyInt FromLong()) already do this, so this note is only relevant to those who callmalloc() directly.

Also note that, with the important exception ofPyArg ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for success and-1 for failure, like UNIX system calls.

Finally, be careful to clean up garbage (by makingPy XDECREF() or Py DECREF() calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, e.g.PyExc ZeroDivisionError , which you can use directly. Of course, you should choose
exceptions wisely — don’t usePyExc TypeError to mean that a file couldn’t be opened (that should probably
bePyExc IOError). If something’s wrong with the argument list, thePyArg ParseTuple() function usually
raisesPyExc TypeError . If you have an argument whose value must be in a particular range or must satisfy other
conditions,PyExc ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file, e.g.

static PyObject *SpamError;

and initialize it in your module’s initialization function (initspam()) with an exception object, e.g. (leaving out the
error checking for now):

void
initspam()
{

PyObject *m, *d;

m = Py_InitModule("spam", SpamMethods);
d = PyModule_GetDict(m);
SpamError = PyErr_NewException("spam.error", NULL, NULL);
PyDict_SetItemString(d, "error", SpamError);

}

Note that the Python name for the exception object isspam.error . ThePyErr NewException() function may

1.2. Intermezzo: Errors and Exceptions 3

create either a string or class, depending on whether the-X flag was passed to the interpreter. If-X was used,SpamEr-
ror will be a string object, otherwise it will be a class object with the base class beingException , described in the
Python Library Referenceunder “Built-in Exceptions.”

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returnsNULL(the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set byPyArg ParseTuple() . Otherwise the string value of the argument has been copied
to the local variablecommand. This is a pointer assignment and you are not supposed to modify the string to which
it points (so in Standard C, the variablecommandshould properly be declared as ‘const char *command ’).

The next statement is a call to the UNIX function system() , passing it the string we just got from
PyArg ParseTuple() :

sts = system(command);

Our spam.system() function must return the value ofsts as a Python object. This is done using the function
Py BuildValue() , which is something like the inverse ofPyArg ParseTuple() : it takes a format string and
an arbitrary number of C values, and returns a new Python object. More info onPy BuildValue() is given later.

return Py_BuildValue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returningvoid), the corresponding Python
function must returnNone. You need this idiom to do so:

Py_INCREF(Py_None);
return Py_None;

Py None is the C name for the special Python objectNone. It is a genuine Python object rather than aNULLpointer,
which means “error” in most contexts, as we have seen.

1.4 The Module’s Method Table and Initialization Function

I promised to show howspam system() is called from Python programs. First, we need to list its name and address
in a “method table”:

4 Chapter 1. Extending Python with C or C++

static PyMethodDef SpamMethods[] = {
...
{"system", spam_system, METH_VARARGS},
...
{NULL, NULL} /* Sentinel */

};

Note the third entry (‘METH VARARGS’). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be ‘METH VARARGS’ or ‘ METH VARARGS | METHKEYWORDS’; a value
of 0 means that an obsolete variant ofPyArg ParseTuple() is used.

When using only ‘METH VARARGS’, the function should expect the Python-level parameters to be passed in as a
tuple acceptable for parsing viaPyArg ParseTuple() ; more information on this function is provided below.

TheMETH KEYWORDSbit may be set in the third field if keyword arguments should be passed to the function. In this
case, the C function should accept a third ‘PyObject * ’ parameter which will be a dictionary of keywords. Use
PyArg ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be passed to the interpreter in the module’s initialization function. The initialization function
must be namedinit name() , wherenameis the name of the module, and should be the only non-static item
defined in the module file:

void
initspam()
{

(void) Py_InitModule("spam", SpamMethods);
}

Note that for C++, this method must be declaredextern "C" .

When the Python program imports modulespam for the first time,initspam() is called. (See below for com-
ments about embedding Python.) It callsPy InitModule() , which creates a “module object” (which is inserted
in the dictionarysys.modules under the key"spam"), and inserts built-in function objects into the newly cre-
ated module based upon the table (an array ofPyMethodDef structures) that was passed as its second argument.
Py InitModule() returns a pointer to the module object that it creates (which is unused here). It aborts with a
fatal error if the module could not be initialized satisfactorily, so the caller doesn’t need to check for errors.

When embedding Python, theinitspam() function is not called automatically unless there’s an entry in the
PyImport Inittab table. The easiest way to handle this is to statically initialize your statically-linked mod-

ules by directly callinginitspam() after the call toPy Initialize() or PyMac Initialize() :

int main(int argc, char **argv)
{

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName(argv[0]);

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

And example may be found in the file ‘Demo/embed/demo.c’ in the Python source distribution.

1.4. The Module’s Method Table and Initialization Function 5

Note: Removing entries fromsys.modules or importing compiled modules into multiple interpreters within a
process (or following afork() without an interveningexec()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as ‘Modules/xxmodule.c’. This file
may be used as a template or simply read as an example. Themodulator.py script included in the source distribution
or Windows install provides a simple graphical user interface for declaring the functions and objects which a module
should implement, and can generate a template which can be filled in. The script lives in the ‘Tools/modulator/’
directory; see the ‘README’ file there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details depend on the style of dynamic loading your system uses; see the
chapters about building extension modules on UNIX (chapter 2) and Windows (chapter 3) for more information about
this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple: just place your
file (‘spammodule.c’ for example) in the ‘Modules/’ directory of an unpacked source distribution, add a line to the file
‘Modules/Setup.local’ describing your file:

spam spammodule.o

and rebuild the interpreter by runningmake in the toplevel directory. You can also runmake in the ‘Modules/’
subdirectory, but then you must first rebuild ‘Makefile’ there by running ‘makeMakefile’. (This is necessary each time
you change the ‘Setup’ file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o -lX11

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at
the implementation of the-c command line option in ‘Python/pythonmain.c’ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful toPy INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

6 Chapter 1. Extending Python with C or C++

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(dummy, args)

PyObject *dummy, *args;
{

PyObject *result = NULL;
PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {

PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;

}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;

}
return result;

}

This function must be registered with the interpreter using theMETH VARARGSflag; this is described in section 1.4,
“The Module’s Method Table and Initialization Function.” ThePyArg ParseTuple() function and its arguments
are documented in section 1.7, “Format Strings forPyArg ParseTuple() .”

The macrosPy XINCREF() andPy XDECREF() increment/decrement the reference count of an object and are
safe in the presence ofNULL pointers (but note thattempwill not be NULL in this context). More info on them in
section 1.10, “Reference Counts.”

Later, when it is time to call the function, you call the C functionPyEval CallObject() . This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no
arguments, pass an empty tuple; to call it with one argument, pass a singleton tuple.Py BuildValue() returns a
tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyEval CallObject() returns a Python object pointer: this is the return value of the Python function.PyE-
val CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new tuple was
created to serve as the argument list, which isPy DECREF()-ed immediately after the call.

The return value ofPyEval CallObject() is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow

1.6. Calling Python Functions from C 7

Py DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’tNULL. If it is, the Python function
terminated by raising an exception. If the C code that calledPyEval CallObject() is called from Python, it
should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr Clear() . For example:

if (result == NULL)
return NULL; /* Pass error back */

...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyEval CallObject() . In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
is to callPy BuildValue() . For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement of ‘Py DECREF(arglist) ’ immediately after the call, before the error check! Also note that
strictly spoken this code is not complete:Py BuildValue() may run out of memory, and this should be checked.

1.7 Format Strings for PyArg ParseTuple()

ThePyArg ParseTuple() function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

Thearg argument must be a tuple object containing an argument list passed from Python to a C function. Theformat
argument must be a format string, whose syntax is explained below. The remaining arguments must be addresses of
variables whose type is determined by the format string. For the conversion to succeed, thearg object must match the
format and the format must be exhausted.

Note that whilePyArg ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

A format string consists of zero or more “format units”. A format unit describes one Python object; it is usually
a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument toPyArg ParseTuple() . In the
following description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type
that matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should

8 Chapter 1. Extending Python with C or C++

be passed. (Use the ‘&’ operator to pass a variable’s address.)

Note that any Python object references which are provided to the caller areborrowedreferences; do not decrement
their reference count!

‘s ’ (string) [char *] Convert a Python string to a C pointer to a character string. You must not provide storage for
the string itself; a pointer to an existing string is stored into the character pointer variable whose address you
pass. The C string is null-terminated. The Python string must not contain embedded null bytes; if it does, a
TypeError exception is raised.

‘s# ’ (string) [char *, int] This variant on ‘s ’ stores into two C variables, the first one a pointer to a character string,
the second one its length. In this case the Python string may contain embedded null bytes.

‘z ’ (string or None) [char *] Like ‘s ’, but the Python object may also beNone, in which case the C pointer is set
to NULL.

‘z# ’ (string or None) [char *, int] This is to ‘s# ’ as ‘z ’ is to ‘s ’.

‘u’ (Unicode string) [Py UNICODE *] Convert a Python Unicode object to a C pointer to a null-terminated buffer
of Unicode (UCS-2) data. As with ‘s ’, there is no need to provide storage for the Unicode data buffer; a pointer
to the existing Unicode data is stored into the PyUNICODE pointer variable whose address you pass.

‘u# ’ (Unicode string) [Py UNICODE *, int] This variant on ‘u’ stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in a Cchar .

‘h’ (integer) [short int] Convert a Python integer to a Cshort int .

‘ i ’ (integer) [int] Convert a Python integer to a plain Cint .

‘ l ’ (integer) [long int] Convert a Python integer to a Clong int .

‘c ’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a Cchar .

‘ f ’ (float) [float] Convert a Python floating point number to a Cfloat .

‘d’ (float) [double] Convert a Python floating point number to a Cdouble .

‘D’ (complex) [Py complex] Convert a Python complex number to a CPy complex structure.

‘O’ (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
notNULL.

‘O! ’ (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to ‘O’, but takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable
(of typePyObject *) into which the object pointer is stored. If the Python object does not have the required
type,TypeError is raised.

‘O&’ (object) [converter, anything] Convert a Python object to a C variable through aconverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobject is the Python object to be converted andaddressis the void * argument that was passed to
PyArg ConvertTuple() . The returnedstatusshould be1 for a successful conversion and0 if the conver-
sion has failed. When the conversion fails, theconverterfunction should raise an exception.

‘S’ (string) [PyStringObject *] Like ‘O’ but requires that the Python object is a string object. RaisesTypeError
if the object is not a string object. The C variable may also be declared asPyObject * .

1.7. Format Strings for PyArg ParseTuple() 9

‘U’ (Unicode string) [PyUnicodeObject *] Like ‘O’ but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared asPyObject * .

‘ t# ’ (read-only character buffer) [char *, int] Like ‘s# ’, but accepts any object which implements the read-only
buffer interface. Thechar * variable is set to point to the first byte of the buffer, and theint is set to the
length of the buffer. Only single-segment buffer objects are accepted;TypeError is raised for all others.

‘w’ (read-write character buffer) [char *] Similar to ‘s ’, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, or use ‘w#’ instead. Only
single-segment buffer objects are accepted;TypeError is raised for all others.

‘w#’ (read-write character buffer) [char *, int] Like ‘s# ’, but accepts any object which implements the read-write
buffer interface. Thechar * variable is set to point to the first byte of the buffer, and theint is set to the
length of the buffer. Only single-segment buffer objects are accepted;TypeError is raised for all others.

‘ (items) ’ (tuple) [matching-items] The object must be a Python sequence whose length is the number of format units
in items. The C arguments must correspond to the individual format units initems. Format units for sequences
may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual pa-
rameters, not an arbitrary sequence. Code which previously causedTypeError to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

‘ | ’ Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg ParseTuple() does not touch the contents of the corresponding C variable(s).

‘ : ’ The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thatPyArg ParseTuple() raises).

‘ ; ’ The list of format units ends here; the string after the colon is used as the error messageinsteadof the default
error message. Clearly, ‘: ’ and ‘; ’ mutually exclude each other.

Some example calls:

int ok;
int i, j;
long k, l;
char *s;
int size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f(’whoops!’) */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, ’three’) */

10 Chapter 1. Extending Python with C or C++

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), ’three’) */

{
char *file;
char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f(’spam’)
f(’spam’, ’w’)
f(’spam’, ’wb’, 100000) */

}

{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:

f(((0, 0), (400, 300)), (10, 10)) */
}

{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */

}

1.8 Keyword Parsing with PyArg ParseTupleAndKeywords()

ThePyArg ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
char *format, char **kwlist, ...);

Thearg andformatparameters are identical to those of thePyArg ParseTuple() function. Thekwdictparameter
is the dictionary of keywords received as the third parameter from the Python runtime. Thekwlistparameter is aNULL-
terminated list of strings which identify the parameters; the names are matched with the type information fromformat
from left to right.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in thekwlist will causeTypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

1.8. Keyword Parsing with PyArg ParseTupleAndKeywords() 11

#include <stdio.h>
#include "Python.h"

static PyObject *
keywdarg_parrot(self, args, keywds)

PyObject *self;
PyObject *args;
PyObject *keywds;

{
int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))

return NULL;

printf("-- This parrot wouldn’t %s if you put %i Volts through it.\n",
action, voltage);

printf("-- Lovely plumage, the %s -- It’s %s!\n", type, state);

Py_INCREF(Py_None);

return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values

* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/

{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS|METH_KEYWORDS},
{NULL, NULL} /* sentinel */

};

void
initkeywdarg()
{

/* Create the module and add the functions */
Py_InitModule("keywdarg", keywdarg_methods);

}

1.9 The Py BuildValue() Function

This function is the counterpart toPyArg ParseTuple() . It is declared as follows:

PyObject *Py_BuildValue(char *format, ...);

It recognizes a set of format units similar to the ones recognized byPyArg ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable

12 Chapter 1. Extending Python with C or C++

for returning from a C function called from Python.

One difference withPyArg ParseTuple() : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally),Py BuildValue() does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returnsNone;
if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a
tuple of size 0 or one, parenthesize the format string.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python object
type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as ‘s# ’).
This can be used to make long format strings a tad more readable.

‘s ’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer isNULL, None is
returned.

‘s# ’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer isNULL, the
length is ignored andNone is returned.

‘z ’ (string or None) [char *] Same as ‘s ’.

‘z# ’ (string or None) [char *, int] Same as ‘s# ’.

‘u’ (Unicode string) [Py UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a Python Uni-
code object. If the Unicode buffer pointer isNULL, None is returned.

‘u# ’ (Unicode string) [Py UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer isNULL, the length is ignored andNone is returned.

‘u’ (Unicode string) [Py UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a Python Uni-
code object. If the Unicode buffer pointer isNULL, None is returned.

‘u# ’ (Unicode string) [Py UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer isNULL, the length is ignored andNone is returned.

‘ i ’ (integer) [int] Convert a plain Cint to a Python integer object.

‘b’ (integer) [char] Same as ‘i ’.

‘h’ (integer) [short int] Same as ‘i ’.

‘ l ’ (integer) [long int] Convert a Clong int to a Python integer object.

‘c ’ (string of length 1) [char] Convert a Cint representing a character to a Python string of length 1.

‘d’ (float) [double] Convert a Cdouble to a Python floating point number.

‘ f ’ (float) [float] Same as ‘d’.

‘O’ (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is aNULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore,Py BuildValue() will return NULLbut won’t
raise an exception. If no exception has been raised yet,PyExc SystemError is set.

‘S’ (object) [PyObject *] Same as ‘O’.

‘U’ (object) [PyObject *] Same as ‘O’.

‘N’ (object) [PyObject *] Same as ‘O’, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

1.9. The Py BuildValue() Function 13

‘O&’ (object) [converter, anything] Convertanythingto a Python object through aconverterfunction. The function
is called withanything(which should be compatible withvoid *) as its argument and should return a “new”
Python object, orNULL if an error occurred.

‘ (items) ’ (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number of items.

‘ [items] ’ (list) [matching-items] Convert a sequence of C values to a Python list with the same number of items.

‘ { items} ’ (dictionary) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, thePyExc SystemError exception is raised andNULLreturned.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") ’hello’
Py_BuildValue("ss", "hello", "world") (’hello’, ’world’)
Py_BuildValue("s#", "hello", 4) ’hell’
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",

"abc", 123, "def", 456) {’abc’: 123, ’def’: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functionsmalloc() andfree() . In C++, the operatorsnew anddelete
are used with essentially the same meaning; they are actually implemented usingmalloc() andfree() , so we’ll
restrict the following discussion to the latter.

Every block of memory allocated withmalloc() should eventually be returned to the pool of available memory by
exactly one call tofree() . It is important to callfree() at the right time. If a block’s address is forgotten but
free() is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program callsfree() for a block and then continues to use the block, it creates
a conflict with re-use of the block through anothermalloc() call. This is calledusing freed memory. It has the same
bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may
add a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to
forget to free the allocated memory block when taking this premature exit, especially when it is added later to the code.
Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all
calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running
process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having
a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use ofmalloc() andfree() , it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is calledreference counting. The principle is simple: every object contains

14 Chapter 1. Extending Python with C or C++

a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is calledautomatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to callfree() explicitly. (Another claimed advantage is an improve-
ment in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc() andfree() are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

1.10.1 Reference Counting in Python

There are two macros,Py INCREF(x) andPy DECREF(x) , which handle the incrementing and decrementing of
the reference count.Py DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in the object’stype object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to usePy INCREF(x) and Py DECREF(x)? Let’s first introduce some
terms. Nobody “owns” an object; however, you canown a referenceto an object. An object’s reference count is now
defined as the number of owned references to it. The owner of a reference is responsible for callingPy DECREF()
when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or callPy DECREF(). Forgetting to dispose of an owned reference creates
a memory leak.

It is also possible toborrow2 a reference to an object. The borrower of a reference should not callPy DECREF().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely.3

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over leaking is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in
fact disposed of it.

A borrowed reference can be changed into an owned reference by callingPy INCREF() . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (i.e., the new owner must dispose of the reference properly, as well as the previous owner).

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, e.g.PyInt FromLong() andPy BuildValue() , pass ownership
to the receiver. Even if in fact, in some cases, you don’t receive a reference to a brand new object, you still receive
ownership of the reference. For instance,PyInt FromLong() maintains a cache of popular values and can return
a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for instancePyOb-
ject GetAttrString() . The picture is less clear, here, however, since a few common routines are exceptions:

2The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3Checking that the reference count is at least 1does not work— the reference count itself could be in freed memory and may thus be reused

for another object!

1.10. Reference Counts 15

PyTuple GetItem() , PyList GetItem() , PyDict GetItem() , andPyDict GetItemString() all
return references that you borrow from the tuple, list or dictionary.

The functionPyImport AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored insys.modules .

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will usePy INCREF() to become an independent owner. There are exactly two important
exceptions to this rule:PyTuple SetItem() andPyList SetItem() . These functions take over ownership of
the item passed to them — even if they fail! (Note thatPyDict SetItem() and friends don’t take over ownership
— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by callingPy INCREF() .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is tranferred from the function to its caller.

1.10.3 Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have
to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is usingPy DECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

bug(PyObject *list) {
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */

}

This function first borrows a reference tolist[0] , then replaceslist[1] with the value0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow intoPyList SetItem() . The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined adel () method. If this class instance has a
reference count of 1, disposing of it will call its del () method.

Since it is written in Python, the del () method can execute arbitrary Python code. Could it perhaps do some-
thing to invalidate the reference toitem in bug() ? You bet! Assuming that the list passed intobug() is accessible
to the del () method, it could execute a statement to the effect of ‘del list[0] ’, and assuming this was the
last reference to that object, it would free the memory associated with it, thereby invalidatingitem .

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

16 Chapter 1. Extending Python with C or C++

no_bug(PyObject *list) {
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF(item);
PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);

}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why hisdel () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macroPy BEGIN ALLOWTHREADS, and
to re-acquire it usingPy END ALLOWTHREADS. This is common around blocking I/O calls, to let other threads
use the CPU while waiting for the I/O to complete. Obviously, the following function has the same problem as the
previous one:

bug(PyObject *list) {
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */

}

1.10.4 NULL Pointers

In general, functions that take object references as arguments do not expect you to pass themNULLpointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally returnNULLonly
to indicate that an exception occurred. The reason for not testing forNULLarguments is that functions often pass the
objects they receive on to other function — if each function were to test forNULL, there would be a lot of redundant
tests and the code would run slower.

It is better to test forNULLonly at the “source”, i.e. when a pointer that may beNULLis received, e.g. frommalloc()
or from a function that may raise an exception.

The macrosPy INCREF() and Py DECREF() do not check forNULL pointers — however, their variants
Py XINCREF() andPy XDECREF() do.

The macros for checking for a particular object type (Pytype Check()) don’t check forNULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants withNULLchecking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
neverNULL— in fact it guarantees that it is always a tuple.4

It is a severe error to ever let aNULLpointer “escape” to the Python user.
4These guarantees don’t hold when you use the “old” style calling convention — this is still found in much existing code.

1.10. Reference Counts 17

1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter)
is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter
(in particular, module initalization functions) have to be declared usingextern "C" . It is unnecessary to enclose
the Python header files inextern "C" {...} — they use this form already if the symbol ‘cplusplus ’ is
defined (all recent C++ compilers define this symbol).

1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type “collection” which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions for
direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring themstatic , of course), provide an appro-
priate header file, and document the C API. And in fact this would work if all extension modules were always linked
statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one
module may not be visible to another module. The details of visibility depend on the operating system; some systems
use one global namespace for the Python interpreter and all extension modules (e.g. Windows), whereas others require
an explicit list of imported symbols at module link time (e.g. AIX), or offer a choice of different strategies (most
Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have been
loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declaredstatic , except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in section 1.4). And it means that symbols thatshouldbe accessible
from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (i.e. pointers) from one extension module to another
one: CObjects. A CObject is a Python data type which stores a pointer (void *). CObjects can only be created
and accessed via their C API, but they can be passed around like any other Python object. In particular, they can
be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API of an extension module. Each name could get
its own CObject, or all C API pointers could be stored in an array whose address is published in a CObject. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing
the code and the client modules.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array ofvoid pointers which becomes the value of a CObject. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of thespam module from section 1.1. The functionspam.system()
does not call the C library functionsystem() directly, but a functionPySpam System() , which would of
course do something more complicated in reality (such as adding “spam” to every command). This functionPyS-
pam System() is also exported to other extension modules.

The functionPySpam System() is a plain C function, declaredstatic like everything else:

18 Chapter 1. Extending Python with C or C++

static int
PySpam_System(command)

char *command;
{

return system(command);
}

The functionspam system() is modified in a trivial way:

static PyObject *
spam_system(self, args)

PyObject *self;
PyObject *args;

{
char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command);
return Py_BuildValue("i", sts);

}

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

1.12. Providing a C API for an Extension Module 19

void
initspam()
{

PyObject *m, *d;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;
m = Py_InitModule("spam", SpamMethods);

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

/* Create a CObject containing the API pointer array’s address */
c_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);

/* Create a name for this object in the module’s namespace */
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "_C_API", c_api_object);

}

Note thatPySpam API is declaredstatic ; otherwise the pointer array would disappear wheninitspam termi-
nates!

The bulk of the work is in the header file ‘spammodule.h’, which looks like this:

20 Chapter 1. Extending Python with C or C++

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO Py_PROTO((char *command))

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule’s API */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

#define import_spam() \
{ \

PyObject *module = PyImport_ImportModule("spam"); \
if (module != NULL) { \

PyObject *module_dict = PyModule_GetDict(module); \
PyObject *c_api_object = PyDict_GetItemString(module_dict, "_C_API"); \
if (PyCObject_Check(c_api_object)) { \

PySpam_API = (void **)PyCObject_AsVoidPtr(c_api_object); \
} \

} \
}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H */

All that a client module must do in order to have access to the functionPySpam System() is to call the function
(or rather macro)import spam() in its initialization function:

1.12. Providing a C API for an Extension Module 21

void
initclient()
{

PyObject *m;

Py_InitModule("client", ClientMethods);
import_spam();

}

The main disadvantage of this approach is that the file ‘spammodule.h’ is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional functionality, which is especially useful for mem-
ory allocation and deallocation of the pointer stored in a CObject. The details are described in thePython/C API
Reference Manualin the section “CObjects” and in the implementation of CObjects (files ‘Include/cobject.h’ and
‘Objects/cobject.c’ in the Python source code distribution).

22 Chapter 1. Extending Python with C or C++

CHAPTER

TWO

Building C and C++ Extensions on UNIX

Starting in Python 1.4, Python provides a special make file for building make files for building dynamically-linked
extensions and custom interpreters. The make file make file builds a make file that reflects various system variables
determined by configure when the Python interpreter was built, so people building module’s don’t have to resupply
these settings. This vastly simplifies the process of building extensions and custom interpreters on Unix systems.

The make file make file is distributed as the file ‘Misc/Makefile.pre.in’ in the Python source distribution. The first step
in building extensions or custom interpreters is to copy this make file to a development directory containing extension
module source.

The make file make file, ‘Makefile.pre.in’ uses metadata provided in a file named ‘Setup’. The format of the ‘Setup’
file is the same as the ‘Setup’ (or ‘ Setup.in’) file provided in the ‘Modules/’ directory of the Python source distribution.
The ‘Setup’ file contains variable definitions:

EC=/projects/ExtensionClass

and module description lines. It can also contain blank lines and comment lines that start with ‘#’.

A module description line includes a module name, source files, options, variable references, and other input files,
such as libraries or object files. Consider a simple example:

ExtensionClass ExtensionClass.c

This is the simplest form of a module definition line. It defines a module,ExtensionClass , which has a single
source file, ‘ExtensionClass.c’.

This slightly more complex example uses an-I option to specify an include directory:

EC=/projects/ExtensionClass
cPersistence cPersistence.c -I$(EC)

This example also illustrates the format for variable references.

For systems that support dynamic linking, the ‘Setup’ file should begin:

shared

to indicate that the modules defined in ‘Setup’ are to be built as dynamically linked modules. A line containing only
‘*static* ’ can be used to indicate the subsequently listed modules should be statically linked.

Here is a complete ‘Setup’ file for building acPersistent module:

23

Set-up file to build the cPersistence module.
Note that the text should begin in the first column.
shared

We need the path to the directory containing the ExtensionClass
include file.
EC=/projects/ExtensionClass
cPersistence cPersistence.c -I$(EC)

After the ‘Setup’ file has been created, ‘Makefile.pre.in’ is run with the ‘boot ’ target to create a make file:

make -f Makefile.pre.in boot

This creates the file, Makefile. To build the extensions, simply run the created make file:

make

It’s not necessary to re-run ‘Makefile.pre.in’ if the ‘ Setup’ file is changed. The make file automatically rebuilds itself
if the ‘Setup’ file changes.

2.1 Building Custom Interpreters

The make file built by ‘Makefile.pre.in’ can be run with the ‘static ’ target to build an interpreter:

make static

Any modules defined in the Setup file before the ‘*shared* ’ line will be statically linked into the interpreter. Typi-
cally, a ‘*shared* ’ line is omitted from the Setup file when a custom interpreter is desired.

2.2 Module Definition Options

Several compiler options are supported:

Option Meaning
-C Tell the C pre-processor not to discard comments
-Dname=value Define a macro
-Idir Specify an include directory,dir
-Ldir Specify a link-time library directory,dir
-Rdir Specify a run-time library directory,dir
-llib Link a library, lib
-Uname Undefine a macro

Other compiler options can be included (snuck in) by putting them in variables.

Source files can include files with ‘.c’, ‘ .C’, ‘ .cc’, ‘ .cpp’, ‘ .cxx’, and ‘.c++’ extensions.

Other input files include files with ‘.a’, ‘ .o’, ‘ .sl’, and ‘.so’ extensions.

24 Chapter 2. Building C and C++ Extensions on UNIX

2.3 Example

Here is a more complicated example from ‘Modules/Setup.in’:

GMP=/ufs/guido/src/gmp
mpz mpzmodule.c -I$(GMP) $(GMP)/libgmp.a

which could also be written as:

mpz mpzmodule.c -I$(GMP) -L$(GMP) -lgmp

2.4 Distributing your extension modules

When distributing your extension modules in source form, make sure to include a ‘Setup’ file. The ‘Setup’ file should
be named ‘Setup.in’ in the distribution. The make file make file, ‘Makefile.pre.in’, will copy ‘ Setup.in’ to ‘ Setup’.
Distributing a ‘Setup.in’ file makes it easy for people to customize the ‘Setup’ file while keeping the original in
‘Setup.in’.

It is a good idea to include a copy of ‘Makefile.pre.in’ for people who do not have a source distribution of Python.

Do not distribute a make file. People building your modules should use ‘Makefile.pre.in’ to build their own make file.
A ‘ README’ file included in the package should provide simple instructions to perform the build.

Work is being done to make building and installing Python extensions easier for all platforms; this work in likely to
supplant the current approach at some point in the future. For more information or to participate in the effort, refer to
http://www.python.org/sigs/distutils-sig/ on the Python Web site.

2.3. Example 25

26

CHAPTER

THREE

Building C and C++ Extensions on
Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the UNIX programmer interested in producing software
which can be successfully built on both UNIX and Windows.

3.1 A Cookbook Approach

This section provides a recipe for building a Python extension on Windows.

Grab the binary installer fromhttp://www.python.org/ and install Python. The binary installer has all of the required
header files except for ‘config.h’.

Get the source distribution and extract it into a convenient location. Copy the ‘config.h’ from the ‘PC/’ directory into
the ‘include/’ directory created by the installer.

Create a ‘Setup’ file for your extension module, as described in chapter 2.

Get David Ascher’s ‘compile.py’ script from http://starship.python.net/crew/da/compile/. Run the script to create Mi-
crosoft Visual C++ project files.

Open the DSW file in Visual C++ and selectBuild .

If your module creates a new type, you may have trouble with this line:

PyObject_HEAD_INIT(&PyType_Type)

Change it to:

PyObject_HEAD_INIT(NULL)

and add the following to the module initialization function:

MyObject_Type.ob_type = &PyType_Type;

Refer to section 3 of the Python FAQ (http://www.python.org/doc/FAQ.html) for details on why you must do this.

27

3.2 Differences Between UNIX and Windows

UNIX and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In UNIX , a shared object (‘.so’) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (‘.dll’) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory;
instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the
functions and data.

In UNIX , there is only one type of library file (‘.a’) which contains code from several object files (‘.o’). During the
link step to create a shared object file (‘.so’), the linker may find that it doesn’t know where an identifier is defined.
The linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object
file.

In Windows, there are two types of library, a static library and an import library (both called ‘.lib’). A static library is
like a UNIX ‘ .a’ file; it contains code to be included as necessary. An import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker
uses the information from the import library to build the lookup table for using identifiers that are not included in the
DLL. When an application or a DLL is linked, an import library may be generated, which will need to be used for all
future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On UNIX ,
you wouldnot pass ‘A.a’ to the linker for ‘B.so’ and ‘C.so’; that would cause it to be included twice, so that B and C
would each have their own copy. In Windows, building ‘A.dll’ will also build ‘A.lib’. You do pass ‘A.lib’ to the linker
for B and C. ‘A.lib’ does not contain code; it just contains information which will be used at runtime to access A’s
code.

In Windows, using an import library is sort of like using ‘import spam ’; it gives you access to spam’s names, but
does not create a separate copy. On UNIX , linking with a library is more like ‘from spam import * ’; it does
create a separate copy.

3.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland seems
to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pass ‘python15.lib’ to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/python15.lib
cl /LD /I/python/include ni.c spam.lib ../libs/python15.lib

The first command created three files: ‘spam.obj’, ‘ spam.dll’ and ‘spam.lib’. ‘ Spam.dll’ does not contain any Python
functions (such asPyArg ParseTuple()), but it does know how to find the Python code thanks to ‘python15.lib’.

The second command created ‘ni.dll’ (and ‘.obj’ and ‘.lib’), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able

28 Chapter 3. Building C and C++ Extensions on Windows

to see your identifiers, you have to say ‘declspec(dllexport) ’, as in ‘void declspec(dllexport)
initspam(void) ’ or ‘ PyObject declspec(dllexport) *NiGetSpamData(void) ’.

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specifyignore default libraries. Add the
correct ‘msvcrtxx.lib’ to the list of libraries.

3.3. Using DLLs in Practice 29

30

CHAPTER

FOUR

Embedding Python in Another Application

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have
nothing to do with Python — instead, some parts of the application occasionally call the Python interpreter to run
some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the functionPy Initialize() (on
MacOS, callPyMac Initialize() instead). There are optional calls to pass command line arguments to Python.
Then later you can call the interpreter from any part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun SimpleString() , or you can pass a stdio file pointer and a file name (for identification in error messages
only) toPyRun SimpleFile() . You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

A simple demo of embedding Python can be found in the directory ‘Demo/embed/’ of the source distribution.

4.1 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and
link your program. There is no need to recompile Python itself using C++.

31

	1 Extending Python with C or C++
	1.1 A Simple Example
	1.2 Intermezzo: Errors and Exceptions
	1.3 Back to the Example
	1.4 The Module's Method Table and Initialization Function
	1.5 Compilation and Linkage
	1.6 Calling Python Functions from C
	1.7 Format Strings for PyArgprotect unhbox voidb@x kern .06emvbox {hrule width.55em}ParseTuple()
	1.8 Keyword Parsing with PyArgprotect unhbox voidb@x kern .06emvbox {hrule width.55em}ParseTupleAndKeywords()
	1.9 The Pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}BuildValue() Function
	1.10 Reference Counts
	1.10.1 Reference Counting in Python
	1.10.2 Ownership Rules
	1.10.3 Thin Ice
	1.10.4 NULL Pointers

	1.11 Writing Extensions in C++
	1.12 Providing a C API for an Extension Module

	2 Building C and C++ Extensions on Unix
	2.1 Building Custom Interpreters
	2.2 Module Definition Options
	2.3 Example
	2.4 Distributing your extension modules

	3 Building C and C++ Extensions on Windows
	3.1 A Cookbook Approach
	3.2 Differences Between Unix and Windows
	3.3 Using DLLs in Practice

	4 Embedding Python in Another Application
	4.1 Embedding Python in C++

