Python/C API Reference Manual
Release 2.1.1

Guido van Rossum
Fred L. Drake, Jr., editor

July 20, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C anid-@rogrammers who want to write extension modules or embed
Python. It is a companion tBxtending and Embedding the Python Interpretenich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

Introduction 1
1.1 Include Files. o e 1
1.2 Objects, Typesand Reference Counts ittt 2
1.3 EXCEPLIONS. o e e e 5
1.4 Embedding Python e 7
The Very High Level Layer 9
Reference Counting 11
Exception Handling 13
4.1 Standard EXCeptions e e 16
4.2 Deprecation of String EXceptions e 17
Utilities 19
5.1 OSULIIES e e 19
5.2 ProcessControl. e 19
5.3 Importing Modules e e e 20
Abstract Objects Layer 23
6.1 ObjectProtocol e e 23
6.2 Number Protocol e e 25
6.3 Sequence Protocal L e 28
6.4 Mapping Protocol. e 30
Concrete Objects Layer 31
7.1 Fundamental Objects. 31
7.2 Numeric Objects. 32
7.3 Sequence Objects. e e 34
7.4 Mapping Objects e e e 47
7.5 OtherObjects e 48
Initialization, Finalization, and Threads 53
8.1 Thread State and the Global InterpreterLack 56
Memory Management 61
9.1 OVEIVIEW . . o ot e e e e e e e 61
9.2 MemoryInterface L e e e e e e 62
9.3 EXamples e e e e 62

10 Defining New Object Types

10.1 Common Object StrUCtUreS o o o e e e e e e e e
10.2 Mapping Object STrUCTUreS. o e e e
10.3 Number Object StruCtures o o e e
10.4 Sequence ObjeCt SIrUCtUresS. o 0 i i e e e e e e
10.5 Buffer Object Structures i e e e
10.6 Supporting Cyclic Garbarge Collection. e

A Reporting Bugs

B History and License

B.1 Historyofthesoftware e

B.2 Terms and conditions for accessing or otherwise using Python

Index

65
66
67
67
67
67
68

73

75
75
75

79

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to ae@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> | <string.h> |, <errno.h> , <lim-
its.h> |, and<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or * _Py’. Names beginning with ‘Py’ are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin vth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional hames beginning
with one of these prefixes.

The header files are typically installed with Python. Omix, these are located in the directories
“prefix/include/pythonversion’ and ‘exec_prefix/include/pythonversior’, where prefix and exeqrefix are defined by
the corresponding parameters to Pythardsfigure script andversionis sys.version][:3] . On Windows, the
headers are installed iprefix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest.plxce
the parent directories on the search path and ther#iselude <python2.1/Python.h> ’; this will break on

multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API frémn C

1.2 Obijects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value BytYpgct* . This typeis

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typyObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicdfyTstpe©bject

objects.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., aninteger, a list, or a user-defined function; there are many more as explain€&ythdneReference
Manua)). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use thePyadCREF() to increment

an object’s reference count by one, aRy_DECREF() to decrement it by one. ThRy_DECREF() macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assunsiggof(long) >= sizeof(char*)). Thus, the

reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),

so almost any operation is potentially dangerous.

2 Chapter 1. Introduction

A safe approach is to always use the generic operations (functions whose name beginBy@itjett _’,
‘PyNumber_’, ‘PySequence _' or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tdPyalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C APl is best explained in teowsefship of references

Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create th€ltu@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setitem(t, 1, PyInt_FromLong(2L));
PyTuple_Setitem(t, 2, PyString_FromString(“three"));

Incidentally, PyTuple _Setltem() is theonly way to set tuple itemsPySequence _Setltem() and Py-
Object _Setltem() refuse to do this since tuples are an immutable data type. You should onlyydse
ple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written uditydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *I, *x;

| = PyList_New(3);

X = PylInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = Pyint_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(X);
X = PyString_FromsString(“three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fulgtioBuildValue() , that can

create most common objects from C values, directed toyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

1.2. Objects, Types and Reference Counts 3

PyObject *t, *I;

t
I

Py_BuildValue("(iis)", 1, 2, "three");
Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1,
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you
call only —the plumagethe type of the type of the object passed as an argument to the fundtiesih't enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usihgsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

4 Chapter 1. Introduction

long sum_list(PyObject *list)

{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

long sum_sequence(PyObject *sequence)

int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise

1.3. Exceptions 5

exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fly&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Bygr _SetString()

is the most common (though not the most general) function to set the exception sta@yfand Clear() clears

the exception state.

The full exception state consists of three objects (all of which caNWBkL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Python sysbgects _type

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent the
last exception being handled by a Pythton ... except statement, while the C level exception state only exists
while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main
loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsaorthesequence() example above.

It so happens that that example doesn'’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
/* Handle KeyError only: */
if (IPyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pyint_FromLong(OL);
if (item == NULL)
goto error;

}
const_one = Pyint_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py_XDECREF(const_one);

Py XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of dgbo statement in C! It illustrates the use d?y-

Err _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNidLL (note the X' in the name;Py_DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedXo(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter

1.4. Embedding Python 7

can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin ~ __, __main __ andsys . It also initializes the module search padlyg.path).
Py _Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code

that will be executed later, it must be set explicitly with a calPgSys _SetArgv(argc, argv) subsequent to the
call to Py_Initialize()

On most systems (in particular, on Nk and Windows, although the details are slightly different),

Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory nantieghython2.1’ relative to the parent directory where

the executable namegython’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found Mmsr/local/bin/python’, it will assume that the libraries are in
‘lusrflocal/lib/python2.1’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calRygSetProgramName(file) before calling

Py _Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-

fined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy _lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by caltggFinalize() . The functionPy _lsInitialized()

returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input , Py_file _input , andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions teffEE* parameters. On particular issue which needs to be handled
carefully is that theFILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C prowant)’'s
function. It is important to note that the argument list may be modified (but the contents of the strings pointed to
by the argument list are not). The return value will be the integer passed $gdtexit() function,1 if the
interpreter exits due to an exception,if the parameter list does not represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, char *filenam¢
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value odPyRun_InteractiveLoop() , otherwise return the result 8fyRun_SimpleFile()
If filenameis NULL, this function use&???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code froommandn the __main __ module. If __main __ does not already
exist, it is created. Returrson success ol if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenamé
Similar to PyRun_SimpleString() , but the Python source code is read fréminstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive deYilsmarfieis NULL,
"???" is used instead. The user will be prompted usigg.psl andsys.ps2 . ReturnsO) when the input
was executed successfully, if there was an exception, or an error code from taecode.h’ include file
distributed as part of Python in case of a parse error. (Note ¢habtle.h’ is not included by Python.h’, so
must be included specifically if needed.)

int PyRun_lInteractiveLoop (FILE *fp, char *filenamé
Read and execute statements from a file associated with an interactive deviegoasilreached. Ifilename
is NULL, "???" is used instead. The user will be prompted usipg.psl andsys.ps2 . Return) ateOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fraain using the start tokestart. The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int stait
Similar toPyParser _SimpleParseString() , but the Python source code is read frépnnstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeisit bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Return valueNNew reference
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shottg leeal _input ,
Py_file _input ,orPy_single _input . The filename specified dilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retuMBLL if the code
cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for us@yitompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single _input

The start symbol from the Python grammar for a single statement; for us@witGompileString() . This
is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py

Py_INCREH PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

Py_XINCREKR PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

Py_DECREF PyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a__del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

Py_XDECREFPyObject *9
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asRyr_DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter corePy_Dealloc()
ForgetReference() , _Py_NewReference() ,as well as the global variablePy_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat likentive &frno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidlly if they are supposed to

return a pointer, orl if they return an integer (exception: tiRyArg _Parse*() functions returnl for success

andO for failure). When a function must fail because some function it called failed, it generally doesn't set the error
indicator; the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vasghlesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PYErmr _Print ()
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return valueBorrowed reference
Test whether the error indicator is set. If set, return the excepyioa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returlNULL You do not own a
reference to the return value, so you do not neeéiytoDECREF() it. Note: Do not compare the return value
to a specific exception; useyErr _ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the case of a class exception, or it may
the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq '. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr _GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclasseKcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**tb
Under certain circumstances, the values returneeyirr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback

13

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tlULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may NeJLL even when the type object is ndiote: This function is normally

only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator
temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not passldLL type and norNULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object: you must own a reference to each object before the call and after the call you
no longer own these references. (If you don’t understand this, don't use this function. | warned\yoer.)
This function is normally only used by code that needs to save and restore the error indicator temporarily.

void PYErmr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message,; it is converted to a string object.

void PYErmr _SetObject (PyObject *type, PyObject *val)e
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception. You need not increment its reference count.

PyObject* PyErr _Format (PyObject *exception, const char *format)...

Return valueAlwaysNULL
This function sets the error indicat@xceptiorshould be a Python exception (string or class, not an instance).
format should be a string, containing format codes, similaptimtf . The width.precision before a

format code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aimt parameter

‘d’ Number in decimal, as ant parameter

‘X' Number in hexadecimal, as amt parameter
‘X' A string, as a&char * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

A new reference is returned, which is owned by the caller.

void PyErr _SetNone (PyObiject *typg
This is a shorthand foPyErr _SetObject(type Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
Return value:AlwaysNULL
Thisis a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLso an object allocation
function can writeteturn PyErr _NoMemory(); ’when it runs out of memory.

PyObject* PyErr _SetFromErrno (PyObject *typé
Return valueAlwaysNULL
This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the integyano value and whose second item
is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type
objec) . On UNIX, when theerrno value iSEINTR, indicating an interrupted system call, this cdhg-
Err _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns

14 Chapter 4. Exception Handling

NULL, so a wrapper function around a system call can wrigeurn PyErr _SetFromErrno(); "when
the system call returns an error.

PyObject* PyErr _SetFromErrmoWithFilename (PyObject *type, char *filename

void

int

int

int

void

Similar toPyErr _SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@BEsor andOSError , this
is used to define thilename attribute of the exception instance.

PyErr _BadInternalCall 0
This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

PyErr _Warn(PyObject *category, char *message
Issue a warning message. Toategoryargument is a warning category (see belowNasLL; the message
argument is a message string.

This function normally prints a warning messageste.stdery however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valueisf no exception is raised, ot

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (e.d?y_DECREF() owned references and return an error value).

Warning categories must be subclassesWidrning ; the default warning category iRuntimeWarn-
ing . The standard Python warning categories are available as global variables whose narRgExre
followed by the Python exception name. These have the ®p®bject* ; they are all class ob-
jects. Their names arByExc _Warning , PyExc _UserWarning , PyExc _DeprecationWarning
PyExc _SyntaxWarning , and PyExc _RuntimeWarning . PyExc_Warning is a subclass of
PyExc _Exception ; the other warning categories are subclassé®y@ixc _Warning .

For information about warning control, see the documentation fowiraings module and theW option in
the command line documentation. There is no C API for warning control.

PyErr _WarnExplicit (PyObject *category, char *message, char *filename, int lineno, char *module, PyObject *rggis
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper

around the Python functiowarnings.warn _explicit() , see there for more information. Tineodule
andregistryarguments may be set MULL to get the default effect described there.

PyErr _CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSEBINT is to raise theKeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function rétuotiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr _Setinterrupt 0
This function is obsolete. It simulates the effect ofS&GINT signal arriving — the next timePy-
Err _CheckSignals() is called, Keyboardinterrupt will be raised. It may be called without holding
the interpreter lock.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict

Return valueNew reference

This utility function creates and returns a new exception object. nEmeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normallMULL This
creates a class object derived from the root for all exceptions, the built-in Baosption (accessible in C as
PyExc _Exception). The__module __ attribute of the new class is set to the first part (up to the last dot)
of thenameargument, and the class name is set to the last part (after the last dotha3émgument can be
used to specify an alternate base class. dibeargument can be used to specify a dictionary of class variables

15

and methods.

void PyErr _WriteUnraisable

(PyObject *ob)

This utility function prints a warning messagedgs.stdermwwhen an exception has been set but it is impossible
for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del __ method.

The function is called with a single argumeutbj that identifies where the context in which the unraisable

exception occurred. The repr obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose namegtxe ' followed by the Python
exception name. These have the typgObject*

variables:

Notes:

(1) This is a base class for other standard exceptions.

; they are all class objects. For completeness, here are all the

C Name Python Name Notes
PyExc _Exception Exception Q)
PyExc _StandardError StandardError Q)
PyExc _ArithmeticError ArithmeticError 1)
PyExc _LookupError LookupError Q)
PyExc _AssertionError AssertionError

PyExc _AttributeError AttributeError

PyExc _EOFError EOFError

PyExc _EnvironmentError EnvironmentError 1)
PyExc _FloatingPointError FloatingPointError

PyExc _IOError IOError

PyExc _ImportError ImportError

PyExc _IndexError IndexError

PyExc _KeyError KeyError

PyExc _KeyboardInterrupt KeyboardInterrupt

PyExc _MemoryError MemoryError

PyExc _NameError NameError

PyExc _NotImplementedError NotlmplementedError

PyExc _OSError OSError

PyExc _OverflowError OverflowError

PyExc _RuntimeError RuntimeError

PyExc _SyntaxError SyntaxError

PyExc _SystemError SystemError

PyExc _SystemExit SystemExit

PyExc _TypeError TypeError

PyExc _ValueError ValueError

PyExc _WindowsError WindowsError (2)

PyExc _ZeroDivisionError

ZeroDivisionError

(2) Only defined on Windows; protect code that uses this by testing that the preprocessoMBadftiNDOWE

defined.

16

Chapter 4. Exception Handling

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Erogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

4.2. Deprecation of String Exceptions 17

18

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and constructing Python
values from C values.

5.1 OS Utilities

int Py_FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard I/O fipavith namefilenames deemed interactive. This is the case for files

for which ‘isatty(fileno(fp)) ’is true. If the global flag?y _InteractiveFlag is true, this function
also returns true if théilenamepointer isNULL or if the name is equal to one of the stringstdin>’ or
2?7

long PyOS GetlLastModificationTime (char *filenamé

Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIKs defined (currently on Windows using the Microsoft Visual C++ compiler and on the
Macintosh).USE_CHECKSTACMiIll be defined automatically; you should never change the definition in your
own code.

PyOS sighandler _t PyOS getsig (inti)
Return the current signal handler for signalThis is a thin wrapper around eithgigaction or signal
Do not call those functions directhPyOS_sighandler _t is a typedef alias fovoid (*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)
Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction orsignal . Do not call those functions directhf?yOS sighandler _t is a typedef alias for
void (*)(int)

5.2 Process Control

void Py_FatalError (char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when

19

the object administration appears to be corrupted. @mxUthe standard C library functicabort() s called
which will attempt to produce abre’ file.

void Py_Exit (intstatu3
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug.

int Py_AtExit (void (*func) ()
Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returnsl . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be callefitg

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *nameg
Return valueNew reference
This is a simplified interface t®ylmport _lmportModuleEx() below, leaving theglobals and locals
arguments set tBlULL. When thenameargument contains a dot (when it specifies a submodule of a package),
thefromlistargument is set to the li§t’] so that the return value is the named module rather than the top-
level package containing it as would otherwise be the case. (Unfortunately, this has an additional side effect
whennamein fact specifies a subpackage instead of a submodule: the submodules specified in the package’s
__all __variable are loaded.) Return a new reference to the imported modN&Jldrwith an exception set
on failure (the module may still be created in this case — exasysanodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *fron)list
Return valueNNew reference
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packagelLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmettigtyvas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes themport __()
function from the__builtins __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelsgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python funetimed() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *nameg
Return value Borrowed reference
Return the module object corresponding to a module name.n@iheargument may be of the forpack-
age.module). First check the modules dictionary if there’s one there, and if not, create a new one and insert
in in the modules dictionary. Warning: this function does not load or import the module; if the module wasn't al-
ready loaded, you will get an empty module object. Bgémport _ImportModule() or one of its variants
to import a module. ReturNULL with an exception set on failure.

20 Chapter 5. Utilities

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiocompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). (This
function would reload the module if it was already imported.)

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgicand ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (a.kys.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char*, char*)
For internal use only.

PyObject* _Pylmport _FixupExtension (char*, char *)
For internal use only.

int Pylmport _ImportFrozenModule (char *namg
Load a frozen module namathme Returnl for success if the module is not found, anel with an
exception set if the initialization failed. To access the imported module on a successful lodeylose
port _ImportModule() . (Note the misnomer — this function would reload the module if it was already
imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated [iedhe utility (see
‘Tools/freeze/!’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

b

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to point to an array stfuct ~ _frozen records, terminated by one whose members
are allNULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper &ylumd
port _Extendlnittab() , returning-1 if the table could not be extended. The new module can be imported
by the namename and uses the functianitfunc as the initialization function called on the first attempted im-
port. This should be called befoRy _Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of

5.3. Importing Modules 21

int

these structures in conjunction wilylmport _ExtendInittab() to provide additional built-in modules.
The structure is defined imnclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

}

Pylmport _Extendlnittab ('struct_inittab *newtab

Add a collection of modules to the table of built-in modules. THesvtabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success o1l if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfoheitialize()

22

Chapter 5. Utilities

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWiIf given, thestr() of the object is written instead of
therepr()

int PyObject _HasAttrString (PyObject *o, char *attr namé
Returnsl if o has the attributattr_name and O otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr nam¢
Return valueNew reference
Retrieve an attribute nameditr_namefrom objecto. Returns the attribute value on succes$\\bOLLon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname
Returnsl if o has the attributattr_name and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnameg
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\bt Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V'

int PyObject _SetAttr (PyObject*o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr namé
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnamg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python

23

statementdel o. attr_namé.

int PyObject _Cmyf PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided byl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returned@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(01, 02"

int PyObject _Compare(PyObject *0l1, PyObject *oR
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressiogpr(o) '. Called by therepr() built-in function and by reverse
guotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucadki,Lon failure. This
is the equivalent of the Python expressistr(0) '. Called by thestr() built-in function and by therint
statement.

PyObject* PyObject _Unicode (PyObject*g
Compute a Unicode string representation of objecReturns the Unicode string representation on success,
NULL on failure. This is the equivalent of the Python expressiamistr(0)’. Called by theunistr()
built-in function.

int PyObject _Isinstance (PyObiject *inst, PyObject *cls
Returnl if instis an instance of the clasts or a subclass dfls. If clsis a type object rather than a class object,
PyObject _lsInstance() returnsl if instis of typecls. If instis not a class instance ants is neither a
type object or class objedhst must have a__class __ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object® is a subclass oA if it inherits from A

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testindifs a subclass oA, if Ais B, PyObject _IsSubclass() returns

true. If A andB are different objectsB’'s __bases __ attribute is searched in a depth-first fashion for— the
presence of the_bases __ attribute is considered sufficient for this determination.

int PyObject _IsSubclass (PyObject *derived, PyObject *¢Js
Returnsl if the classderivedis identical to or derived from the classs, otherwise returng. In case of an
error, returnsl . If eitherderivedor clsis not an actual class object, this function uses the generic algorithm
described above. New in version 2.1.

int PyCallable _Check (PyObject *q
Determine if the object is callable. Returr if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args
Return valueNew reference
Call a callable Python objedallable_object with arguments given by the tupbrgs If no arguments are
needed, themrgs may beNULL Returns the result of the call on successNafLL on failure. This is the
equivalent of the Python expressiapply(callable_object args) '.

PyObject* PyObject _CallFunction (PyObject *callable_object, char *format, .).
Return valueNew reference
Call a callable Python objedtallable_object with a variable number of C arguments. The C arguments are

24 Chapter 6. Abstract Objects Layer

described using ®#y_BuildValue() style format string. The format may B¢ULL, indicating that no
arguments are provided. Returns the result of the call on succesglldron failure. This is the equivalent of
the Python expressiomapply(callable_object args) '.

PyObject* PyObject _CallMethod (PyObiject *o, char *method, char *format,)...
Return valueNNew reference
Call the method nameih of objecto with a variable number of C arguments. The C arguments are described
by aPy_BuildVvalue() format string. The format may BeULL, indicating that no arguments are provided.
Returns the result of the call on successNatLL on failure. This is the equivalent of the Python expression
‘0. method args) . Note that special method names, such.aadd __() , __getitem __() , and so on are
not supported. The specific abstract-object routines for these must be used.

int PyObject _Hash(PyObject*g
Compute and return the hash value of an obgecDn failure, returntl . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*g
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
‘not not 0. This function always succeeds.

PyObject* PyObject _Type (PyObject *g
Return valueNew reference
On success, returns a type object corresponding to the object type of @bfeffailure, return®dNULL This is
equivalent to the Python expressiapge(o) .

int PyObject _Length (PyObject*g
Return the length of object If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On errorl is returned. This is the equivalent to the Python express$amg ‘ o) .

PyObject* PyObject _Getltem (PyObject *o, PyObject *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyObject _Setltem (PyObject*o, PyObject *key, PyObjectyv
Map the objeckeyto the valuer. Returns1l on failure. This is the equivalent of the Python statemepkéy]
= V.
int PyObject _Delltem (PyObject*o, PyObject *key
Delete the mapping fdteyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .
int PyObject _AsFileDescriptor (PyObject *g
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.

If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

6.2 Number Protocol

int PyNumber_Check (PyObject *q
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of addirml ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.

6.2. Number Protocol 25

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *opR
Return valueNew reference
Returns the result of subtracting from 01, or NULLon failure. This is the equivalent of the Python expression
‘ol - oZ2.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *opR
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * oZ.

PyObject* PyNumber_Divide (PyObject*ol, PyObject *op
Return valueNew reference
Returns the result of dividing1 by 02, or NULL on failure. This is the equivalent of the Python expressain
/ 02.

PyObject* PyNumber_Remainder (PyObject *o01, PyObject *op
Return valueNew reference
Returns the remainder of dividirafl by 02, or NULLon failure. This is the equivalent of the Python expression
‘ol % oZ2.

PyObject* PyNumber_Divmod (PyObject *01, PyObject *op
Return valueNew reference
See the built-in functionlivmod() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘divmod(01, 02)’.

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return valueNNew reference
See the built-in functioppow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(o0l, 02, 03)’, whereo3is optional. Ifo3is to be ignored, paf8y_None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return valueNew reference
Returns the negation afon success, ddULLon failure. This is the equivalent of the Python expressian.’

PyObject* PyNumber_Positive (PyObject *9
Return valueNew reference
Returnso on success, ddULLon failure. This is the equivalent of the Python expressim.*

PyObject* PyNumber_Absolute (PyObject *g
Return valueNew reference
Returns the absolute value @for NULLon failure. This is the equivalent of the Python expressais(o) .

PyObject* PyNumber_Invert (PyObject *g
Return valueNew reference
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression

0.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the result of left shiftingl by 02 on success, dlULL on failure. This is the equivalent of the Python
expressionol << 02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol >> o02.

PyObject* PyNumber_And(PyObject *o1, PyObject *oR
Return valueNew reference

26 Chapter 6. Abstract Objects Layer

Returns the “bitwise and” 062 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol & oZ2.

PyObject* PyNumber_Xor (PyObject *01, PyObject *oR
Return valueNew reference
Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressiorol =~ o02.

PyObject* PyNumber_Or(PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” obl and o2 on success, oNULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObiject *o1, PyObject *oR
Return valueNew reference
Returns the result of addirgl ando2, or NULLon failure. The operation is dore-placewhenol supports it.
This is the equivalent of the Python expressiof ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of subtractir@® from 01, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python expressdn-= 02.

PyObject* PyNumber _InPlaceMultiply (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of multiplyinglando2, or NULLon failure. The operation is dofe-placewhenol supports
it. This is the equivalent of the Python expressiofh *= 02.

PyObject* PyNumber _InPlaceDivide (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of dividingl by 02, or NULLon failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python expressioh /= 02.

PyObject* PyNumber _InPlaceRemainder (PyObject *o1, PyObject *oR
Return valueNNew reference
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python expressidn%= 02.

PyObject* PyNumber_InPlacePower (PyObject *01, PyObject *02, PyObject *p3
Return valueNNew reference
See the built-in functiopow() . ReturnsNULL on failure. The operation is dorne-placewhenol supports
it. This is the equivalent of the Python expressiott “**= 02 when 03 isPy_None, or an in-place variant
of ‘pow(01, 02, 03)’ otherwise. Ifo3is to be ignored, pas8y_None in its place (passinglULL for 03
would cause an illegal memory access).

PyObject* PyNumber _InPlaceLshift (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of left shiftingl by 02 on success, diULL on failure. The operation is dore-placewhen
olsupports it. This is the equivalent of the Python expressidn<<= 02.

PyObject* PyNumber _InPlaceRshift (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. The operation is dome-placewhen
olsupports it. This is the equivalent of the Python expressidn>>= 02.

PyObject* PyNumber _InPlaceAnd (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the “bitwise and” od1 ando2 on success andULL on failure. The operation is done-placewhen
o0l supports it. This is the equivalent of the Python expressidn&= 02.

6.2. Number Protocol 27

PyObject* PyNumber_InPlaceXor (PyObiject *o1, PyObject *oR
Return valueNew reference
Returns the “bitwise exclusive or” afl by 02 on success, dlULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python expressidn™ 02.

PyObject* PyNumber_InPlaceOr (PyObject *0l, PyObject *op
Return valueNew reference
Returns the “bitwise or” 0b1 ando2 on success, dlULL on failure. The operation is done-placewhenol
supports it. This is the equivalent of the Python expressidn|= 02.

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byp®bject* . If the objects pointed to bypl and
* p2 have the same type, increment their reference count and i@tisuccess). If the objects can be converted
to a common numeric type, replatigl and*p2 by their converted value (with 'new’ reference counts), and
return0. If no conversion is possible, or if some other error occurs, retlr(failure) and don't increment the
reference counts. The cdllyNumber_Coerce(&ol, &02) is equivalent to the Python statemeol, 02
= coerce(o0l, 02’

PyObject* PyNumber_Int (PyObject *9
Return valueNew reference
Returns the converted to an integer object on succes$\OLL on failure. This is the equivalent of the Python
expressioniht(o) .

PyObject* PyNumber_Long (PyObject *g
Return valueNew reference
Returns theo converted to a long integer object on succes\NOLL on failure. This is the equivalent of the
Python expressioriong(o) .

PyObject* PyNumber_Float (PyObject *9
Return valueNew reference
Returns theo converted to a float object on successNWLL on failure. This is the equivalent of the Python
expressionfloat(0)’.

6.3 Sequence Protocol

int PySequence _Check (PyObject *g
Returnl if the object provides sequence protocol, &adtherwise. This function always succeeds.

int PySequence _Size (PyObject *9
Returns the number of objects in sequenaen success, and on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expredsginf ‘o) .

int PySequence _Length (PyObject *9
Alternate name foPySequence _Size()

PyObject* PySequence _Concat (PyObject *o1, PyObject *opR
Return valueNew reference
Return the concatenation ofl ando2 on success, andULL on failure. This is the equivalent of the Python
expressionol + oZ.

PyObject* PySequence _Repeat (PyObject *o, int count
Return valueNew reference
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of the
Python expressioro' * count.

PyObject* PySequence _InPlaceConcat (PyObject *01, PyObject *op
Return valueNew reference
Return the concatenation ofl ando2 on success, andULL on failure. The operation is done-placewhen

28 Chapter 6. Abstract Objects Layer

ol supports it. This is the equivalent of the Python expressidn+= 02.

PyObject* PySequence _InPlaceRepeat (PyObiject *o, int count
Return valueNew reference
Return the result of repeating sequence objesiunttimes, orNULLon failure. The operation is dome-place
wheno supports it. This is the equivalent of the Python expresgiof= count.

PyObject* PySequence _Getltem (PyObiject *o, int)
Return valueNew reference
Return thath element ob, or NULL on failure. This is the equivalent of the Python expressapn]‘’.

PyObject* PySequence _GetSlice (PyObject*o, intil, intiJ
Return valueNNew reference
Return the slice of sequence objedietweeril andi2, or NULLon failure. This is the equivalent of the Python
expressiond[il: i2] .

int PySequence _Setltem (PyObject *o, inti, PyObject *¥
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
‘of[i] = V.

int PySequence _Delltem (PyObject*o, int)
Delete thath element of objecd. Returns-1 on failure. This is the equivalent of the Python statemdat *
ofi]".

int PySequence _SetSlice (PyObject *o, intil, inti2, PyObject *
Assign the sequence objecto the slice in sequence objexfromil toi2. This is the equivalent of the Python

statemento[il: i2] = V.

int PySequence _DelSlice (PyObject*o,intil, intiJ
Delete the slice in sequence objedrom il to i2. Returns-1 on failure. This is the equivalent of the Python
statementdel of il:i2] .

PyObject* PySequence _Tuple (PyObject *g
Return valueNew reference
Returns theo as a tuple on success, abMULL on failure. This is equivalent to the Python expression
‘tuple(o).

int PySequence _Count (PyObject *o, PyObject *valie
Return the number of occurrencesvaluein o, that is, return the number of keys for whichkey] == value
On failure, returntl . This is equivalent to the Python expressiorcount(valug .

int PySequence _Contains (PyObject *o, PyObject *value
Determine ifo containsvalue If an item ino is equal tovalue returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressigalte in 0.

int PySequence _Index (PyObject *o, PyObject *valie
Return the first index for which o[i] == value On error, returnl . This is equivalent to the Python
expressiono.index(value .

PyObject* PySequence _List (PyObject *g
Return valueNew reference
Return a list object with the same contents as the arbitrary seqoembe returned list is guaranteed to be new.

PyObject* PySequence _Tuple (PyObject*g
Return valueNew reference
Return a tuple object with the same contents as the arbitrary seqoeliaeis a tuple, a new reference will be
returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence _Fast (PyObject *o, const char *mn
Return valueNew reference
Returns the sequenceas a tuple, unless it is already a tuple or list, in which aagereturned. Us@®ySe-

6.3. Sequence Protocol 29

quence _Fast _GET_ITEM() to access the members of the result. RetiNbis L on failure. If the object is
not a sequence, raiségpeError with mas the message text.

PyObject* PySequence _Fast _GET_ITEM(PyObject *o, int)
Return valueBorrowed reference
Return theith element ofo, assuming thab was returned byySequence _Fast() , and thati is within
bounds. The caller is expected to get the length of the sequence by elfegluence _Size() ono, since
lists and tuples are guaranteed to always return their true length.

6.4 Mapping Protocol

int PyMapping _Check (PyObject *g
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

int PyMapping _Length (PyObject *9
Returns the number of keys in objexbn success, and on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expressien(o) .

int PyMapping _DelltemString (PyObject *o, char *key
Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _Delltem (PyObject *o, PyObject *key
Remove the mapping for objekeyfrom the objectb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _HasKeyString (PyObject *o, char *key
On success, returh if the mapping object has the ké&gyandO otherwise. This is equivalent to the Python
expressiond.has _key(key) . This function always succeeds.

int PyMapping _HasKey(PyObject *o, PyObject *key
Returnl if the mapping object has the kdégeyandO otherwise. This is equivalent to the Python expression
‘o.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys (PyObject *q
Return valueNew reference
On success, return a list of the keys in objectOn failure, returnNULL This is equivalent to the Python
expressiono.keys() .

PyObject* PyMapping _Values (PyObject *g
Return valueNew reference
On success, return a list of the values in objectOn failure, returnrNULL This is equivalent to the Python
expressiono.values() '

PyObject* PyMapping _Items (PyObject *9
Return valueNew reference
On success, return a list of the items in objectvhere each item is a tuple containing a key-value pair. On
failure, returnNULL This is equivalent to the Python expressioritems() .

PyObject* PyMapping _GetltemString (PyObject *o, char *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyMapping _SetltemString (PyObject *o, char *key, PyObiject jv
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statementd[key] = V.

30 Chapter 6. Abstract Objects Layer

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionafpybset _Check() . The

chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed in,
many of them do not check flNULL being passed instead of a valid object. AllowgLLto be passed in can cause
memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dijeet.

7.1.1 Type Objects

PyTypeObject

The C structure of the objects used to describe built-in types.
PyObject* PyType _Type

This is the type object for type objects; it is the same objetypess. TypeType in the Python layer.
int PyType _Check (PyObject *9

Returns true is the objectis a type object.

int PyType _HasFeature (PyObject *o, int featurg
Returns true if the type objectsets the featurteature Type features are denoted by single bit flags.

7.1.2 The None Obiject

Note that thePyTypeObject for None is not directly exposed in the Python/C API. Sindene is a singleton,
testing for object identity (using=="in C) is sufficient. There is nd®yNone_Check() function for the same
reason.

PyObject* Py_None
The PythorNone object, denoting lack of value. This object has no methods.

31

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance ofPyTypeObject represents the Python plain integer type. This is the same object as
types.IntType

int PyInt _Check(PyObject* g
Returns true ib is of typePyInt _Type.

PyObject* PyInt _FromLong (long ival)
Return valueNew reference
Creates a new integer object with a valuevafl.

The current implementation keeps an array of integer objects for all integers betiveserd 100, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value df. | suspect the behaviour of Python in this case is undefined. :-)

long Pyint _AsLong (PyObject *ig

Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.
long PyInt _AS_LONG PyObiject *ig

Returns the value of the objeict No error checking is performed.

long PyInt _GetMax()
Returns the system’s idea of the largest integer it can hah@BlG MAX as defined in the system header files).

7.2.2 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong _Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object as
types.LongType

int PyLong _Check (PyObject *p
Returns true if its argument isRyLongObject

PyObject* PyLong _FromLong (long V)
Return valueNew reference
Returns a neWwyLongObject object fromv, or NULL on failure.

PyObject* PyLong _FromUnsignedLong (unsigned long ¥
Return valueNew reference
Returns a neWwPyLongObject object from a Qunsigned long , or NULLon failure.

PyObject* PyLong _FromDouble (doubley
Return valueNew reference
Returns a neWwPyLongObject object from the integer part of or NULL on failure.

long PyLong _AsLong (PyObject *pylong
Returns a Qong representation of the contentsflong If pylongis greater tha ONG.MAX an Over-
flowError is raised.

unsigned long PyLong _AsUnsignedLong (PyObject *pylong

32 Chapter 7. Concrete Objects Layer

Returns a Qunsigned long representation of the contentspflong If pylongis greater thatULONGMAX
anOverflowError is raised.

double PyLong _AsDouble (PyObject *pylong
Returns a Qlouble representation of the contentsmflong

PyObject* PyLong _FromString (char *str, char **pend, int basg
Return valueNew reference
Return a newPyLongObject based on the string value str, which is interpreted according to the radix in
base If pendis nonNULL, * pendwill point to the first character istr which follows the representation of the
number. Ifbaseis 0, the radix will be determined base on the leading charactess:af str starts with’Ox’
or’'0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10 will be used.
If baseis not0, it must be betweef and36, inclusive. Leading spaces are ignored. If there are no digits,
ValueError will be raised.

7.2.3 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat _Type
This instance ofPyTypeObject represents the Python floating point type. This is the same object as
types.FloatType

int PyFloat _Check (PyObject *p
Returns true if its argument isRyFloatObject

PyObject* PyFloat _FromDouble (doubley
Return valueNew reference
Creates @yFloatObject object fromv, or NULL on failure.

double PyFloat _AsDouble (PyObject *pyfloat
Returns a Qlouble representation of the contentsmffloat

double PyFloat _AS_DOUBLEPyObject *pyfloa}
Returns a Qouble representation of the contentsmffloat but without error checking.

7.2.4 Complex Number Objects

Python’s complex nhumber objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as resblysvdtuscather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

7.2. Numeric Objects 33

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Pycomplex righ}
Return the sum of two complex numbers, using theyC complex representation.

Py_complex _Py_c_diff (Py_complex left, Pycomplex righ}
Return the difference between two complex numbers, using thg €omplex representation.

Py_complex _Py_c_neg(Py_complex complex
Return the negation of the complex humbemplexusing the GPy_complex representation.

Py_complex _Py_c_prod (Py_complex left, Pycomplex righ}
Return the product of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_quot (Py_complex dividend, Pycomplex divisor
Return the quotient of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_pow(Py_complex num, Pycomplex exp
Return the exponentiation oimby exp using the CPy_complex representation.

Complex Numbers as Python Objects

PyComplexObiject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check (PyObject *p
Returns true if its argument isRyComplexObject

PyObject* PyComplex _FromCComplex (Py_complex ¥
Return valueNew reference
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex _FromDoubles (double real, double imgg
Return valueNew reference
Returns a neWwPyComplexObject object fromreal andimag

double PyComplex _RealAsDouble (PyObject *op
Returns the real part @fp as a Cdouble .

double PyComplex _ImagAsDouble (PyObiject *op
Returns the imaginary part op as a Cdouble .

Py_complex PyComplex _AsCComplex (PyObject *op
Returns th®y_complex value of the complex numbeip.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

34 Chapter 7. Concrete Objects Layer

7.3.1 String Objects

These functions raisypeError when expecting a string parameter and are called with a non-string parameter.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString _Type
This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType inthe Python layer..

int PyString _Check (PyObject *q
Returns true if the objectis a string object.

PyObject* PyString _FromString (const char *y
Return valueNNew reference
Returns a new string object with the valen success, andULL on failure.

PyObject* PyString _FromStringAndSize (const char *v, int lef
Return valueNew reference
Returns a new string object with the valuand lengthen on success, andULL on failure. Ifvis NULL, the
contents of the string are uninitialized.

int PyString _Size (PyObject *string
Returns the length of the string in string objsting.

int PyString _GET_SIZE (PyObject *string
Macro form ofPyString _Size() but without error checking.

char* PyString _AsString (PyObject *string
Returns a null-terminated representation of the contentstrafg. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString _FromStringAndSize(NULL, siz@ . It must not be deallocated.

char* PyString _AS_STRINGE PyObject *string
Macro form ofPyString _AsString() but without error checking.

int PyString _AsStringAndSize (PyObject *obj, char **buffer, int *length
Returns a null-terminated representation of the contents of the altjgitirough the output variabldsifferand
length

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. lfiengthis set toNULL, the resulting buffer may not contain null characters; if it does, the
function returns -1 and a TypeError is raised.

The buffer refers to an internal string buffer albj, not a copy. The data must not be modified in any way,
unless the string was just created usigstring _FromStringAndSize(NULL, sizg . It must not be
deallocated.

void PyString _Concat (PyObject **string, PyObject *newpayt
Creates a new string objectfatring containing the contents ofewpartappended tstring; the caller will own
the new reference. The reference to the old valustrifig will be stolen. If the new string cannot be created,
the old reference tstring will still be discarded and the value &$tring will be set toNULL; the appropriate
exception will be set.

void PyString _ConcatAndDel (PyObject **string, PyObject *newpa)t
Creates a new string object fistring containing the contents afewpartappended tetring. This version
decrements the reference counnefvpart

int _PyString _Resize (PyObject **string, int newsize
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code.

7.3. Sequence Objects 35

PyObject* PyString _Format (PyObject *format, PyObject *args
Return valueNNew reference
Returns a new string object frofarmatandargs Analogous tdormat % args Theargsargument must be a
tuple.

void PyString _InterninPlace (PyObject **string
Intern the argumeristring in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the samistasg, it sets*string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leavesstring alone and interns it (incrementing its reference count). (Clarification: even though
there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object
after the call if and only if you owned it before the call.)

PyObject* PyString _InternFromsString (const char *y
Return valueNew reference
A combination ofPyString _FromString() andPyString _InterninPlace() , returning either a
new string object that has been interned, or a new (“owned”) reference to an earlier interned string object with
the same value.

PyObject* PyString _Decode (const char *s, int size, const char *encoding, const char *eryors
Return valueNew reference
Create a string object by decodisigebytes of the encoded bufferencodinganderrorshave the same meaning
as the parameters of the same name in the unicode() builtin function. The codec to be used is looked up using
the Python codec registry. ReturN8§JLLin case an exception was raised by the codec.

PyObject* PyString _Encode (const Py UNICODE *s, int size, const char *encoding, const char *erjors
Return valueNew reference
Encodes th®y_UNICODHBbuffer of the given size and returns a Python string objeetodinganderrors have
the same meaning as the parameters of the same name in the string .encode() method. The codec to be used is
looked up using the Python codec registry. Retithi L in case an exception was raised by the codec.

PyObject* PyString _AsEncodedString (PyObject *unicode, const char *encoding, const char *erjors
Return valueNew reference
Encodes a string object and returns the result as Python string olgacbdingand errors have the same
meaning as the parameters of the same name in the string .encode() method. The codec to be used is looked up
using the Python codec registry. RetuNidLLin case an exception was raised by the codec.

7.3.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis for holding
Unicode ordinals. On platforms whenehar _t is available and also has 16-biRy_UNICODEis a typedef
alias forwchar _t to enhance native platform compatibility. On all other platfor®ys, UNICODHESs a typedef
alias forunsigned short

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode _Type
This instance oPyTypeObject represents the Python Unicode type.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode _Check(PyObject*g
Returns true if the objeatis a Unicode object.

36 Chapter 7. Concrete Objects Layer

int PyUnicode _GET_SIZE (PyObject *g
Returns the size of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode _GET_DATA_SIZE (PyObject *g
Returns the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObiject (not checked).

Py_UNICODE* PyUnicode _AS UNICODE PyObject *g
Returns a pointer to the internal PYNICODE buffer of the object. o has to be a PyUnicodeObject (not
checked).

const char* PyUnicode _AS_DATA PyObiject *g
Returns a (const char *) pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE.ISSPACE(Py_UNICODE ch
Returns 1/0 depending on whetluris a whitespace character.

int Py_UNICODE.ISLOWER Py_UNICODE ch
Returns 1/0 depending on whetlutris a lowercase character.

int Py_UNICODE.ISUPPER Py_UNICODE ch
Returns 1/0 depending on whetlatris an uppercase character.

int Py_UNICODELISTITLE (Py_UNICODE ch
Returns 1/0 depending on whetlwdris a titlecase character.

int Py_UNICODE.ISLINEBREAK(Py_UNICODE ch
Returns 1/0 depending on whetlwdris a linebreak character.

int Py_UNICODE.ISDECIMAL(Py_UNICODE ch
Returns 1/0 depending on whetlatris a decimal character.

int Py_UNICODELISDIGIT (Py_UNICODE ch
Returns 1/0 depending on whetleris a digit character.

int Py_UNICODE.ISNUMERIQ Py_UNICODE ch
Returns 1/0 depending on whetlutris a numeric character.

int Py_UNICODE.ISALPHA(Py_UNICODE ch
Returns 1/0 depending on whetlwdris an alphabetic character.

int Py_UNICODE.ISALNUM Py_UNICODE ch
Returns 1/0 depending on whetlatris an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE.TOLOWERPY_UNICODE ch
Returns the characteh converted to lower case.

Py_UNICODE Py_UNICODE TOUPPERPY_UNICODE ch
Returns the characteh converted to upper case.

Py_UNICODE Py_UNICODETOTITLE(Py_UNICODE ch
Returns the characteh converted to title case.

int Py_UNICODE.TODECIMAIK Py_UNICODE ch
Returns the characteh converted to a decimal positive integer. Returns -1 in case this is not possible. Does not
raise exceptions.

int Py_UNICODETODIGIT (Py_UNICODE ch
Returns the characteh converted to a single digit integer. Returns -1 in case this is not possible. Does not raise
exceptions.

7.3. Sequence Objects 37

double Py_UNICODETONUMERICPy_UNICODE ch
Returns the characteh converted to a (positive) double. Returns -1.0 in case this is not possible. Does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode _FromUnicode (const Py UNICODE *u, int sizg
Return valueNew reference

Create a Unicode Object from the RyNICODE bufferu of the given sizeu may beNULL which causes the
contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the
new object.

Py_UNICODE* PyUnicode _AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s intefhal UNICODEbuffer.

int PyUnicode _GetSize (PyObject *unicodg
Return the length of the Unicode object.

PyObject* PyUnicode _FromEncodedObject (PyObject*obj, const char *encoding, const char *errprs
Return valueNNew reference

Coerce an encoded object obj to an Unicode object and return a reference with incremented refcount.
Coercion is done in the following way:
1.Unicode objects are passed back as-is with incremented refcount. Note: these cannot be decoded; passing
a non-NULL value for encoding will result in a TypeError.

2.String and other char buffer compatible objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see the
next section for details).

3.All other objects cause an exception.

The API returns NULL in case of an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode _FromObject (PyObject *ob)
Return valueNew reference

Shortcut for PyUnicodeFromEncodedObject(obj, NULL, “strict”) which is used throughout the interpreter
whenever coercion to Unicode is needed.

If the platform supportavchar _t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s oy UNICODEtype is identical to the system’s
wchar _t .

PyObject* PyUnicode _FromWideChar (const wchart *w, int siz
Return valueNew reference
Create a Unicode Object from tihcar _t bufferw of the given size. ReturriSULL on failure.

int PyUnicode _AsWideChar (PyUnicodeObject *unicode, wchat *w, int sizg
Copies the Unicode Object contents into Wiecar _t bufferw. At mostsizewhcar _t characters are copied.
Returns the number efhcar _t characters copied or -1 in case of an error.

Builtin Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

38 Chapter 7. Concrete Objects Layer

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have the
same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “strict” (ValueErrors are raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.
These are the generic codec APIs:

PyObject* PyUnicode _Decode (const char *s, int size, const char *encoding, const char *efyors
Return valueNew reference
Create a Unicode object by decodisigebytes of the encoded strirgy encodingand errors have the same
meaning as the parameters of the same name in the unicode() builtin function. The codec to be used is looked
up using the Python codec registry. RetulidLLin case an exception was raised by the codec.

PyObject* PyUnicode _Encode (const Py UNICODE *s, int size, const char *encoding, const char *erjors
Return valueNew reference
Encodes th®y_UNICODBuffer of the given size and returns a Python string objestodinganderrors have
the same meaning as the parameters of the same name in the Unicode .encode() method. The codec to be used
is looked up using the Python codec registry. RetiNbd Lin case an exception was raised by the codec.

PyObject* PyUnicode _AsEncodedString (PyObject *unicode, const char *encoding, const char *erjors
Return valueNew reference
Encodes a Unicode object and returns the result as Python string objextidingand errors have the same
meaning as the parameters of the same name in the Unicode .encode() method. The codec to be used is looked
up using the Python codec registry. RetuNidLLin case an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode _DecodeUTF8(const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodisige bytes of the UTF-8 encoded strirgg ReturnsNULL in case an
exception was raised by the codec.

PyObject* PyUnicode _EncodeUTF8(const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes thé>y_UNICODEbuffer of the given size using UTF-8 and returns a Python string object. Returns
NULLin case an exception was raised by the codec.

PyObject* PyUnicode _AsUTF8String (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error handling is “strict”.
ReturnsNULLin case an exception was raised by the codec.

These are the UTF-16 codec APls:

PyObject* PyUnicode _DecodeUTF16(const char *s, int size, const char *errors, int *byteordler
Return valueNNew reference
Decodedengthbytes from a UTF-16 encoded buffer string and returns the corresponding Unicode object.

errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*pyteorder == 1. big endian

and then switches according to all byte order marks (BOM) it finds in the input data. BOM marks are not copied

7.3. Sequence Objects 39

into the resulting Unicode string. After completidibyteorderis set to the current byte order at the end of input
data.

If byteorderis NULL, the codec starts in native order mode.
ReturnsNULLin case an exception was raised by the codec.

PyObject* PyUnicode _EncodeUTF16 (const Py UNICODE *s, int size, const char *errors, int byteorder
Return value:New reference
Returns a Python string object holding the UTF-16 encoded value of the Unicode data in

If byteorderis not0, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

Note thatPy _UNICODHEdata is being interpreted as UTF-16 reduced to UCS-2. This trick makes it possible to
add full UTF-16 capabilities at a later point without comprimising the APIs.

ReturnsNULLin case an exception was raised by the codec.

PyObject* PyUnicode _AsUTF16String (PyObject *unicodi
Return valueNew reference
Returns a Python string using the UTF-16 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturidULLin case an exception was raised by the codec.

These are the “Unicode Esacpe” codec APIs:

PyObject* PyUnicode _DecodeUnicodeEscape (constchar*s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the Unicode-Esacpe encoded stangeturndNULLin case
an exception was raised by the codec.

PyObject* PyUnicode _EncodeUnicodeEscape (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes théy_UNICODEbuffer of the given size using Unicode-Escape and returns a Python string object.
ReturnsNULLin case an exception was raised by the codec.

PyObject* PyUnicode _AsUnicodeEscapeString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Unicode-Escape and returns the result as Python string object. Error handling
is “strict”. ReturnsNULL in case an exception was raised by the codec.

These are the “Raw Unicode Esacpe” codec APlIs:

PyObject* PyUnicode _DecodeRawUnicodeEscape (constchar *s, intsize, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the Raw-Unicode-Esacpe encoded stsingeturnsNULL
in case an exception was raised by the codec.

PyObject* PyUnicode _EncodeRawUnicodeEscape (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes the?y _UNICODEbuffer of the given size using Raw-Unicode-Escape and returns a Python string
object. Return&ULL in case an exception was raised by the codec.

PyObject* PyUnicode _AsRawUnicodeEscapeString (PyObject *unicodi
Return valueNew reference
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. Return&ULLin case an exception was raised by the codec.

40 Chapter 7. Concrete Objects Layer

These are the Latin-1 codec APIs:
Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by the codecs during encoding.

PyObject* PyUnicode _DecodelLatinl (constchar *s, int size, const char *errdrs
Return valueNew reference
Creates a Unicode object by decodisigebytes of the Latin-1 encoded strirsgy ReturnsNULL in case an
exception was raised by the codec.

PyObject* PyUnicode _Encodelatinl (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th&y_UNICODEbuffer of the given size using Latin-1 and returns a Python string object. Returns
NULL in case an exception was raised by the codec.

PyObject* PyUnicode _AsLatin1String (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Latin-1 and returns the result as Python string object. Error handling is “strict”.
ReturnsNULLin case an exception was raised by the codec.

These are thascil codec APIs. Only 7-biascii data is accepted. All other codes generate errors.

PyObject* PyUnicode _DecodeASCIl (const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodisige bytes of theascil encoded string. ReturnsNULL in case an
exception was raised by the codec.

PyObject* PyUnicode _EncodeASCIl (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes théy_UNICODEDbuffer of the given size usingscii and returns a Python string object. Returns
NULLin case an exception was raised by the codec.

PyObject* PyUnicode _AsASCIIString (PyObject *unicodi
Return valueNew reference
Encodes a Unicode objects usingcii and returns the result as Python string object. Error handling is “strict”.
ReturnsNULLin case an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included ingheodings package). The codec uses mapping to encode and
decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then inter-
preted as Unicode ordinals) or None (meaning "undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then inter-
preted as Latin-1 ordinals) or None (meaning "undefined mapping” and causing an error).

The mapping objects provided must only support_thgetitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which
map characters to different code points.

PyObject* PyUnicode _DecodeCharmap (const char *s, int size, PyObject *mapping, const char *erjors
Return valueNNew reference
Creates a Unicode object by decodsigebytes of the encoded strirsgising the givemimappingobject. Returns
NULLIn case an exception was raised by the codec.

PyObject* PyUnicode _EncodeCharmap (const Py UNICODE *s, int size, PyObject *mapping, const char *errprs
Return valueNew reference
Encodes th®y_UNICODRhuffer of the given size using the givemappingobject and returns a Python string

7.3. Sequence Objects 41

object. Return®lULL in case an exception was raised by the codec.

PyObject* PyUnicode _AsCharmapString (PyObject *unicode, PyObject *mapping
Return valueNNew reference
Encodes a Unicode objects using the givesppingobject and returns the result as Python string object. Error
handling is “strict”. Return&ULLin case an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode _TranslateCharmap (const Py UNICODE *s, int size, PyObject *table, const char *errprs
Return valueNew reference
Translates &y_UNICODEbuffer of the given length by applying a character mapgatdge to it and returns
the resulting Unicode object. ReturN&JLL when an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables must only provide the getitem__ interface, e.g. dictionaries or sequences. Unmapped char-
acter ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

These are the MBCS codec APls. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode _DecodeMBCS const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodisige bytes of the MBCS encoded strirsg ReturnsNULL in case an
exception was raised by the codec.

PyObject* PyUnicode _EncodeMBCS const Py UNICODE *s, int size, const char *erroys
Return valueNNew reference
Encodes thé>y _UNICODEbuffer of the given size using MBCS and returns a Python string object. Returns
NULLIn case an exception was raised by the codec.

PyObject* PyUnicode _AsMBCSString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using MBCS and returns the result as Python string object. Error handling is “strict”.
ReturnsNULLin case an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as apporpriate.

They all returnNULLor -1 in case an exception occurrs.

PyObject* PyUnicode _Concat (PyObiject *left, PyObject *right
Return valueNew reference
Concat two strings giving a new Unicode string.

PyObject* PyUnicode _Split (PyObject*s, PyObject *sep, int maxsplit
Return valueNew reference
Split a string giving a list of Unicode strings.

If sep is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator.
At most maxsplit splits will be done. If negative, no limit is set.
Separators are not included in the resulting list.

PyObject* PyUnicode _Splitlines (PyObject *s, int maxspljt
Return valueNew reference

42 Chapter 7. Concrete Objects Layer

Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. The Line break characters are not included in the resulting strings.

PyObject* PyUnicode _Translate (PyObject *str, PyObject *table, const char *errgrs
Return valueNew reference
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables must only provide the getitem__ interface, e.g. dictionaries or sequences. Unmapped char-
acter ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayNbél L which indicates to use the default error handling.

PyObject* PyUnicode _Join (PyObject *separator, PyObject *sgq
Return valueNew reference
Join a sequence of strings using the given separator and return the resulting Unicode string.

PyObject* PyUnicode _Tailmatch (PyObiject *str, PyObject *substr, int start, int end, int directjon
Return valueNew reference
Return 1 if substrmatchesstr[startend at the given tail enddirection == -1 means to do a prefix match,
direction== 1 a suffix match), O otherwise.

PyObject* PyUnicode _Find (PyObiject *str, PyObject *substr, int start, int end, int directjon
Return valueNew reference
Return the first position oubstrin str[startend using the givendirection (direction == 1 means to do a
forward searchdirection== -1 a backward search), O otherwise.

PyObject* PyUnicode _Count (PyObject *str, PyObject *substr, int start, int end
Return valueNew reference
Count the number of occurrencessaibstrin str[startend

PyObject* PyUnicode _Replace (PyObiject *str, PyObject *substr, PyObject *replstr, int maxcqunt
Return valueNew reference
Replace at mosmaxcountoccurrences ofubstrin str with replstr and return the resulting Unicode object.
maxcount= -1 means: replace all occurrences.

int PyUnicode _Compare(PyObject *left, PyObject *right

Compare two strings and return -1, 0, 1 for less than, equal, greater than resp.
PyObject* PyUnicode _Format (PyObject *format, PyObject *args

Return valueNew reference

Returns a new string object frofarmatandargs this is analogous ttormat % args Theargsargument must
be a tuple.

int PyUnicode _Contains (PyObject *container, PyObject *elemént
Checks whetheglemenis contained ircontainerand returns true or false accordingly.

elemenhas to coerce to a one element Unicode strifigis returned in case of an error.

7.3.3 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should be noted that
array elements may be multi-byte values.

An example user of the buffer interface is the file objeatste() method. Any object that can export a

7.3. Sequence Objects 43

series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArgs _ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (section 10.5), under
the description foPyBufferProcs

A “buffer object” is defined in thebufferobject.h’ header (included byPython.h’). These objects look very similar to

string objects at the Python programming level: they support slicing, indexing, concatenation, and some other standard
string operations. However, their data can come from one of two sources: from a block of memory, or from another
object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is
possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a
C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

PyTypeObject PyBuffer _Type
The instance ofPyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py_END OF BUFFER
This constant may be passed as tls&ze parameter to PyBuffer _FromObject() or Py-
Buffer _FromReadWriteObject() . It indicates that the neWyBufferObject should refer tdbase
object from the specifiedffsetto the end of its exported buffer. Using this enables the caller to avoid querying
thebaseobject for its length.

int PyBuffer _Check(PyObject*p
Return true if the argument has typgBuffer _Type.

PyObject* PyBuffer _FromObject (PyObject *base, int offset, int sige
Return valueNew reference
Return a new read-only buffer object. This raiSegeError if basedoesn't support the read-only buffer
protocol or doesn't provide exactly one buffer segment, or it raigdgeError if offsetis less than zero. The
buffer will hold a reference to thbaseobject, and the buffer’'s contents will refer to thaseobject’s buffer
interface, starting as positiaifsetand extending fosizebytes. Ifsizeis Py _END OF_BUFFERthen the new
buffer’'s contents extend to the length of theseobject’s exported buffer data.

PyObject* PyBuffer _FromReadWriteObject (PyObject *base, int offset, int sige
Return valueNew reference
Return a new writable buffer object. Parameters and exceptions are similar to thosByfor
Buffer _FromObject() . If the baseobject does not export the writeable buffer protocol, thgpeError
is raised.

PyObject* PyBuffer _FromMemory(void *ptr, int siz@
Return valueNew reference
Return a new read-only buffer object that reads from a specified location in memory, with a specified size. The
caller is responsible for ensuring that the memory buffer, passedgtr,as not deallocated while the returned
buffer object exists. Rais@galueError if sizeis less than zero. Note thBy _END OF_BUFFERmay not
be passed for theizeparameterValueError will be raised in that case.

PyObject* PyBuffer _FromReadWriteMemory (void *ptr, int sizg
Return valueNew reference
Similar toPyBuffer _FromMemory() , but the returned buffer is writable.

PyObject* PyBuffer _New(intsiz
Return valueNew reference

44 Chapter 7. Concrete Objects Layer

Returns a new writable buffer object that maintains its own memory buffeizefoytes. ValueError is
returned ifsizeis not zero or positive.

7.3.4 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple _Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple _Check (PyObject*p
Return true if the argument is a tuple object.

PyObject* PyTuple _New intlen)
Return valueNew reference
Return a new tuple object of siten, or NULL on failure.

int PyTuple _Size (PyObject *p
Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple _Getltem (PyObject *p, int pok
Return valueBorrowed reference
Returns the object at positiggosin the tuple pointed to bp. If posis out of bounds, returndULL and sets an
IndexError exception.

PyObject* PyTuple _GET_ITEM(PyObiject *p, int poy
Return value Borrowed reference
Does the same, but does no checking of its arguments.

PyObject* PyTuple _GetSlice (PyObject *p, int low, int high
Return valueNew reference
Takes a slice of the tuple pointed to pyrom low to highand returns it as a new tuple.

int PyTuple _Setltem (PyObject *p, int pos, PyObject jo
Inserts a reference to objeziat positionposof the tuple pointed to byp. It returnsO on successNote: This
function “steals” a reference m

void PyTuple _SET_ITEM(PyObiject *p, int pos, PyObject jo
Does the same, but does no error checking, and stamlidbe used to fill in brand new tuplesNote: This
function “steals” a reference m

int _PyTuple _Resize (PyObject **p, int newsize, int lasts_sticky)
Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplesampposedo be
immutable, this should only be used if there is only one reference to the objeahotse this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. The
last_is_stickyflag is not used and should always be false. Think of this as destroying the old tuple and creating
a new one, only more efficiently. Retur@son success and on failure (in which case &emoryError or
SystemError will be raised).

7.3.5 List Objects
PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList _Type
This instance ofPyTypeObject represents the Python list type. This is the same object as

7.3. Sequence Objects 45

types.ListType

int PyList _Check(PyObject *p
Returns true if its argument isRyListObject

PyObject* PyList _New(intlen)
Return valueNew reference
Returns a new list of lengtlen on success, ddULL on failure.

int PyList _Size (PyObiject *lis)
Returns the length of the list objectlist; this is equivalent tolen(list) ' on a list object.

int PyList _GET_SIZE (PyObject *lis}
Macro form ofPyList _Size() without error checking.

PyObject* PyList _Getltem (PyObject *list, int index
Return valueBorrowed reference
Returns the object at positigrosin the list pointed to by. If posis out of bounds, returndULL and sets an
IndexError exception.

PyObject* PyList _GET_ITEM(PyObject *list, int)
Return value Borrowed reference
Macro form ofPyList _Getltem() without error checking.

int PyList _Setltem (PyObject *list, int index, PyObject *itejn
Sets the item at indexdexin list to item Returns) on success o1l on failure.Note: This function “steals”
a reference titemand discards a reference to an item already in the list at the affected position.

void PyList _SET_ITEM(PyObject *list, int i, PyObject *®
Macro form of PyList _Setltem() without error checking.Note: This function “steals” a reference to
item, and, unlikePyList _Setltem() , doesnotdiscard a reference to any item that it being replaced; any
reference inist at positioni will be leaked. This is normally only used to fill in new lists where there is no
previous content.

int PyList _Insert (PyObject *list, intindex, PyObject *itemn
Inserts the itemtem into list list in front of indexindex ReturnsO if successful; returnsl and raises an
exception if unsuccessful. Analogousligt.insert(index item) .

int PyList _Append (PyObject *list, PyObject *itetn
Appends the objedtem at the end of listist. Returns0 if successful; returnsl and sets an exception if
unsuccessful. Analogous list.append(item) .

PyObject* PyList _GetSlice (PyObject *list, int low, int high
Return valueNew reference
Returns a list of the objects iiist containing the objectbetween lowandhigh. Returns NULL and sets an
exception if unsuccessful. Analogouslit[low: high] .

int PyList _SetSlice (PyObject *list, int low, int high, PyObject *itemlist
Sets the slice dist betweerlow andhighto the contents aftemlist Analogous tdist[low: high] = itemlist
Returns0 on success;1 on failure.

int PyList _Sort (PyObject *lis)
Sorts the items dist in place. Return® on success,l on failure. This is equivalent tdist.sort()

int PyList _Reverse (PyObject *lis)
Reverses the items dfst in place. Return on success;1 on failure. This is the equivalent of
‘list.reverse()

PyObject* PyList _AsTuple (PyObject *lis)

Return valueNew reference
Returns a new tuple object containing the contenigsgfequivalent totuple(list) ".

46 Chapter 7. Concrete Objects Layer

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject

This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict _Type

int

This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python programs
astypes.DictType andtypes.DictionaryType

PyDict _Check (PyObject *p
Returns true if its argument isRyDictObject

PyObject* PyDict _New()

Return value:New reference
Returns a new empty dictionary, NtULL on failure.

void PyDict _Clear (PyObject*p

Empties an existing dictionary of all key-value pairs.

PyObject* PyDict _Copy(PyObject *p

int

int

int

int

Return valueNew reference
Returns a new dictionary that contains the same key-value pairs as p. Empties an existing dictionary of all
key-value pairs.

PyDict _Setltem (PyObject *p, PyObject *key, PyObject *val
Insertsvalueinto the dictionaryp with a key ofkey. keymust be hashable; if itisnT,ypeError will be raised.
ReturnsD on success ol on failure.

PyDict _SetltemString (PyObject *p, char *key, PyObject *val
Insertsvalueinto the dictionaryp usingkeyas a key.keyshould be ahar* . The key object is created using
PyString _FromString(key) . Returns) on success ol on failure.

PyDict _Delltem (PyObiject *p, PyObject *kgy
Removes the entry in dictionapwith key key. keymust be hashable; if it isn'TypeError s raised.

PyDict _DelltemString (PyObject *p, char *key
Removes the entry in dictionagywhich has a key specified by the strikgy. Returns0 on success ol on
failure.

PyObject* PyDict _Getltem (PyObject *p, PyObject *kgy

Return valueBorrowed reference
Returns the object from dictionapwhich has a kekey. ReturndNULL f the keykeyis not present, buvithout
setting an exception.

PyObject* PyDict _GetltemString (PyObject *p, char *key

Return valueBorrowed reference
This is the same aByDict _Getltem() , butkeyis specified as ahar* , rather than &#yObject*

PyObject* PyDict _Items (PyObject*p

Return valueNew reference
Returns éPyListObject containing all the items from the dictionary, as in the dictinoary mettesds()
(see thePython Library Referenge

PyObject* PyDict _Keys (PyObject *p

Return valueNew reference
Returns aPyListObject containing all the keys from the dictionary, as in the dictionary metmy()
(see thePython Library Referenge

PyObject* PyDict _Values (PyObject*p

7.4. Mapping Objects 47

int

int

Return valueNew reference
Returns &PyListObject containing all the values from the dictiongpyas in the dictionary methoehl-
ues() (seetheéPython Library Referenge

PyDict _Size (PyObject*p
Returns the number of items in the dictionary. This is equivaleriet(‘ p) ' on a dictionary.

PyDict _Next (PyObject *p, int *ppos, PyObject **pkey, PyObject **pvalue

Iterate over all key-value pairs in the dictiongry Theint referred to bypposmust be initialized td prior

to the first call to this function to start the iteration; the function returns true for each pair in the dictionary, and
false once all pairs have been reported. The parampkessand pvalueshould either point t&?yObject*
variables that will be filled in with each key and value, respectively, or mayiel.

For example:

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, for example:

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {

int i = PyInt_AS_LONG(value) + 1,

PyObject *o = PyInt_FromLong(i);

if (0 == NULL)
return -1,

if (PyDict_Setltem(self->dict, key, 0) < 0) {
Py_DECREF(0);
return -1,

}
Py_DECREF(0);

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on BieE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.

PyFileObject

This subtype oPyObject represents a Python file object.

PyTypeObject PyFile _Type

int

This instance ofPyTypeObject represents the Python file type. This is exposed to Python programs as
types.FileType

PyFile _Check (PyObject *p
Returns true if its argument isRyFileObject

48

Chapter 7. Concrete Objects Layer

PyObject* PyFile _FromString (char *filename, char *mode

Return valueNew reference
On success, returns a new file object that is opened on the file givélehgme with a file mode given by
mode wheremodehas the same semantics as the standard C rdiofre®() . On failure, return&NULL

PyObject* PyFile _FromFile (FILE *fp, char *name, char *mode, int (*close)(FILEY)

Return valueNew reference
Creates a neWwyFileObject from the already-open standard C file poinfer, The functionclosewill be
called when the file should be closed. Retuxidl L on failure.

FILE* PyFile _AsFile (PyFileObject*p

Returns the file object associated wjitls aFILE* .

PyObject* PyFile _GetLine (PyObject*p, intn)

Return valueNNew reference

Equivalent top.readline([n]) , this function reads one line from the obj@ctp may be a file object or any
object with areadline() method. Ifnis 0, exactly one line is read, regardless of the length of the line. If

is greater tha®, no more tham bytes will be read from the file; a partial line can be returned. In both cases,
an empty string is returned if the end of the file is reached immediatahisifess thard, however, one line is
read regardless of length, HEOFError is raised if the end of the file is reached immediately.

PyObject* PyFile _Namg PyObject *p

Return valueBorrowed reference
Returns the name of the file specifiedfpgs a string object.

void PyFile _SetBufSize (PyFileObject*p,intn

int

int

int

Available on systems withetvbuf() only. This should only be called immediately after file object creation.

PyFile _SoftSpace (PyObject *p, int newflay

This function exists for internal use by the interpreter. Setsdifispace attribute ofp to newflagand returns

the previous valuep does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if theoftspace attribute can be set). This function clears any errors, and will
returnO as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

PyFile _WriteObject (PyObiject *obj, PyFileObject *p, int flags

Writes objectobj to file objectp. The only supported flag fdtagsis Py _PRINT_RAWif given, thestr() of
the object is written instead of threpr() . ReturnsD on success ol on failure; the appropriate exception
will be set.

PyFile _WriteString (char *s, PyFileObject *p, int flags
Writes strings to file objectp. ReturnsD on success ofl on failure; the appropriate exception will be set.

7.5.2 Instance Objects

There are very few functions specific to instance objects.

PyTypeObject Pyinstance _Type

int

Type object for class instances.

Pylnstance _Check (PyObject *ob)
Returns true ibbj is an instance.

PyObject* Pylnstance _New(PyObiject *class, PyObject *arg, PyObject *kw

Return valueNew reference
Create a new instance of a specific class. The paramaigendkw are used as the positional and keyword
parameters to the object’s constructor.