
Python/C API Reference Manual
Release 2.2.3

Guido van Rossum

Fred L. Drake, Jr., editor

30 May 2003

PythonLabs
Email: python-docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C and C++ programmers who want to write extension modules
or embed Python. It is a companion to Extending and Embedding the Python Interpreter, which describes
the general principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. I hope that it is nevertheless useful. I
will continue to work on it, and release new versions from time to time, independent from Python source
code releases.

CONTENTS

1 Introduction 1
1.1 Include Files . 1
1.2 Objects, Types and Reference Counts . 2
1.3 Exceptions . 5
1.4 Embedding Python . 7

2 The Very High Level Layer 9

3 Reference Counting 11

4 Exception Handling 13
4.1 Standard Exceptions . 16
4.2 Deprecation of String Exceptions . 17

5 Utilities 19
5.1 Operating System Utilities . 19
5.2 Process Control . 19
5.3 Importing Modules . 20
5.4 Data marshalling support . 22
5.5 Parsing arguments and building values . 23

6 Abstract Objects Layer 25
6.1 Object Protocol . 25
6.2 Number Protocol . 28
6.3 Sequence Protocol . 31
6.4 Mapping Protocol . 33
6.5 Iterator Protocol . 33
6.6 Buffer Protocol . 34

7 Concrete Objects Layer 35
7.1 Fundamental Objects . 35
7.2 Numeric Objects . 36
7.3 Sequence Objects . 39
7.4 Mapping Objects . 52
7.5 Other Objects . 54

8 Initialization, Finalization, and Threads 61
8.1 Thread State and the Global Interpreter Lock . 64
8.2 Profiling and Tracing . 67
8.3 Advanced Debugger Support . 68

9 Memory Management 69
9.1 Overview . 69
9.2 Memory Interface . 70

i

9.3 Examples . 70

10 Defining New Object Types 73
10.1 Allocating Objects on the Heap . 73
10.2 Common Object Structures . 74
10.3 Mapping Object Structures . 75
10.4 Number Object Structures . 75
10.5 Sequence Object Structures . 75
10.6 Buffer Object Structures . 75
10.7 Supporting the Iterator Protocol . 77
10.8 Supporting Cyclic Garbarge Collection . 77

A Reporting Bugs 81

B History and License 83
B.1 History of the software . 83
B.2 Terms and conditions for accessing or otherwise using Python 84

Index 87

ii

CHAPTER

ONE

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The API is equally usable from C++, but for brevity it is generally
referred to as the Python/C API. There are two fundamentally different reasons for using the Python/C
API. The first reason is to write extension modules for specific purposes; these are C modules that extend
the Python interpreter. This is probably the most common use. The second reason is to use Python as
a component in a larger application; this technique is generally referred to as embedding Python in an
application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach
works well. There are several tools that automate the process to some extent. While people have
embedded Python in other applications since its early existence, the process of embedding Python is less
straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it’s probably
a good idea to become familiar with writing an extension before attempting to embed Python in a real
application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by
the following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,
<limits.h>, and <stdlib.h> (if available). Since Python may define some pre-processor definitions
which affect the standard headers on some systems, you must include ‘Python.h’ before any standard
headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers)
have one of the prefixes ‘Py’ or ‘ Py’. Names beginning with ‘ Py’ are for internal use by the Python
implementation and should not be used by extension writers. Structure member names do not have a
reserved prefix.

Important: user code should never define names that begin with ‘Py’ or ‘ Py’. This confuses the reader,
and jeopardizes the portability of the user code to future Python versions, which may define additional
names beginning with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
‘prefix/include/pythonversion/’ and ‘exec prefix/include/pythonversion/’, where prefix and exec prefix are
defined by the corresponding parameters to Python’s configure script and version is sys.version[:3].
On Windows, the headers are installed in ‘prefix/include’, where prefix is the installation directory specified
to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes.

1

Do not place the parent directories on the search path and then use ‘#include <python2.2/Python.h>’;
this will break on multi-platform builds since the platform independent headers under prefix include the
platform specific headers from exec prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly
declare the entry points to be extern "C", so there is no need to do anything special to use the API
from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*.
This type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python
object types are treated the same way by the Python language in most situations (e.g., assignments,
scope rules, and argument passing), it is only fitting that they should be represented by a single C type.
Almost all Python objects live on the heap: you never declare an automatic or static variable of type
PyObject, only pointer variables of type PyObject* can be declared. The sole exception are the type
objects; since these must never be deallocated, they are typically static PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines
what kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as
explained in the Python Reference Manual). For each of the well-known types there is a macro to check
whether an object is of that type; for instance, ‘PyList Check(a)’ is true if (and only if) the object
pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited)
memory size; it counts how many different places there are that have a reference to an object. Such a
place could be another object, or a global (or static) C variable, or a local variable in some C function.
When an object’s reference count becomes zero, the object is deallocated. If it contains references to
other objects, their reference count is decremented. Those other objects may be deallocated in turn, if
this decrement makes their reference count become zero, and so on. (There’s an obvious problem with
objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py INCREF()
to increment an object’s reference count by one, and Py DECREF() to decrement it by one. The
Py DECREF() macro is considerably more complex than the incref one, since it must check whether
the reference count becomes zero and then cause the object’s deallocator to be called. The deallocator
is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
decrementing the reference counts for other objects contained in the object if this is a compound object
type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance
that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assuming sizeof(long) >= sizeof(char*)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer
to an object. In theory, the object’s reference count goes up by one when the variable is made to point
to it and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end the reference count hasn’t changed. The only real reason to use the reference count
is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that
there is at least one other reference to the object that lives at least as long as our variable, there is no
need to increment the reference count temporarily. An important situation where this arises is in objects
that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without
incrementing its reference count. Some other operation might conceivably remove the object from the
list, decrementing its reference count and possible deallocating it. The real danger is that innocent-

2 Chapter 1. Introduction

looking operations may invoke arbitrary Python code which could do this; there is a code path which
allows control to flow back to the user from a Py DECREF(), so almost any operation is potentially
dangerous.

A safe approach is to always use the generic operations (functions whose name begins with ‘PyObject ’,
‘PyNumber ’, ‘PySequence ’ or ‘PyMapping ’). These operations always increment the reference count
of the object they return. This leaves the caller with the responsibility to call Py DECREF() when they
are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership
of references. Note that we talk of owning references, never of owning objects; objects are always shared!
When a function owns a reference, it has to dispose of it properly — either by passing ownership on
(usually to its caller) or by calling Py DECREF() or Py XDECREF(). When a function passes ownership of
a reference on to its caller, the caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the
function steals a reference to the object, or it does not. Few functions steal references; the two notable
exceptions are PyList SetItem() and PyTuple SetItem(), which steal a reference to the item (but
not to the tuple or list into which the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the
code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the
moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_SetItem(t, 0, PyInt_FromLong(1L));

PyTuple_SetItem(t, 1, PyInt_FromLong(2L));

PyTuple_SetItem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence SetItem() and
PyObject SetItem() refuse to do this since tuples are an immutable data type. You should only
use PyTuple SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList New() and PyList SetItem(). Such
code can also use PySequence SetItem(); this illustrates the difference between the two (the extra
Py DECREF() calls):

PyObject *l, *x;

l = PyList_New(3);

x = PyInt_FromLong(1L);

PySequence_SetItem(l, 0, x); Py_DECREF(x);

x = PyInt_FromLong(2L);

PySequence_SetItem(l, 1, x); Py_DECREF(x);

x = PyString_FromString("three");

PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice,
you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of
the error checking):

PyObject *t, *l;

t = Py_BuildValue("(iis)", 1, 2, "three");

1.2. Objects, Types and Reference Counts 3

l = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject SetItem() and friends with items whose references you are
only borrowing, like arguments that were passed in to the function you are writing. In that case, their
behaviour regarding reference counts is much saner, since you don’t have to increment a reference count
so you can give a reference away (“have it be stolen”). For example, this function sets all items of a list
(actually, any mutable sequence) to a given item:

int

set_all(PyObject *target, PyObject *item)

{

int i, n;

n = PyObject_Length(target);

if (n < 0)

return -1;

for (i = 0; i < n; i++) {

if (PyObject_SetItem(target, i, item) < 0)

return -1;

}

return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions
does not change your ownership responsibilities for that reference, many functions that return a referece
to an object give you ownership of the reference. The reason is simple: in many cases, the returned
object is created on the fly, and the reference you get is the only reference to the object. Therefore, the
generic functions that return object references, like PyObject GetItem() and PySequence GetItem(),
always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which
function you call only — the plumage (the type of the type of the object passed as an argument to the func-
tion) doesn’t enter into it! Thus, if you extract an item from a list using PyList GetItem(), you don’t
own the reference — but if you obtain the same item from the same list using PySequence GetItem()
(which happens to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of
integers; once using PyList GetItem(), and once using PySequence GetItem().

long

sum_list(PyObject *list)

{

int i, n;

long total = 0;

PyObject *item;

n = PyList_Size(list);

if (n < 0)

return -1; /* Not a list */

for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */

if (!PyInt_Check(item)) continue; /* Skip non-integers */

total += PyInt_AsLong(item);

}

return total;

}

long

sum_sequence(PyObject *sequence)

{

int i, n;

4 Chapter 1. Introduction

long total = 0;

PyObject *item;

n = PySequence_Length(sequence);

if (n < 0)

return -1; /* Has no length */

for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);

if (item == NULL)

return -1; /* Not a sequence, or other failure */

if (PyInt_Check(item))

total += PyInt_AsLong(item);

Py_DECREF(item); /* Discard reference ownership */

}

return total;

}

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types
such as int, long, double and char*. A few structure types are used to describe static tables used to
list the functions exported by a module or the data attributes of a new object type, and another is used
to describe the value of a complex number. These will be discussed together with the functions that use
them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; un-
handled exceptions are automatically propagated to the caller, then to the caller’s caller, and so on,
until they reach the top-level interpreter, where they are reported to the user accompanied by a stack
traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C
API can raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In
general, when a function encounters an error, it sets an exception, discards any object references that it
owns, and returns an error indicator — usually NULL or -1. A few functions return a Boolean true/false
result, with false indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with PyErr Occurred().

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an
unthreaded application). A thread can be in one of two states: an exception has occurred, or not.
The function PyErr Occurred() can be used to check for this: it returns a borrowed reference to the
exception type object when an exception has occurred, and NULL otherwise. There are a number of
functions to set the exception state: PyErr SetString() is the most common (though not the most
general) function to set the exception state, and PyErr Clear() clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python
objects sys.exc type, sys.exc value, and sys.exc traceback; however, they are not the same: the
Python objects represent the last exception being handled by a Python try . . . except statement, while
the C level exception state only exists while an exception is being passed on between C functions until it
reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc type
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from
Python code is to call the function sys.exc info(), which returns the per-thread exception state for
Python code. Also, the semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread’s exception state so as to preserve
the exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent-looking function overwriting the exception being handled; it also reduces the often unwanted

1.3. Exceptions 5

lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether
the called function raised an exception, and if so, pass the exception state on to its caller. It should
discard any object references that it owns, and return an error indicator, but it should not set another
exception — that would overwrite the exception that was just raised, and lose important information
about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum sequence() example
above. It so happens that that example doesn’t need to clean up any owned references when it detects
an error. The following example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:

def incr_item(dict, key):

try:

item = dict[key]

except KeyError:

item = 0

dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{

/* Objects all initialized to NULL for Py_XDECREF */

PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;

int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);

if (item == NULL) {

/* Handle KeyError only: */

if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */

PyErr_Clear();

item = PyInt_FromLong(0L);

if (item == NULL)

goto error;

}

const_one = PyInt_FromLong(1L);

if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);

if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)

goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:

/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */

Py_XDECREF(item);

Py_XDECREF(const_one);

Py_XDECREF(incremented_item);

6 Chapter 1. Introduction

return rv; /* -1 for error, 0 for success */

}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches() and PyErr Clear() to handle specific exceptions, and the use of
Py XDECREF() to dispose of owned references that may be NULL (note the ‘X’ in the name; Py DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold
owned references are initialized to NULL for this to work; likewise, the proposed return value is initialized
to -1 (failure) and only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter
have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most
functionality of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py Initialize(). This initializes the table of loaded modules, and
creates the fundamental modules builtin , main , sys, and exceptions. It also initializes
the module search path (sys.path).

Py Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by
Python code that will be executed later, it must be set explicitly with a call to PySys SetArgv(argc,
argv) subsequent to the call to Py Initialize().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py Initialize() calculates the module search path based upon its best guess for the location of the
standard Python interpreter executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a directory named ‘lib/python2.2’
relative to the parent directory where the executable named ‘python’ is found on the shell command
search path (the environment variable PATH).

For instance, if the Python executable is found in ‘/usr/local/bin/python’, it will assume that the libraries
are in ‘/usr/local/lib/python2.2’. (In fact, this particular path is also the “fallback” location, used when
no executable file named ‘python’ is found along PATH.) The user can override this behavior by setting
the environment variable PYTHONHOME, or insert additional directories in front of the standard path
by setting PYTHONPATH.

The embedding application can steer the search by calling Py SetProgramName(file) before calling
Py Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own imple-
mentation of Py GetPath(), Py GetPrefix(), Py GetExecPrefix(), and Py GetProgramFullPath()
(all defined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over
(make another call to Py Initialize()) or the application is simply done with its use of Python and
wants to free all memory allocated by Python. This can be accomplished by calling Py Finalize().
The function Py IsInitialized() returns true if Python is currently in the initialized state. More
information about these functions is given in a later chapter.

1.4. Embedding Python 7

8

CHAPTER

TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they
will not let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start
symbols are Py eval input, Py file input, and Py single input. These are described following
the functions which accept them as parameters.

Note also that several of these functions take FILE* parameters. On particular issue which needs to be
handled carefully is that the FILE structure for different C libraries can be different and incompatible.
Under Windows (at least), it is possible for dynamically linked extensions to actually use different
libraries, so care should be taken that FILE* parameters are only passed to these functions if it is certain
that they were created by the same library that the Python runtime is using.

int Py Main(int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed
Python. The argc and argv parameters should be prepared exactly as those which are passed to
a C program’s main() function. It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be
the integer passed to the sys.exit() function, 1 if the interpreter exits due to an exception, or 2
if the parameter list does not represent a valid Python command line.

int PyRun AnyFile(FILE *fp, char *filename)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun InteractiveLoop(), otherwise return the result of
PyRun SimpleFile(). If filename is NULL, this function uses "???" as the filename.

int PyRun SimpleString(char *command)
Executes the Python source code from command in the main module. If main does not
already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there was an
error, there is no way to get the exception information.

int PyRun SimpleFile(FILE *fp, char *filename)
Similar to PyRun SimpleString(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file.

int PyRun InteractiveOne(FILE *fp, char *filename)
Read and execute a single statement from a file associated with an interactive device. If filename
is NULL, "???" is used instead. The user will be prompted using sys.ps1 and sys.ps2. Returns 0
when the input was executed successfully, -1 if there was an exception, or an error code from the
‘errcode.h’ include file distributed as part of Python if there was a parse error. (Note that ‘errcode.h’
is not included by ‘Python.h’, so must be included specifically if needed.)

int PyRun InteractiveLoop(FILE *fp, char *filename)
Read and execute statements from a file associated with an interactive device until eof is reached.
If filename is NULL, "???" is used instead. The user will be prompted using sys.ps1 and sys.ps2.
Returns 0 at eof.

struct node* PyParser SimpleParseString(char *str, int start)
Parse Python source code from str using the start token start . The result can be used to create a

9

code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

struct node* PyParser SimpleParseFile(FILE *fp, char *filename, int start)
Similar to PyParser SimpleParseString(), but the Python source code is read from fp instead
of an in-memory string. filename should be the name of the file.

PyObject* PyRun String(char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
Execute Python source code from str in the context specified by the dictionaries globals and locals.
The parameter start specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun File(FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
Similar to PyRun String(), but the Python source code is read from fp instead of an in-memory
string. filename should be the name of the file.

PyObject* Py CompileString(char *str, char *filename, int start)
Return value: New reference.
Parse and compile the Python source code in str , returning the resulting code object. The start
token is given by start ; this can be used to constrain the code which can be compiled and should
be Py eval input, Py file input, or Py single input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception
messages. This returns NULL if the code cannot be parsed or compiled.

int Py eval input
The start symbol from the Python grammar for isolated expressions; for use with
Py CompileString().

int Py file input
The start symbol from the Python grammar for sequences of statements as read from a file or other
source; for use with Py CompileString(). This is the symbol to use when compiling arbitrarily
long Python source code.

int Py single input
The start symbol from the Python grammar for a single statement; for use with
Py CompileString(). This is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER

THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py INCREF(PyObject *o)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that
it isn’t NULL, use Py XINCREF().

void Py XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has
no effect.

void Py DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it
isn’t NULL, use Py XDECREF(). If the reference count reaches zero, the object’s type’s deallocation
function (which must not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a
class instance with a del () method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any
object that is reachable from a global variable should be in a consistent state before Py DECREF()
is invoked. For example, code to delete an object from a list should copy a reference to the deleted
object in a temporary variable, update the list data structure, and then call Py DECREF() for the
temporary variable.

void Py XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py DECREF(), and the same warning applies.

The following functions or macros are only for use within the interpreter core: Py Dealloc(),
Py ForgetReference(), Py NewReference(), as well as the global variable Py RefTotal.

11

12

CHAPTER

FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important
to understand some of the basics of Python exception handling. It works somewhat like the Unix errno
variable: there is a global indicator (per thread) of the last error that occurred. Most functions don’t
clear this on success, but will set it to indicate the cause of the error on failure. Most functions also
return an error indicator, usually NULL if they are supposed to return a pointer, or -1 if they return an
integer (exception: the PyArg *() functions return 1 for success and 0 for failure).

When a function must fail because some function it called failed, it generally doesn’t set the error
indicator; the function it called already set it. It is responsible for either handling the error and clearing
the exception or returning after cleaning up any resources it holds (such as object references or memory
allocations); it should not continue normally if it is not prepared to handle the error. If returning due to
an error, it is important to indicate to the caller that an error has been set. If the error is not handled
or carefully propagated, additional calls into the Python/C API may not behave as intended and may
fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python variables
sys.exc type, sys.exc value and sys.exc traceback. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator for each thread.

void PyErr Print()
Print a standard traceback to sys.stderr and clear the error indicator. Call this function only
when the error indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr Occurred()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the exception type (the first argument to the
last call to one of the PyErr Set*() functions or to PyErr Restore()). If not set, return NULL.
You do not own a reference to the return value, so you do not need to Py DECREF() it. Note:
Do not compare the return value to a specific exception; use PyErr ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr ExceptionMatches(PyObject *exc)
Equivalent to ‘PyErr GivenExceptionMatches(PyErr Occurred(), exc)’. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has
been raised.

int PyErr GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also
returns true when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple
(and recursively in subtuples) are searched for a match. If given is NULL, a memory access violation
will occur.

void PyErr NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr Fetch() below can be “unnormalized”,
meaning that *exc is a class object but *val is not an instance of the same class. This function can
be used to instantiate the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

13

void PyErr Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator
is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference
to each object retrieved. The value and traceback object may be NULL even when the type object
is not. Note: This function is normally only used by code that needs to handle exceptions or by
code that needs to save and restore the error indicator temporarily.

void PyErr Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first.
If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a string or class. Do not pass an invalid exception type
or value. (Violating these rules will cause subtle problems later.) This call takes away a reference
to each object: you must own a reference to each object before the call and after the call you
no longer own these references. (If you don’t understand this, don’t use this function. I warned
you.) Note: This function is normally only used by code that needs to save and restore the error
indicator temporarily; use PyErr Fetch() to save the current exception state.

void PyErr SetString(PyObject *type, char *message)
This is the most common way to set the error indicator. The first argument specifies the exception
type; it is normally one of the standard exceptions, e.g. PyExc RuntimeError. You need not
increment its reference count. The second argument is an error message; it is converted to a string
object.

void PyErr SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr SetString() but lets you specify an arbitrary Python object for
the “value” of the exception.

PyObject* PyErr Format(PyObject *exception, const char *format, ...)
Return value: Always NULL.
This function sets the error indicator and returns NULL.. exception should be a Python exception
(string or class, not an instance). format should be a string, containing format codes, similar to
printf(). The width.precision before a format code is parsed, but the width part is ignored.

Character Meaning
‘c’ Character, as an int parameter
‘d’ Number in decimal, as an int parameter
‘x’ Number in hexadecimal, as an int parameter
‘s’ A string, as a char * parameter
‘p’ A hex pointer, as a void * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded.

void PyErr SetNone(PyObject *type)
This is a shorthand for ‘PyErr SetObject(type, Py None)’.

int PyErr BadArgument()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message)’, where message indi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject* PyErr NoMemory()
Return value: Always NULL.
This is a shorthand for ‘PyErr SetNone(PyExc MemoryError)’; it returns NULL so an object allo-
cation function can write ‘return PyErr NoMemory();’ when it runs out of memory.

PyObject* PyErr SetFromErrno(PyObject *type)
Return value: Always NULL.
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variable errno. It constructs a tuple object whose first item is the integer errno
value and whose second item is the corresponding error message (gotten from strerror()), and

14 Chapter 4. Exception Handling

then calls ‘PyErr SetObject(type, object)’. On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals(), and if that set the error indicator,
leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write ‘return PyErr SetFromErrno();’ when the system call returns an error.

PyObject* PyErr SetFromErrnoWithFilename(PyObject *type, char *filename)
Return value: Always NULL.
Similar to PyErr SetFromErrno(), with the additional behavior that if filename is not NULL, it is
passed to the constructor of type as a third parameter. In the case of exceptions such as IOError
and OSError, this is used to define the filename attribute of the exception instance.

void PyErr BadInternalCall()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message)’, where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

int PyErr Warn(PyObject *category, char *message)
Issue a warning message. The category argument is a warning category (see below) or NULL; the
message argument is a message string.

This function normally prints a warning message to sys.stderr ; however, it is also possible that the
user has specified that warnings are to be turned into errors, and in that case this will raise an
exception. It is also possible that the function raises an exception because of a problem with the
warning machinery (the implementation imports the warnings module to do the heavy lifting).
The return value is 0 if no exception is raised, or -1 if an exception is raised. (It is not possible to
determine whether a warning message is actually printed, nor what the reason is for the exception;
this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py DECREF() owned references and return an error value).

Warning categories must be subclasses of Warning; the default warning category is
RuntimeWarning. The standard Python warning categories are available as global variables
whose names are ‘PyExc ’ followed by the Python exception name. These have the type
PyObject*; they are all class objects. Their names are PyExc Warning, PyExc UserWarning,
PyExc DeprecationWarning, PyExc SyntaxWarning, and PyExc RuntimeWarning.
PyExc Warning is a subclass of PyExc Exception; the other warning categories are subclasses of
PyExc Warning.

For information about warning control, see the documentation for the warnings module and the
-W option in the command line documentation. There is no C API for warning control.

int PyErr WarnExplicit(PyObject *category, char *message, char *filename, int lineno, char *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward
wrapper around the Python function warnings.warn explicit(), see there for more information.
The module and registry arguments may be set to NULL to get the default effect described there.

int PyErr CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent
to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python. In all cases, the default effect for
SIGINT is to raise the KeyboardInterrupt exception. If an exception is raised the error indicator
is set and the function returns 1; otherwise the function returns 0. The error indicator may or may
not be cleared if it was previously set.

void PyErr SetInterrupt()
This function is obsolete. It simulates the effect of a SIGINT signal arriving — the next time
PyErr CheckSignals() is called, KeyboardInterrupt will be raised. It may be called without
holding the interpreter lock.

PyObject* PyErr NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference.
This utility function creates and returns a new exception object. The name argument must be the
name of the new exception, a C string of the form module.class. The base and dict arguments
are normally NULL. This creates a class object derived from the root for all exceptions, the built-in
name Exception (accessible in C as PyExc Exception). The module attribute of the new

15

class is set to the first part (up to the last dot) of the name argument, and the class name is set
to the last part (after the last dot). The base argument can be used to specify an alternate base
class. The dict argument can be used to specify a dictionary of class variables and methods.

void PyErr WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but
it is impossible for the interpreter to actually raise the exception. It is used, for example, when an
exception occurs in an del () method.

The function is called with a single argument obj that identifies where the context in which the
unraisable exception occurred. The repr of obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose names are ‘PyExc ’ followed by
the Python exception name. These have the type PyObject*; they are all class objects. For completeness,
here are all the variables:

C Name Python Name Notes
PyExc Exception Exception (1)
PyExc StandardError StandardError (1)
PyExc ArithmeticError ArithmeticError (1)
PyExc LookupError LookupError (1)
PyExc AssertionError AssertionError
PyExc AttributeError AttributeError
PyExc EOFError EOFError
PyExc EnvironmentError EnvironmentError (1)
PyExc FloatingPointError FloatingPointError
PyExc IOError IOError
PyExc ImportError ImportError
PyExc IndexError IndexError
PyExc KeyError KeyError
PyExc KeyboardInterrupt KeyboardInterrupt
PyExc MemoryError MemoryError
PyExc NameError NameError
PyExc NotImplementedError NotImplementedError
PyExc OSError OSError
PyExc OverflowError OverflowError
PyExc ReferenceError ReferenceError (2)
PyExc RuntimeError RuntimeError
PyExc SyntaxError SyntaxError
PyExc SystemError SystemError
PyExc SystemExit SystemExit
PyExc TypeError TypeError
PyExc ValueError ValueError
PyExc WindowsError WindowsError (3)
PyExc ZeroDivisionError ZeroDivisionError

Notes:

(1) This is a base class for other standard exceptions.

(2) This is the same as weakref.ReferenceError.

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro
MS WINDOWS is defined.

16 Chapter 4. Exception Handling

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived from Exception.

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this
will also change in a future release.

4.2. Deprecation of String Exceptions 17

18

CHAPTER

FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable
across platforms, using Python modules from C, and parsing function arguments and constructing Python
values from C values.

5.1 Operating System Utilities

int Py FdIsInteractive(FILE *fp, char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is
the case for files for which ‘isatty(fileno(fp))’ is true. If the global flag Py InteractiveFlag
is true, this function also returns true if the filename pointer is NULL or if the name is equal to one
of the strings ’<stdin>’ or ’???’.

long PyOS GetLastModificationTime(char *filename)
Return the time of last modification of the file filename. The result is encoded in the same way as
the timestamp returned by the standard C library function time().

void PyOS AfterFork()
Function to update some internal state after a process fork; this should be called in the new
process if the Python interpreter will continue to be used. If a new executable is loaded into the
new process, this function does not need to be called.

int PyOS CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only
available when USE STACKCHECK is defined (currently on Windows using the Microsoft Visual C++
compiler and on the Macintosh). USE CHECKSTACK will be defined automatically; you should never
change the definition in your own code.

PyOS sighandler t PyOS getsig(int i)
Return the current signal handler for signal i . This is a thin wrapper around either sigaction()
or signal(). Do not call those functions directly! PyOS sighandler t is a typedef alias for void
(*)(int).

PyOS sighandler t PyOS setsig(int i, PyOS sighandler t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper
around either sigaction() or signal(). Do not call those functions directly! PyOS sighandler t
is a typedef alias for void (*)(int).

5.2 Process Control

void Py FatalError(char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should
only be invoked when a condition is detected that would make it dangerous to continue using the
Python interpreter; e.g., when the object administration appears to be corrupted. On Unix, the
standard C library function abort() is called which will attempt to produce a ‘core’ file.

19

void Py Exit(int status)
Exit the current process. This calls Py Finalize() and then calls the standard C library function
exit(status).

int Py AtExit(void (*func) ())
Register a cleanup function to be called by Py Finalize(). The cleanup function will be called
with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py AtExit() returns 0; on failure, it returns -1. The cleanup
function registered last is called first. Each cleanup function will be called at most once. Since
Python’s internal finallization will have completed before the cleanup function, no Python APIs
should be called by func.

5.3 Importing Modules

PyObject* PyImport ImportModule(char *name)
Return value: New reference.
This is a simplified interface to PyImport ImportModuleEx() below, leaving the globals and locals
arguments set to NULL. When the name argument contains a dot (when it specifies a submodule of a
package), the fromlist argument is set to the list [’*’] so that the return value is the named module
rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule:
the submodules specified in the package’s all variable are loaded.) Return a new reference
to the imported module, or NULL with an exception set on failure (the module may still be created
in this case — examine sys.modules to find out).

PyObject* PyImport ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject *fromlist)
Return value: New reference.
Import a module. This is best described by referring to the built-in Python function

import (), as the standard import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an
exception set on failure (the module may still be created in this case). Like for import (),
the return value when a submodule of a package was requested is normally the top-level package,
unless a non-empty fromlist was given.

PyObject* PyImport Import(PyObject *name)
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes the

import () function from the builtins of the current globals. This means that the
import is done using whatever import hooks are installed in the current environment, e.g. by
rexec or ihooks.

PyObject* PyImport ReloadModule(PyObject *m)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python function reload(), as
the standard reload() function calls this function directly. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport AddModule(char *name)
Return value: Borrowed reference.
Return the module object corresponding to a module name. The name argument may be of the
form package.module). First check the modules dictionary if there’s one there, and if not, create
a new one and insert in in the modules dictionary. Return NULL with an exception set on failure.
Note: This function does not load or import the module; if the module wasn’t already loaded, you
will get an empty module object. Use PyImport ImportModule() or one of its variants to import
a module. Package structures implied by a dotted name for name are not created if not already
present.

PyObject* PyImport ExecCodeModule(char *name, PyObject *co)
Return value: New reference.
Given a module name (possibly of the form package.module) and a code object read from a Python

20 Chapter 5. Utilities

bytecode file or obtained from the built-in function compile(), load the module. Return a new
reference to the module object, or NULL with an exception set if an error occurred (the module may
still be created in this case). This function would reload the module if it was already imported. If
name points to a dotted name of the form package.module, any package structures not already
created will still not be created.

long PyImport GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. ‘.pyc’ and ‘.pyo’ files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport GetModuleDict()
Return value: Borrowed reference.
Return the dictionary used for the module administration (a.k.a. sys.modules). Note that this is
a per-interpreter variable.

void PyImport Init()
Initialize the import mechanism. For internal use only.

void PyImport Cleanup()
Empty the module table. For internal use only.

void PyImport Fini()
Finalize the import mechanism. For internal use only.

PyObject* PyImport FindExtension(char *, char *)
For internal use only.

PyObject* PyImport FixupExtension(char *, char *)
For internal use only.

int PyImport ImportFrozenModule(char *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and -1 with
an exception set if the initialization failed. To access the imported module on a successful load,
use PyImport ImportModule(). (Note the misnomer — this function would reload the module if
it was already imported.)

struct frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility
(see ‘Tools/freeze/’ in the Python source distribution). Its definition, found in ‘Include/import.h’, is:

struct _frozen {

char *name;

unsigned char *code;

int size;

};

struct frozen* PyImport FrozenModules
This pointer is initialized to point to an array of struct frozen records, terminated by one
whose members are all NULL or zero. When a frozen module is imported, it is searched in this
table. Third-party code could play tricks with this to provide a dynamically created collection of
frozen modules.

int PyImport AppendInittab(char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport ExtendInittab(), returning -1 if the table could not be extended. The new module
can be imported by the name name, and uses the function initfunc as the initialization function
called on the first attempted import. This should be called before Py Initialize().

struct inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the
name and initialization function for a module built into the interpreter. Programs which embed
Python may use an array of these structures in conjunction with PyImport ExtendInittab() to
provide additional built-in modules. The structure is defined in ‘Include/import.h’ as:

5.3. Importing Modules 21

struct _inittab {

char *name;

void (*initfunc)(void);

};

int PyImport ExtendInittab(struct inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with
a sentinel entry which contains NULL for the name field; failure to provide the sentinel value can
result in a memory fault. Returns 0 on success or -1 if insufficient memory could be allocated to
extend the internal table. In the event of failure, no modules are added to the internal table. This
should be called before Py Initialize().

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal
module. There are functions to write data into the serialization format, and additional functions that
can be used to read the data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal WriteLongToFile(long value, FILE *file)
Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value;
regardless of the size of the native long type.

void PyMarshal WriteShortToFile(short value, FILE *file)
Marshal a short integer, value, to file. This will only write the least-significant 16 bits of value;
regardless of the size of the native short type.

void PyMarshal WriteObjectToFile(PyObject *value, FILE *file)
Marshal a Python object, value, to file.

PyObject* PyMarshal WriteObjectToString(PyObject *value)
Return value: New reference.
Return a string object containing the marshalled representation of value.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a
negative numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled
properly when there’s no error. What’s the right way to tell? Should only non-negative values be written
using these routines?

long PyMarshal ReadLongFromFile(FILE *file)
Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be
read in using this function, regardless of the native size of long.

int PyMarshal ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can
be read in using this function, regardless of the native size of short.

PyObject* PyMarshal ReadObjectFromFile(FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE* opened for reading. On error, sets the
appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal ReadLastObjectFromFile(FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal ReadObjectFromFile(), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can
operate from data in memory rather than reading a byte at a time from the file. Only use these
variant if you are certain that you won’t be reading anything else from the file. On error, sets the
appropriate exception (EOFError or TypeError) and returns NULL.

22 Chapter 5. Utilities

PyObject* PyMarshal ReadObjectFromString(char *string, int len)
Return value: New reference.
Return a Python object from the data stream in a character buffer containing len bytes pointed to
by string . On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional infor-
mation and examples are available in Extending and Embedding the Python Interpreter.

int PyArg ParseTuple(PyObject *args, char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception. See
Extending and Embedding the Python Interpreter for more information.

int PyArg ParseTupleAndKeywords(PyObject *args, PyObject *kw, char *format, char *keywords[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.
See Extending and Embedding the Python Interpreter for more information.

int PyArg Parse(PyObject *args, char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions
which use the METH OLDARGS parameter parsing method. This is not recommended for use in
parameter parsing in new code, and most code in the standard interpreter has been modified to
no longer use this for that purpose. It does remain a convenient way to decompose other tuples,
however, and may continue to be used for that purpose.

int PyArg UnpackTuple(PyObject *args, char *name, int min, int max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of
the arguments. Functions which use this method to retrieve their parameters should be declared
as METH VARARGS in function or method tables. The tuple containing the actual parameters should
be passed as args; it must actually be a tuple. The length of the tuple must be at least min and
no more than max ; min and max may be equal. Additional arguments must be passed to the
function, each of which should be a pointer to a PyObject* variable; these will be filled in with
the values from args; they will contain borrowed references. The variables which correspond to
optional parameters not given by args will not be filled in; these should be initialized by the caller.
This function returns true on success and false if args is not a tuple or contains the wrong number
of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the weakref helper
module for weak references:

static PyObject *

weakref_ref(PyObject *self, PyObject *args)

{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {

result = PyWeakref_NewRef(object, callback);

}

return result;

}

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

5.5. Parsing arguments and building values 23

New in version 2.2.

PyObject* Py BuildValue(char *format, ...)
Return value: New reference.
Create a new value based on a format string similar to those accepted by the PyArg Parse*()
family of functions and a sequence of values. Returns the value or NULL in the case of an error;
an exception will be raised if NULL is returned. For more information on the format string and
additional parameters, see Extending and Embedding the Python Interpreter.

24 Chapter 5. Utilities

CHAPTER

SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes
of object types (e.g. all numerical types, or all sequence types). When used on object types for which
they do not apply, they will raise a Python exception.

6.1 Object Protocol

int PyObject Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain
printing options. The only option currently supported is Py PRINT RAW; if given, the str() of the
object is written instead of the repr().

int PyObject HasAttrString(PyObject *o, char *attr name)
Returns 1 if o has the attribute attr name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr name)’. This function always succeeds.

PyObject* PyObject GetAttrString(PyObject *o, char *attr name)
Return value: New reference.
Retrieve an attribute named attr name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘o.attr name’.

int PyObject HasAttr(PyObject *o, PyObject *attr name)
Returns 1 if o has the attribute attr name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr name)’. This function always succeeds.

PyObject* PyObject GetAttr(PyObject *o, PyObject *attr name)
Return value: New reference.
Retrieve an attribute named attr name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘o.attr name’.

int PyObject SetAttrString(PyObject *o, char *attr name, PyObject *v)
Set the value of the attribute named attr name, for object o, to the value v . Returns -1 on failure.
This is the equivalent of the Python statement ‘o.attr name = v ’.

int PyObject SetAttr(PyObject *o, PyObject *attr name, PyObject *v)
Set the value of the attribute named attr name, for object o, to the value v . Returns -1 on failure.
This is the equivalent of the Python statement ‘o.attr name = v ’.

int PyObject DelAttrString(PyObject *o, char *attr name)
Delete attribute named attr name, for object o. Returns -1 on failure. This is the equivalent of
the Python statement: ‘del o.attr name’.

int PyObject DelAttr(PyObject *o, PyObject *attr name)
Delete attribute named attr name, for object o. Returns -1 on failure. This is the equivalent of
the Python statement ‘del o.attr name’.

PyObject* PyObject RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference.
Compare the values of o1 and o2 using the operation specified by opid , which must be one of Py LT,

25

Py LE, Py EQ, Py NE, Py GT, or Py GE, corresponding to <, <=, ==, !=, >, or >= respectively. This
is the equivalent of the Python expression ‘o1 op o2 ’, where op is the operator corresponding to
opid . Returns the value of the comparison on success, or NULL on failure.

int PyObject RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid , which must be one of Py LT,
Py LE, Py EQ, Py NE, Py GT, or Py GE, corresponding to <, <=, ==, !=, >, or >= respectively.
Returns -1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python
expression ‘o1 op o2 ’, where op is the operator corresponding to opid .

int PyObject Cmp(PyObject *o1, PyObject *o2, int *result)
Compare the values of o1 and o2 using a routine provided by o1 , if one exists, otherwise with a
routine provided by o2 . The result of the comparison is returned in result . Returns -1 on failure.
This is the equivalent of the Python statement ‘result = cmp(o1, o2)’.

int PyObject Compare(PyObject *o1, PyObject *o2)
Compare the values of o1 and o2 using a routine provided by o1 , if one exists, otherwise with
a routine provided by o2 . Returns the result of the comparison on success. On error, the value
returned is undefined; use PyErr Occurred() to detect an error. This is equivalent to the Python
expression ‘cmp(o1, o2)’.

PyObject* PyObject Repr(PyObject *o)
Return value: New reference.
Compute a string representation of object o. Returns the string representation on success, NULL on
failure. This is the equivalent of the Python expression ‘repr(o)’. Called by the repr() built-in
function and by reverse quotes.

PyObject* PyObject Str(PyObject *o)
Return value: New reference.
Compute a string representation of object o. Returns the string representation on success, NULL
on failure. This is the equivalent of the Python expression ‘str(o)’. Called by the str() built-in
function and by the print statement.

PyObject* PyObject Unicode(PyObject *o)
Return value: New reference.
Compute a Unicode string representation of object o. Returns the Unicode string representation
on success, NULL on failure. This is the equivalent of the Python expression ‘unicode(o)’. Called
by the unicode() built-in function.

int PyObject IsInstance(PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1
and sets an exception. If cls is a type object rather than a class object, PyObject IsInstance()
returns 1 if inst is of type cls. If cls is a tuple, the check will be done against every entry in cls.
The result will be 1 when at least one of the checks returns 1, otherwise it will be 0. If inst is not
a class instance and cls is neither a type object, nor a class object, nor a tuple, inst must have a

class attribute — the class relationship of the value of that attribute with cls will be used
to determine the result of this function. New in version 2.1. Changed in version 2.2: Support
for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors
of extensions to the class system may want to be aware of. If A and B are class objects, B is a subclass of A
if it inherits from A either directly or indirectly. If either is not a class object, a more general mechanism
is used to determine the class relationship of the two objects. When testing if B is a subclass of A, if A is
B , PyObject IsSubclass() returns true. If A and B are different objects, B ’s bases attribute is
searched in a depth-first fashion for A — the presence of the bases attribute is considered sufficient
for this determination.

int PyObject IsSubclass(PyObject *derived, PyObject *cls)
Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In
case of an error, returns -1. If either derived or cls is not an actual class object, this function uses
the generic algorithm described above. New in version 2.1.

int PyCallable Check(PyObject *o)

26 Chapter 6. Abstract Objects Layer

Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This
function always succeeds.

PyObject* PyObject CallObject(PyObject *callable object, PyObject *args)
Return value: New reference.
Call a callable Python object callable object , with arguments given by the tuple args. If no argu-
ments are needed, then args may be NULL. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression ‘apply(callable object, args)’ or
‘callable object(*args)’.

PyObject* PyObject CallFunction(PyObject *callable, char *format, ...)
Return value: New reference.
Call a callable Python object callable, with a variable number of C arguments. The C arguments
are described using a Py BuildValue() style format string. The format may be NULL, indicating
that no arguments are provided. Returns the result of the call on success, or NULL on failure. This
is the equivalent of the Python expression ‘apply(callable, args)’ or ‘callable(*args)’.

PyObject* PyObject CallMethod(PyObject *o, char *method, char *format, ...)
Return value: New reference.
Call the method named m of object o with a variable number of C arguments. The C arguments
are described by a Py BuildValue() format string. The format may be NULL, indicating that no
arguments are provided. Returns the result of the call on success, or NULL on failure. This is the
equivalent of the Python expression ‘o.method(args)’.

PyObject* PyObject CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference.
Call a callable Python object callable, with a variable number of PyObject* arguments. The
arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure. New in version 2.2.

PyObject* PyObject CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference.
Calls a method of the object o, where the name of the method is given as a Python string object in
name. It is called with a variable number of PyObject* arguments. The arguments are provided
as a variable number of parameters followed by NULL. Returns the result of the call on success, or
NULL on failure. New in version 2.2.

int PyObject Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent
of the Python expression ‘hash(o)’.

int PyObject IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python
expression ‘not not o’. On failure, return -1.

int PyObject Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python
expression ‘not o’. On failure, return -1.

PyObject* PyObject Type(PyObject *o)
Return value: New reference.
When o is non-NULL, returns a type object corresponding to the object type of object o. On
failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o).
This function increments the reference count of the return value. There’s really no reason to use
this function instead of the common expression o->ob type, which returns a pointer of type
PyTypeObject*, except when the incremented reference count is needed.

int PyObject TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.
New in version 2.2.

int PyObject Length(PyObject *o)
Return the length of object o. If the object o provides both sequence and mapping protocols,
the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python

6.1. Object Protocol 27

expression ‘len(o)’.

PyObject* PyObject GetItem(PyObject *o, PyObject *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o[key]’.

int PyObject SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v . Returns -1 on failure. This is the equivalent of the Python
statement ‘o[key] = v ’.

int PyObject DelItem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python
statement ‘del o[key]’.

int PyObject AsFileDescriptor(PyObject *o)
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value
is returned. If not, the object’s fileno() method is called if it exists; the method must return an
integer or long integer, which is returned as the file descriptor value. Returns -1 on failure.

PyObject* PyObject Dir(PyObject *o)
Return value: New reference.
This is equivalent to the Python expression ‘dir(o)’, returning a (possibly empty) list of strings
appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this
is like the Python ‘dir()’, returning the names of the current locals; in this case, if no execution
frame is active then NULL is returned but PyErr Occurred() will return false.

PyObject* PyObject GetIter(PyObject *o)
Return value: New reference.
This is equivalent to the Python expression ‘iter(o)’. It returns a new iterator for the object
argument, or the object itself if the object is already an iterator. Raises TypeError and returns
NULL if the object cannot be iterated.

6.2 Number Protocol

int PyNumber Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always
succeeds.

PyObject* PyNumber Add(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of adding o1 and o2 , or NULL on failure. This is the equivalent of the Python
expression ‘o1 + o2 ’.

PyObject* PyNumber Subtract(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtracting o2 from o1 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 - o2 ’.

PyObject* PyNumber Multiply(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplying o1 and o2 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 * o2 ’.

PyObject* PyNumber Divide(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of dividing o1 by o2 , or NULL on failure. This is the equivalent of the Python
expression ‘o1 / o2 ’.

PyObject* PyNumber FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the floor of o1 divided by o2 , or NULL on failure. This is equivalent to the “classic” division
of integers. New in version 2.2.

28 Chapter 6. Abstract Objects Layer

PyObject* PyNumber TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value of o1 divided by o2 , or NULL on
failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. New in version 2.2.

PyObject* PyNumber Remainder(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividing o1 by o2 , or NULL on failure. This is the equivalent of the
Python expression ‘o1 % o2 ’.

PyObject* PyNumber Divmod(PyObject *o1, PyObject *o2)
Return value: New reference.
See the built-in function divmod(). Returns NULL on failure. This is the equivalent of the Python
expression ‘divmod(o1, o2)’.

PyObject* PyNumber Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.
See the built-in function pow(). Returns NULL on failure. This is the equivalent of the Python
expression ‘pow(o1, o2, o3)’, where o3 is optional. If o3 is to be ignored, pass Py None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber Negative(PyObject *o)
Return value: New reference.
Returns the negation of o on success, or NULL on failure. This is the equivalent of the Python
expression ‘-o’.

PyObject* PyNumber Positive(PyObject *o)
Return value: New reference.
Returns o on success, or NULL on failure. This is the equivalent of the Python expression ‘+o’.

PyObject* PyNumber Absolute(PyObject *o)
Return value: New reference.
Returns the absolute value of o, or NULL on failure. This is the equivalent of the Python expression
‘abs(o)’.

PyObject* PyNumber Invert(PyObject *o)
Return value: New reference.
Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent of the
Python expression ‘~o’.

PyObject* PyNumber Lshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 << o2 ’.

PyObject* PyNumber Rshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 >> o2 ’.

PyObject* PyNumber And(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” of o2 and o2 on success and NULL on failure. This is the equivalent of
the Python expression ‘o1 & o2 ’.

PyObject* PyNumber Xor(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 ^ o2 ’.

PyObject* PyNumber Or(PyObject *o1, PyObject *o2)
Return value: New reference.

6.2. Number Protocol 29

Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. This is the equivalent of the
Python expression ‘o1 | o2 ’.

PyObject* PyNumber InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of adding o1 and o2 , or NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python statement ‘o1 += o2 ’.

PyObject* PyNumber InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtracting o2 from o1 , or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement ‘o1 -= o2 ’.

PyObject* PyNumber InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplying o1 and o2 , or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement ‘o1 *= o2 ’.

PyObject* PyNumber InPlaceDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of dividing o1 by o2 , or NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python statement ‘o1 /= o2 ’.

PyObject* PyNumber InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the mathematical of dividing o1 by o2 , or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement ‘o1 //= o2 ’. New in version
2.2.

PyObject* PyNumber InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value of o1 divided by o2 , or NULL on
failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. The operation is done in-place when o1 supports it. New
in version 2.2.

PyObject* PyNumber InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividing o1 by o2 , or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement ‘o1 %= o2 ’.

PyObject* PyNumber InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.
See the built-in function pow(). Returns NULL on failure. The operation is done in-place when o1
supports it. This is the equivalent of the Python statement ‘o1 **= o2 ’ when o3 is Py None, or
an in-place variant of ‘pow(o1, o2, o3)’ otherwise. If o3 is to be ignored, pass Py None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shifting o1 by o2 on success, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement ‘o1 <<= o2 ’.

PyObject* PyNumber InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shifting o1 by o2 on success, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement ‘o1 >>= o2 ’.

PyObject* PyNumber InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” of o1 and o2 on success and NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement ‘o1 &= o2 ’.

30 Chapter 6. Abstract Objects Layer

PyObject* PyNumber InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement ‘o1 ^= o2 ’.

PyObject* PyNumber InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement ‘o1 |= o2 ’.

int PyNumber Coerce(PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by
*p1 and *p2 have the same type, increment their reference count and return 0 (success). If the
objects can be converted to a common numeric type, replace *p1 and *p2 by their converted value
(with ’new’ reference counts), and return 0. If no conversion is possible, or if some other error oc-
curs, return -1 (failure) and don’t increment the reference counts. The call PyNumber Coerce(&o1,
&o2) is equivalent to the Python statement ‘o1, o2 = coerce(o1, o2)’.

PyObject* PyNumber Int(PyObject *o)
Return value: New reference.
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘int(o)’.

PyObject* PyNumber Long(PyObject *o)
Return value: New reference.
Returns the o converted to a long integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘long(o)’.

PyObject* PyNumber Float(PyObject *o)
Return value: New reference.
Returns the o converted to a float object on success, or NULL on failure. This is the equivalent of
the Python expression ‘float(o)’.

6.3 Sequence Protocol

int PySequence Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

int PySequence Size(PyObject *o)
Returns the number of objects in sequence o on success, and -1 on failure. For objects that do not
provide sequence protocol, this is equivalent to the Python expression ‘len(o)’.

int PySequence Length(PyObject *o)
Alternate name for PySequence Size().

PyObject* PySequence Concat(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation of o1 and o2 on success, and NULL on failure. This is the equivalent of
the Python expression ‘o1 + o2 ’.

PyObject* PySequence Repeat(PyObject *o, int count)
Return value: New reference.
Return the result of repeating sequence object o count times, or NULL on failure. This is the
equivalent of the Python expression ‘o * count ’.

PyObject* PySequence InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation of o1 and o2 on success, and NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python expression ‘o1 += o2 ’.

PyObject* PySequence InPlaceRepeat(PyObject *o, int count)
Return value: New reference.
Return the result of repeating sequence object o count times, or NULL on failure. The operation is

6.3. Sequence Protocol 31

done in-place when o supports it. This is the equivalent of the Python expression ‘o *= count ’.

PyObject* PySequence GetItem(PyObject *o, int i)
Return value: New reference.
Return the ith element of o, or NULL on failure. This is the equivalent of the Python expression
‘o[i]’.

PyObject* PySequence GetSlice(PyObject *o, int i1, int i2)
Return value: New reference.
Return the slice of sequence object o between i1 and i2 , or NULL on failure. This is the equivalent
of the Python expression ‘o[i1:i2]’.

int PySequence SetItem(PyObject *o, int i, PyObject *v)
Assign object v to the ith element of o. Returns -1 on failure. This is the equivalent of the Python
statement ‘o[i] = v ’.

int PySequence DelItem(PyObject *o, int i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python
statement ‘del o[i]’.

int PySequence SetSlice(PyObject *o, int i1, int i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2 . This is the equivalent
of the Python statement ‘o[i1:i2] = v ’.

int PySequence DelSlice(PyObject *o, int i1, int i2)
Delete the slice in sequence object o from i1 to i2 . Returns -1 on failure. This is the equivalent
of the Python statement ‘del o[i1:i2]’.

PyObject* PySequence Tuple(PyObject *o)
Return value: New reference.
Returns the o as a tuple on success, and NULL on failure. This is equivalent to the Python expression
‘tuple(o)’.

int PySequence Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key]
== value. On failure, return -1. This is equivalent to the Python expression ‘o.count(value)’.

int PySequence Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On
error, return -1. This is equivalent to the Python expression ‘value in o’.

int PySequence Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the
Python expression ‘o.index(value)’.

PyObject* PySequence List(PyObject *o)
Return value: New reference.
Return a list object with the same contents as the arbitrary sequence o. The returned list is
guaranteed to be new.

PyObject* PySequence Tuple(PyObject *o)
Return value: New reference.
Return a tuple object with the same contents as the arbitrary sequence o. If o is a tuple, a new
reference will be returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence Fast(PyObject *o, const char *m)
Return value: New reference.
Returns the sequence o as a tuple, unless it is already a tuple or list, in which case o is returned.
Use PySequence Fast GET ITEM() to access the members of the result. Returns NULL on failure.
If the object is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence Fast GET ITEM(PyObject *o, int i)
Return value: Borrowed reference.
Return the ith element of o, assuming that o was returned by PySequence Fast(), o is not NULL,
and that i is within bounds.

32 Chapter 6. Abstract Objects Layer

int PySequence Fast GET SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence Fast() and that
o is not NULL. The size can also be gotten by calling PySequence Size() on o, but
PySequence Fast GET SIZE() is faster because it can assume o is a list or tuple.

6.4 Mapping Protocol

int PyMapping Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

int PyMapping Length(PyObject *o)
Returns the number of keys in object o on success, and -1 on failure. For objects that do not
provide mapping protocol, this is equivalent to the Python expression ‘len(o)’.

int PyMapping DelItemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del o[key]’.

int PyMapping DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del o[key]’.

int PyMapping HasKeyString(PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression ‘o.has key(key)’. This function always succeeds.

int PyMapping HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python
expression ‘o.has key(key)’. This function always succeeds.

PyObject* PyMapping Keys(PyObject *o)
Return value: New reference.
On success, return a list of the keys in object o. On failure, return NULL. This is equivalent to the
Python expression ‘o.keys()’.

PyObject* PyMapping Values(PyObject *o)
Return value: New reference.
On success, return a list of the values in object o. On failure, return NULL. This is equivalent to
the Python expression ‘o.values()’.

PyObject* PyMapping Items(PyObject *o)
Return value: New reference.
On success, return a list of the items in object o, where each item is a tuple containing a key-value
pair. On failure, return NULL. This is equivalent to the Python expression ‘o.items()’.

PyObject* PyMapping GetItemString(PyObject *o, char *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o[key]’.

int PyMapping SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the
Python statement ‘o[key] = v ’.

6.5 Iterator Protocol

New in version 2.2.

There are only a couple of functions specifically for working with iterators.

int PyIter Check(PyObject *o)
Return true if the object o supports the iterator protocol.

6.4. Mapping Protocol 33

PyObject* PyIter Next(PyObject *o)
Return value: New reference.
Return the next value from the iteration o. If the object is an iterator, this retrieves the next value
from the iteration, and returns NULL with no exception set if there are no remaining items. If the
object is not an iterator, TypeError is raised, or if there is an error in retrieving the item, returns
NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);

PyObject *item;

if (iterator == NULL) {

/* propagate error */

}

while (item = PyIter_Next(iterator)) {

/* do something with item */

...

/* release reference when done */

Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {

/* propagate error */

}

else {

/* continue doing useful work */

}

6.6 Buffer Protocol

int PyObject AsCharBuffer(PyObject *obj, const char **buffer, int *buffer len)
Returns a pointer to a read-only memory location useable as character- based input. The obj
argument must support the single-segment character buffer interface. On success, returns 0, sets
buffer to the memory location and buffer len to the buffer length. Returns -1 and sets a TypeError
on error. New in version 1.6.

int PyObject AsReadBuffer(PyObject *obj, const char **buffer, int *buffer len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument
must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the
memory location and buffer len to the buffer length. Returns -1 and sets a TypeError on error.
New in version 1.6.

int PyObject CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0. New
in version 2.2.

int PyObject AsWriteBuffer(PyObject *obj, char **buffer, int *buffer len)
Returns a pointer to a writeable memory location. The obj argument must support the single-
segment, character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer len to the buffer length. Returns -1 and sets a TypeError on error. New in version 1.6.

34 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first; for example, to check that an object is
a dictionary, use PyDict Check(). The chapter is structured like the “family tree” of Python object
types.

Warning: While the functions described in this chapter carefully check the type of the objects which
are passed in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL
to be passed in can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType Type
This is the type object for type objects; it is the same object as types.TypeType in the Python
layer.

int PyType Check(PyObject *o)
Returns true if the object o is a type object, including instances of types derived from the standard
type object. Returns false in all other cases.

int PyType CheckExact(PyObject *o)
Returns true if the object o is a type object, but not a subtype of the standard type object. Returns
false in all other cases. New in version 2.2.

int PyType HasFeature(PyObject *o, int feature)
Returns true if the type object o sets the feature feature. Type features are denoted by single bit
flags.

int PyType IS GC(PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS HAVE GC. New in version 2.0.

int PyType IsSubtype(PyTypeObject *a, PyTypeObject *b)
Returns true if a is a subtype of b. New in version 2.2.

PyObject* PyType GenericAlloc(PyTypeObject *type, int nitems)
Return value: New reference.
New in version 2.2.

35

PyObject* PyType GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference.
New in version 2.2.

int PyType Ready(PyTypeObject *type)
New in version 2.2.

7.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a
singleton, testing for object identity (using ‘==’ in C) is sufficient. There is no PyNone Check() function
for the same reason.

PyObject* Py None
The Python None object, denoting lack of value. This object has no methods. It needs to be
treated just like any other object with respect to reference counts.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object
as types.IntType.

int PyInt Check(PyObject* o)
Returns true if o is of type PyInt Type or a subtype of PyInt Type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyInt CheckExact(PyObject* o)
Returns true if o is of type PyInt Type, but not a subtype of PyInt Type. New in version 2.2.

PyObject* PyInt FromLong(long ival)
Return value: New reference.
Creates a new integer object with a value of ival .

The current implementation keeps an array of integer objects for all integers between -1 and 100,
when you create an int in that range you actually just get back a reference to the existing object.
So it should be possible to change the value of 1. I suspect the behaviour of Python in this case is
undefined. :-)

long PyInt AsLong(PyObject *io)
Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its
value.

long PyInt AS LONG(PyObject *io)
Returns the value of the object io. No error checking is performed.

long PyInt GetMax()
Returns the system’s idea of the largest integer it can handle (LONG MAX, as defined in the system
header files).

7.2.2 Long Integer Objects

PyLongObject
This subtype of PyObject represents a Python long integer object.

36 Chapter 7. Concrete Objects Layer

PyTypeObject PyLong Type
This instance of PyTypeObject represents the Python long integer type. This is the same object
as types.LongType.

int PyLong Check(PyObject *p)
Returns true if its argument is a PyLongObject or a subtype of PyLongObject. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyLong CheckExact(PyObject *p)
Returns true if its argument is a PyLongObject, but not a subtype of PyLongObject. New in
version 2.2.

PyObject* PyLong FromLong(long v)
Return value: New reference.
Returns a new PyLongObject object from v , or NULL on failure.

PyObject* PyLong FromUnsignedLong(unsigned long v)
Return value: New reference.
Returns a new PyLongObject object from a C unsigned long, or NULL on failure.

PyObject* PyLong FromLongLong(long long v)
Return value: New reference.
Returns a new PyLongObject object from a C long long, or NULL on failure.

PyObject* PyLong FromUnsignedLongLong(unsigned long long v)
Return value: New reference.
Returns a new PyLongObject object from a C unsigned long long, or NULL on failure.

PyObject* PyLong FromDouble(double v)
Return value: New reference.
Returns a new PyLongObject object from the integer part of v , or NULL on failure.

PyObject* PyLong FromString(char *str, char **pend, int base)
Return value: New reference.
Return a new PyLongObject based on the string value in str , which is interpreted according to
the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows
the representation of the number. If base is 0, the radix will be determined base on the leading
characters of str : if str starts with ’0x’ or ’0X’, radix 16 will be used; if str starts with ’0’,
radix 8 will be used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and
36, inclusive. Leading spaces are ignored. If there are no digits, ValueError will be raised.

PyObject* PyLong FromUnicode(Py UNICODE *u, int length, int base)
Return value: New reference.
Convert a sequence of Unicode digits to a Python long integer value. The first parameter, u, points
to the first character of the Unicode string, length gives the number of characters, and base is the
radix for the conversion. The radix must be in the range [2, 36]; if it is out of range, ValueError
will be raised. New in version 1.6.

PyObject* PyLong FromVoidPtr(void *p)
Return value: New reference.
Create a Python integer or long integer from the pointer p. The pointer value can be retrieved
from the resulting value using PyLong AsVoidPtr(). New in version 1.5.2.

long PyLong AsLong(PyObject *pylong)
Returns a C long representation of the contents of pylong . If pylong is greater than LONG MAX, an
OverflowError is raised.

unsigned long PyLong AsUnsignedLong(PyObject *pylong)
Returns a C unsigned long representation of the contents of pylong . If pylong is greater than
ULONG MAX, an OverflowError is raised.

long long PyLong AsLongLong(PyObject *pylong)
Return a C long long from a Python long integer. If pylong cannot be represented as a long
long, an OverflowError will be raised. New in version 2.2.

7.2. Numeric Objects 37

unsigned long long PyLong AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long from a Python long integer. If pylong cannot be represented as
an unsigned long long, an OverflowError will be raised if the value is positive, or a TypeError
will be raised if the value is negative. New in version 2.2.

double PyLong AsDouble(PyObject *pylong)
Returns a C double representation of the contents of pylong . If pylong cannot be approximately
represented as a double, an OverflowError exception is raised and -1.0 will be returned.

void* PyLong AsVoidPtr(PyObject *pylong)
Convert a Python integer or long integer pylong to a C void pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usable void pointer for values
created with PyLong FromVoidPtr(). New in version 1.5.2.

7.2.3 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance of PyTypeObject represents the Python floating point type. This is the same object
as types.FloatType.

int PyFloat Check(PyObject *p)
Returns true if its argument is a PyFloatObject or a subtype of PyFloatObject. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyFloat CheckExact(PyObject *p)
Returns true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. New in
version 2.2.

PyObject* PyFloat FromDouble(double v)
Return value: New reference.
Creates a PyFloatObject object from v , or NULL on failure.

double PyFloat AsDouble(PyObject *pyfloat)
Returns a C double representation of the contents of pyfloat .

double PyFloat AS DOUBLE(PyObject *pyfloat)
Returns a C double representation of the contents of pyfloat , but without error checking.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API:
one is the Python object exposed to Python programs, and the other is a C structure which represents
the actual complex number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by
value rather than dereferencing them through pointers. This is consistent throughout the API.

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most
of the functions for dealing with complex number objects use structures of this type as input or
output values, as appropriate. It is defined as:

typedef struct {

double real;

double imag;

38 Chapter 7. Concrete Objects Layer

} Py_complex;

Py complex Py c sum(Py complex left, Py complex right)
Return the sum of two complex numbers, using the C Py complex representation.

Py complex Py c diff(Py complex left, Py complex right)
Return the difference between two complex numbers, using the C Py complex representation.

Py complex Py c neg(Py complex complex)
Return the negation of the complex number complex , using the C Py complex representation.

Py complex Py c prod(Py complex left, Py complex right)
Return the product of two complex numbers, using the C Py complex representation.

Py complex Py c quot(Py complex dividend, Py complex divisor)
Return the quotient of two complex numbers, using the C Py complex representation.

Py complex Py c pow(Py complex num, Py complex exp)
Return the exponentiation of num by exp, using the C Py complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex Type
This instance of PyTypeObject represents the Python complex number type.

int PyComplex Check(PyObject *p)
Returns true if its argument is a PyComplexObject or a subtype of PyComplexObject. Changed
in version 2.2: Allowed subtypes to be accepted.

int PyComplex CheckExact(PyObject *p)
Returns true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. New
in version 2.2.

PyObject* PyComplex FromCComplex(Py complex v)
Return value: New reference.
Create a new Python complex number object from a C Py complex value.

PyObject* PyComplex FromDoubles(double real, double imag)
Return value: New reference.
Returns a new PyComplexObject object from real and imag .

double PyComplex RealAsDouble(PyObject *op)
Returns the real part of op as a C double.

double PyComplex ImagAsDouble(PyObject *op)
Returns the imaginary part of op as a C double.

Py complex PyComplex AsCComplex(PyObject *op)
Returns the Py complex value of the complex number op.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with
the specific kinds of sequence objects that are intrinsic to the Python language.

7.3.1 String Objects

These functions raise TypeError when expecting a string parameter and are called with a non-string
parameter.

7.3. Sequence Objects 39

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString Type
This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType in the Python layer. .

int PyString Check(PyObject *o)
Returns true if the object o is a string object or an instance of a subtype of the string type.
Changed in version 2.2: Allowed subtypes to be accepted.

int PyString CheckExact(PyObject *o)
Returns true if the object o is a string object, but not an instance of a subtype of the string type.
New in version 2.2.

PyObject* PyString FromString(const char *v)
Return value: New reference.
Returns a new string object with the value v on success, and NULL on failure. The parameter v
must not be NULL; it will not be checked.

PyObject* PyString FromStringAndSize(const char *v, int len)
Return value: New reference.
Returns a new string object with the value v and length len on success, and NULL on failure. If v
is NULL, the contents of the string are uninitialized.

PyObject* PyString FromFormat(const char *format, ...)
Return value: New reference.
Takes a C printf()-style format string and a variable number of arguments, calculates the size
of the resulting Python string and returns a string with the values formatted into it. The variable
arguments must be C types and must correspond exactly to the format characters in the format
string. The following format characters are allowed:

Format Characters Type Comment
%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent to printf("%d").
%ld long Exactly equivalent to printf("%ld").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except that it is guaranteed to start with the literal 0x regardless of what the platform’s printf yields.

PyObject* PyString FromFormatV(const char *format, va list vargs)
Return value: New reference.
Identical to PyString FromFormat() except that it takes exactly two arguments.

int PyString Size(PyObject *string)
Returns the length of the string in string object string .

int PyString GET SIZE(PyObject *string)
Macro form of PyString Size() but without error checking.

char* PyString AsString(PyObject *string)
Returns a NUL-terminated representation of the contents of string . The pointer refers to the
internal buffer of string , not a copy. The data must not be modified in any way, unless the string
was just created using PyString FromStringAndSize(NULL, size). It must not be deallocated.
If string is a Unicode object, this function computes the default encoding of string and operates
on that. If string is not a string object at all, PyString AsString() returns NULL and raises
TypeError.

char* PyString AS STRING(PyObject *string)
Macro form of PyString AsString() but without error checking. Only string objects are sup-
ported; no Unicode objects should be passed.

40 Chapter 7. Concrete Objects Layer

int PyString AsStringAndSize(PyObject *obj, char **buffer, int *length)
Returns a NUL-terminated representation of the contents of the object obj through the output
variables buffer and length.

The function accepts both string and Unicode objects as input. For Unicode objects it returns the
default encoded version of the object. If length is NULL, the resulting buffer may not contain NUL
characters; if it does, the function returns -1 and a TypeError is raised.

The buffer refers to an internal string buffer of obj , not a copy. The data must not be modified in
any way, unless the string was just created using PyString FromStringAndSize(NULL, size). It
must not be deallocated. If string is a Unicode object, this function computes the default encoding
of string and operates on that. If string is not a string object at all, PyString AsString() returns
NULL and raises TypeError.

void PyString Concat(PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of newpart appended to string ; the
caller will own the new reference. The reference to the old value of string will be stolen. If the new
string cannot be created, the old reference to string will still be discarded and the value of *string
will be set to NULL; the appropriate exception will be set.

void PyString ConcatAndDel(PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of newpart appended to string . This
version decrements the reference count of newpart .

int PyString Resize(PyObject **string, int newsize)
A way to resize a string object even though it is “immutable”. Only use this to build up a brand
new string object; don’t use this if the string may already be known in other parts of the code. It is
an error to call this function if the refcount on the input string object is not one. Pass the address
of an existing string object as an lvalue (it may be written into), and the new size desired. On
success, *string holds the resized string object and 0 is returned; the address in *string may differ
from its input value. If the reallocation fails, the original string object at *string is deallocated,
*string is set to NULL, a memory exception is set, and -1 is returned.

PyObject* PyString Format(PyObject *format, PyObject *args)
Return value: New reference.
Returns a new string object from format and args. Analogous to format % args. The args argu-
ment must be a tuple.

void PyString InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable
pointing to a Python string object. If there is an existing interned string that is the same as *string ,
it sets *string to it (decrementing the reference count of the old string object and incrementing
the reference count of the interned string object), otherwise it leaves *string alone and interns it
(incrementing its reference count). (Clarification: even though there is a lot of talk about reference
counts, think of this function as reference-count-neutral; you own the object after the call if and
only if you owned it before the call.)

PyObject* PyString InternFromString(const char *v)
Return value: New reference.
A combination of PyString FromString() and PyString InternInPlace(), returning either a
new string object that has been interned, or a new (“owned”) reference to an earlier interned string
object with the same value.

PyObject* PyString Decode(const char *s, int size, const char *encoding, const char *errors)
Return value: New reference.
Creates an object by decoding size bytes of the encoded buffer s using the codec registered for
encoding . encoding and errors have the same meaning as the parameters of the same name in the
unicode() built-in function. The codec to be used is looked up using the Python codec registry.
Returns NULL if an exception was raised by the codec.

PyObject* PyString AsDecodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference.
Decodes a string object by passing it to the codec registered for encoding and returns the result as
Python object. encoding and errors have the same meaning as the parameters of the same name in

7.3. Sequence Objects 41

the string encode() method. The codec to be used is looked up using the Python codec registry.
Returns NULL if an exception was raised by the codec.

PyObject* PyString Encode(const char *s, int size, const char *encoding, const char *errors)
Return value: New reference.
Encodes the char buffer of the given size by passing it to the codec registered for encoding and
returns a Python object. encoding and errors have the same meaning as the parameters of the
same name in the string encode() method. The codec to be used is looked up using the Python
codec registry. Returns NULL if an exception was raised by the codec.

PyObject* PyString AsEncodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference.
Encodes a string object using the codec registered for encoding and returns the result as Python
object. encoding and errors have the same meaning as the parameters of the same name in the
string encode() method. The codec to be used is looked up using the Python codec registry.
Returns NULL if an exception was raised by the codec.

7.3.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis
for holding Unicode ordinals. On platforms where wchar t is available and also has 16-bits,
Py UNICODE is a typedef alias for wchar t to enhance native platform compatibility. On all other
platforms, Py UNICODE is a typedef alias for unsigned short.

PyUnicodeObject
This subtype of PyObject represents a Python Unicode object.

PyTypeObject PyUnicode Type
This instance of PyTypeObject represents the Python Unicode type.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only
data of Unicode objects:

int PyUnicode Check(PyObject *o)
Returns true if the object o is a Unicode object or an instance of a Unicode subtype. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyUnicode CheckExact(PyObject *o)
Returns true if the object o is a Unicode object, but not an instance of a subtype. New in version
2.2.

int PyUnicode GET SIZE(PyObject *o)
Returns the size of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode GET DATA SIZE(PyObject *o)
Returns the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not
checked).

Py UNICODE* PyUnicode AS UNICODE(PyObject *o)
Returns a pointer to the internal Py UNICODE buffer of the object. o has to be a PyUnicodeObject
(not checked).

const char* PyUnicode AS DATA(PyObject *o)
Returns a pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

Unicode provides many different character properties. The most often needed ones are available through
these macros which are mapped to C functions depending on the Python configuration.

int Py UNICODE ISSPACE(Py UNICODE ch)
Returns 1/0 depending on whether ch is a whitespace character.

int Py UNICODE ISLOWER(Py UNICODE ch)

42 Chapter 7. Concrete Objects Layer

Returns 1/0 depending on whether ch is a lowercase character.

int Py UNICODE ISUPPER(Py UNICODE ch)
Returns 1/0 depending on whether ch is an uppercase character.

int Py UNICODE ISTITLE(Py UNICODE ch)
Returns 1/0 depending on whether ch is a titlecase character.

int Py UNICODE ISLINEBREAK(Py UNICODE ch)
Returns 1/0 depending on whether ch is a linebreak character.

int Py UNICODE ISDECIMAL(Py UNICODE ch)
Returns 1/0 depending on whether ch is a decimal character.

int Py UNICODE ISDIGIT(Py UNICODE ch)
Returns 1/0 depending on whether ch is a digit character.

int Py UNICODE ISNUMERIC(Py UNICODE ch)
Returns 1/0 depending on whether ch is a numeric character.

int Py UNICODE ISALPHA(Py UNICODE ch)
Returns 1/0 depending on whether ch is an alphabetic character.

int Py UNICODE ISALNUM(Py UNICODE ch)
Returns 1/0 depending on whether ch is an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py UNICODE Py UNICODE TOLOWER(Py UNICODE ch)
Returns the character ch converted to lower case.

Py UNICODE Py UNICODE TOUPPER(Py UNICODE ch)
Returns the character ch converted to upper case.

Py UNICODE Py UNICODE TOTITLE(Py UNICODE ch)
Returns the character ch converted to title case.

int Py UNICODE TODECIMAL(Py UNICODE ch)
Returns the character ch converted to a decimal positive integer. Returns -1 if this is not possible.
Does not raise exceptions.

int Py UNICODE TODIGIT(Py UNICODE ch)
Returns the character ch converted to a single digit integer. Returns -1 if this is not possible.
Does not raise exceptions.

double Py UNICODE TONUMERIC(Py UNICODE ch)
Returns the character ch converted to a (positive) double. Returns -1.0 if this is not possible.
Does not raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode FromUnicode(const Py UNICODE *u, int size)
Return value: New reference.
Create a Unicode Object from the Py UNICODE buffer u of the given size. u may be NULL which
causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared
object. Therefore, modification of the resulting Unicode object is only allowed when u is NULL.

Py UNICODE* PyUnicode AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, NULL if unicode is
not a Unicode object.

int PyUnicode GetSize(PyObject *unicode)
Return the length of the Unicode object.

PyObject* PyUnicode FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference.
Coerce an encoded object obj to an Unicode object and return a reference with incremented
refcount.

7.3. Sequence Objects 43

Coercion is done in the following way:

1.Unicode objects are passed back as-is with incremented refcount. Note: These cannot be
decoded; passing a non-NULL value for encoding will result in a TypeError.

2.String and other char buffer compatible objects are decoded according to the given encoding
and using the error handling defined by errors. Both can be NULL to have the interface use
the default values (see the next section for details).

3.All other objects cause an exception.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned
objects.

PyObject* PyUnicode FromObject(PyObject *obj)
Return value: New reference.
Shortcut for PyUnicode FromEncodedObject(obj, NULL, "strict") which is used throughout
the interpreter whenever coercion to Unicode is needed.

If the platform supports wchar t and provides a header file wchar.h, Python can interface directly to this
type using the following functions. Support is optimized if Python’s own Py UNICODE type is identical
to the system’s wchar t.

PyObject* PyUnicode FromWideChar(const wchar t *w, int size)
Return value: New reference.
Create a Unicode object from the wchar t buffer w of the given size. Returns NULL on failure.

int PyUnicode AsWideChar(PyUnicodeObject *unicode, wchar t *w, int size)
Copies the Unicode object contents into the wchar t buffer w . At most size wchar t characters
are copied. Returns the number of wchar t characters copied or -1 in case of an error.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly
usable via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and
errors have the same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is ascii. The file system calls
should use Py FileSystemDefaultEncoding as the encoding for file names. This variable should be
treated as read-only: On some systems, it will be a pointer to a static string, on others, it will change
at run-time, e.g. when the application invokes setlocale.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined
for the codec. Default error handling for all builtin codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented
for simplicity.

These are the generic codec APIs:

PyObject* PyUnicode Decode(const char *s, int size, const char *encoding, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the encoded string s. encoding and errors have
the same meaning as the parameters of the same name in the unicode() builtin function. The
codec to be used is looked up using the Python codec registry. Returns NULL if an exception was
raised by the codec.

PyObject* PyUnicode Encode(const Py UNICODE *s, int size, const char *encoding, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size and returns a Python string object. encoding
and errors have the same meaning as the parameters of the same name in the Unicode encode()
method. The codec to be used is looked up using the Python codec registry. Returns NULL if an
exception was raised by the codec.

44 Chapter 7. Concrete Objects Layer

PyObject* PyUnicode AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference.
Encodes a Unicode object and returns the result as Python string object. encoding and errors
have the same meaning as the parameters of the same name in the Unicode encode() method.
The codec to be used is looked up using the Python codec registry. Returns NULL if an exception
was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode DecodeUTF8(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the UTF-8 encoded string s. Returns NULL if
an exception was raised by the codec.

PyObject* PyUnicode EncodeUTF8(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using UTF-8 and returns a Python string object.
Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsUTF8String(PyObject *unicode)
Return value: New reference.
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error
handling is “strict”. Returns NULL if an exception was raised by the codec.

These are the UTF-16 codec APIs:

PyObject* PyUnicode DecodeUTF16(const char *s, int size, const char *errors, int *byteorder)
Return value: New reference.
Decodes length bytes from a UTF-16 encoded buffer string and returns the corresponding Unicode
object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian

*byteorder == 0: native order

*byteorder == 1: big endian

and then switches according to all byte order marks (BOM) it finds in the input data. BOMs are
not copied into the resulting Unicode string. After completion, *byteorder is set to the current
byte order at the end of input data.

If byteorder is NULL, the codec starts in native order mode.

Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeUTF16(const Py UNICODE *s, int size, const char *errors, int byteorder)
Return value: New reference.
Returns a Python string object holding the UTF-16 encoded value of the Unicode data in s. If
byteorder is not 0, output is written according to the following byte order:

byteorder == -1: little endian

byteorder == 0: native byte order (writes a BOM mark)

byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In
the other two modes, no BOM mark is prepended.

Note that Py UNICODE data is being interpreted as UTF-16 reduced to UCS-2. This trick makes
it possible to add full UTF-16 capabilities at a later point without comprimising the APIs.

Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsUTF16String(PyObject *unicode)
Return value: New reference.
Returns a Python string using the UTF-16 encoding in native byte order. The string always starts
with a BOM mark. Error handling is “strict”. Returns NULL if an exception was raised by the
codec.

7.3. Sequence Objects 45

These are the “Unicode Esacpe” codec APIs:

PyObject* PyUnicode DecodeUnicodeEscape(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the Unicode-Escape encoded string s. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeUnicodeEscape(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using Unicode-Escape and returns a Python string
object. Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference.
Encodes a Unicode objects using Unicode-Escape and returns the result as Python string object.
Error handling is “strict”. Returns NULL if an exception was raised by the codec.

These are the “Raw Unicode Esacpe” codec APIs:

PyObject* PyUnicode DecodeRawUnicodeEscape(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the Raw-Unicode-Esacpe encoded string s.
Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeRawUnicodeEscape(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using Raw-Unicode-Escape and returns a Python
string object. Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference.
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result as Python string
object. Error handling is “strict”. Returns NULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these
are accepted by the codecs during encoding.

PyObject* PyUnicode DecodeLatin1(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the Latin-1 encoded string s. Returns NULL if
an exception was raised by the codec.

PyObject* PyUnicode EncodeLatin1(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using Latin-1 and returns a Python string object.
Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsLatin1String(PyObject *unicode)
Return value: New reference.
Encodes a Unicode objects using Latin-1 and returns the result as Python string object. Error
handling is “strict”. Returns NULL if an exception was raised by the codec.

These are the ascii codec APIs. Only 7-bit ascii data is accepted. All other codes generate errors.

PyObject* PyUnicode DecodeASCII(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the ascii encoded string s. Returns NULL if an
exception was raised by the codec.

PyObject* PyUnicode EncodeASCII(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using ascii and returns a Python string object.
Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsASCIIString(PyObject *unicode)
Return value: New reference.

46 Chapter 7. Concrete Objects Layer

Encodes a Unicode objects using ascii and returns the result as Python string object. Error
handling is “strict”. Returns NULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what
was done to obtain most of the standard codecs included in the encodings package). The codec uses
mapping to encode and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are
then interpreted as Unicode ordinals) or None (meaning ”undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are
then interpreted as Latin-1 ordinals) or None (meaning ”undefined mapping” and causing an error).

The mapping objects provided must only support the getitem mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal
value will be interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to
contain those mappings which map characters to different code points.

PyObject* PyUnicode DecodeCharmap(const char *s, int size, PyObject *mapping, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the encoded string s using the given mapping
object. Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeCharmap(const Py UNICODE *s, int size, PyObject *mapping, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using the given mapping object and returns a
Python string object. Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference.
Encodes a Unicode objects using the given mapping object and returns the result as Python string
object. Error handling is “strict”. Returns NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode TranslateCharmap(const Py UNICODE *s, int size, PyObject *table, const char *errors)
Return value: New reference.
Translates a Py UNICODE buffer of the given length by applying a character mapping table to it and
returns the resulting Unicode object. Returns NULL when an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing
deletion of the character).

Mapping tables need only provide the method getitem () interface; dictionaries and sequences
work well. Unmapped character ordinals (ones which cause a LookupError) are left untouched and
are copied as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32
MBCS converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings,
not just one. The target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode DecodeMBCS(const char *s, int size, const char *errors)
Return value: New reference.
Creates a Unicode object by decoding size bytes of the MBCS encoded string s. Returns NULL if
an exception was raised by the codec.

PyObject* PyUnicode EncodeMBCS(const Py UNICODE *s, int size, const char *errors)
Return value: New reference.
Encodes the Py UNICODE buffer of the given size using MBCS and returns a Python string object.
Returns NULL if an exception was raised by the codec.

PyObject* PyUnicode AsMBCSString(PyObject *unicode)
Return value: New reference.
Encodes a Unicode objects using MBCS and returns the result as Python string object. Error

7.3. Sequence Objects 47

handling is “strict”. Returns NULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as
strings in the descriptions) and return Unicode objects or integers as apporpriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode Concat(PyObject *left, PyObject *right)
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode Split(PyObject *s, PyObject *sep, int maxsplit)
Return value: New reference.
Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode Splitlines(PyObject *s, int maxsplit)
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be
one line break. The Line break characters are not included in the resulting strings.

PyObject* PyUnicode Translate(PyObject *str, PyObject *table, const char *errors)
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode
object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing
deletion of the character).

Mapping tables need only provide the getitem () interface; dictionaries and sequences work
well. Unmapped character ordinals (ones which cause a LookupError) are left untouched and are
copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error
handling.

PyObject* PyUnicode Join(PyObject *separator, PyObject *seq)
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

PyObject* PyUnicode Tailmatch(PyObject *str, PyObject *substr, int start, int end, int direction)
Return value: New reference.
Return 1 if substr matches str [start :end] at the given tail end (direction == -1 means to do a
prefix match, direction == 1 a suffix match), 0 otherwise.

int PyUnicode Find(PyObject *str, PyObject *substr, int start, int end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == -1 a backward search). The return value is the index of the
first match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred
and an exception has been set.

int PyUnicode Count(PyObject *str, PyObject *substr, int start, int end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Returns -1 if an
error occurred.

PyObject* PyUnicode Replace(PyObject *str, PyObject *substr, PyObject *replstr, int maxcount)
Return value: New reference.
Replace at most maxcount occurrences of substr in str with replstr and return the resulting Unicode
object. maxcount == -1 means replace all occurrences.

int PyUnicode Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

48 Chapter 7. Concrete Objects Layer

PyObject* PyUnicode Format(PyObject *format, PyObject *args)
Return value: New reference.
Returns a new string object from format and args; this is analogous to format % args. The args
argument must be a tuple.

int PyUnicode Contains(PyObject *container, PyObject *element)
Checks whether element is contained in container and returns true or false accordingly.

element has to coerce to a one element Unicode string. -1 is returned if there was an error.

7.3.3 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These
functions can be used by an object to expose its data in a raw, byte-oriented format. Clients of the
object can use the buffer interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object
exposes the character contents in the buffer interface’s byte-oriented form. An array can also expose its
contents, but it should be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file object’s write() method. Any object that can export
a series of bytes through the buffer interface can be written to a file. There are a number of format
codes to PyArg ParseTuple() that operate against an object’s buffer interface, returning data from the
target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (sec-
tion 10.6), under the description for PyBufferProcs.

A “buffer object” is defined in the ‘bufferobject.h’ header (included by ‘Python.h’). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation,
and some other standard string operations. However, their data can come from one of two sources: from
a block of memory, or from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a
block of memory, it is possible to expose any data to the Python programmer quite easily. The memory
could be a large, constant array in a C extension, it could be a raw block of memory for manipulation
before passing to an operating system library, or it could be used to pass around structured data in its
native, in-memory format.

PyBufferObject
This subtype of PyObject represents a buffer object.

PyTypeObject PyBuffer Type
The instance of PyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py END OF BUFFER
This constant may be passed as the size parameter to PyBuffer FromObject() or
PyBuffer FromReadWriteObject(). It indicates that the new PyBufferObject should refer to
base object from the specified offset to the end of its exported buffer. Using this enables the caller
to avoid querying the base object for its length.

int PyBuffer Check(PyObject *p)
Return true if the argument has type PyBuffer Type.

PyObject* PyBuffer FromObject(PyObject *base, int offset, int size)
Return value: New reference.
Return a new read-only buffer object. This raises TypeError if base doesn’t support the read-only
buffer protocol or doesn’t provide exactly one buffer segment, or it raises ValueError if offset is
less than zero. The buffer will hold a reference to the base object, and the buffer’s contents will
refer to the base object’s buffer interface, starting as position offset and extending for size bytes. If
size is Py END OF BUFFER, then the new buffer’s contents extend to the length of the base object’s
exported buffer data.

7.3. Sequence Objects 49

PyObject* PyBuffer FromReadWriteObject(PyObject *base, int offset, int size)
Return value: New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer FromObject(). If the base object does not export the writeable buffer protocol, then
TypeError is raised.

PyObject* PyBuffer FromMemory(void *ptr, int size)
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a
specified size. The caller is responsible for ensuring that the memory buffer, passed in as ptr , is
not deallocated while the returned buffer object exists. Raises ValueError if size is less than zero.
Note that Py END OF BUFFER may not be passed for the size parameter; ValueError will be raised
in that case.

PyObject* PyBuffer FromReadWriteMemory(void *ptr, int size)
Return value: New reference.
Similar to PyBuffer FromMemory(), but the returned buffer is writable.

PyObject* PyBuffer New(int size)
Return value: New reference.
Returns a new writable buffer object that maintains its own memory buffer of size bytes.
ValueError is returned if size is not zero or positive.

7.3.4 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyTuple CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. New in
version 2.2.

PyObject* PyTuple New(int len)
Return value: New reference.
Return a new tuple object of size len, or NULL on failure.

int PyTuple Size(PyObject *p)
Takes a pointer to a tuple object, and returns the size of that tuple.

int PyTuple GET SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is
performed.

PyObject* PyTuple GetItem(PyObject *p, int pos)
Return value: Borrowed reference.
Returns the object at position pos in the tuple pointed to by p. If pos is out of bounds, returns
NULL and sets an IndexError exception.

PyObject* PyTuple GET ITEM(PyObject *p, int pos)
Return value: Borrowed reference.
Like PyTuple GetItem(), but does no checking of its arguments.

PyObject* PyTuple GetSlice(PyObject *p, int low, int high)
Return value: New reference.
Takes a slice of the tuple pointed to by p from low to high and returns it as a new tuple.

50 Chapter 7. Concrete Objects Layer

int PyTuple SetItem(PyObject *p, int pos, PyObject *o)
Inserts a reference to object o at position pos of the tuple pointed to by p. It returns 0 on success.
Note: This function “steals” a reference to o.

void PyTuple SET ITEM(PyObject *p, int pos, PyObject *o)
Like PyTuple SetItem(), but does no error checking, and should only be used to fill in brand new
tuples. Note: This function “steals” a reference to o.

int PyTuple Resize(PyObject **p, int newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are
supposed to be immutable, this should only be used if there is only one reference to the object. Do
not use this if the tuple may already be known to some other part of the code. The tuple will always
grow or shrink at the end. Think of this as destroying the old tuple and creating a new one, only
more efficiently. Returns 0 on success. Client code should never assume that the resulting value
of *p will be the same as before calling this function. If the object referenced by *p is replaced,
the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and raises MemoryError
or SystemError. Changed in version 2.2: Removed unused third parameter, last is sticky .

7.3.5 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList Type
This instance of PyTypeObject represents the Python list type. This is the same object as
types.ListType.

int PyList Check(PyObject *p)
Returns true if its argument is a PyListObject.

PyObject* PyList New(int len)
Return value: New reference.
Returns a new list of length len on success, or NULL on failure.

int PyList Size(PyObject *list)
Returns the length of the list object in list ; this is equivalent to ‘len(list)’ on a list object.

int PyList GET SIZE(PyObject *list)
Macro form of PyList Size() without error checking.

PyObject* PyList GetItem(PyObject *list, int index)
Return value: Borrowed reference.
Returns the object at position pos in the list pointed to by p. If pos is out of bounds, returns NULL
and sets an IndexError exception.

PyObject* PyList GET ITEM(PyObject *list, int i)
Return value: Borrowed reference.
Macro form of PyList GetItem() without error checking.

int PyList SetItem(PyObject *list, int index, PyObject *item)
Sets the item at index index in list to item. Returns 0 on success or -1 on failure. Note: This
function “steals” a reference to item and discards a reference to an item already in the list at the
affected position.

void PyList SET ITEM(PyObject *list, int i, PyObject *o)
Macro form of PyList SetItem() without error checking. This is normally only used to fill in
new lists where there is no previous content. Note: This function “steals” a reference to item,
and, unlike PyList SetItem(), does not discard a reference to any item that it being replaced;
any reference in list at position i will be leaked.

int PyList Insert(PyObject *list, int index, PyObject *item)
Inserts the item item into list list in front of index index . Returns 0 if successful; returns -1 and
raises an exception if unsuccessful. Analogous to list.insert(index, item).

7.3. Sequence Objects 51

int PyList Append(PyObject *list, PyObject *item)
Appends the object item at the end of list list . Returns 0 if successful; returns -1 and sets an
exception if unsuccessful. Analogous to list.append(item).

PyObject* PyList GetSlice(PyObject *list, int low, int high)
Return value: New reference.
Returns a list of the objects in list containing the objects between low and high. Returns NULL and
sets an exception if unsuccessful. Analogous to list[low:high].

int PyList SetSlice(PyObject *list, int low, int high, PyObject *itemlist)
Sets the slice of list between low and high to the contents of itemlist . Analogous to list[low:high]
= itemlist . Returns 0 on success, -1 on failure.

int PyList Sort(PyObject *list)
Sorts the items of list in place. Returns 0 on success, -1 on failure. This is equivalent to
‘list.sort()’.

int PyList Reverse(PyObject *list)
Reverses the items of list in place. Returns 0 on success, -1 on failure. This is the equivalent of
‘list.reverse()’.

PyObject* PyList AsTuple(PyObject *list)
Return value: New reference.
Returns a new tuple object containing the contents of list ; equivalent to ‘tuple(list)’.

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict Type
This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python
programs as types.DictType and types.DictionaryType.

int PyDict Check(PyObject *p)
Returns true if its argument is a PyDictObject.

PyObject* PyDict New()
Return value: New reference.
Returns a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy New(PyObject *dict)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used
to create a proxy to prevent modification of the dictionary for non-dynamic class types. New in
version 2.2.

void PyDict Clear(PyObject *p)
Empties an existing dictionary of all key-value pairs.

PyObject* PyDict Copy(PyObject *p)
Return value: New reference.
Returns a new dictionary that contains the same key-value pairs as p. New in version 1.6.

int PyDict SetItem(PyObject *p, PyObject *key, PyObject *val)
Inserts value into the dictionary p with a key of key . key must be hashable; if it isn’t, TypeError
will be raised. Returns 0 on success or -1 on failure.

int PyDict SetItemString(PyObject *p, char *key, PyObject *val)
Inserts value into the dictionary p using key as a key. key should be a char*. The key object is
created using PyString FromString(key). Returns 0 on success or -1 on failure.

52 Chapter 7. Concrete Objects Layer

int PyDict DelItem(PyObject *p, PyObject *key)
Removes the entry in dictionary p with key key . key must be hashable; if it isn’t, TypeError is
raised.

int PyDict DelItemString(PyObject *p, char *key)
Removes the entry in dictionary p which has a key specified by the string key . Returns 0 on success
or -1 on failure.

PyObject* PyDict GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference.
Returns the object from dictionary p which has a key key . Returns NULL if the key key is not
present, but without setting an exception.

PyObject* PyDict GetItemString(PyObject *p, char *key)
Return value: Borrowed reference.
This is the same as PyDict GetItem(), but key is specified as a char*, rather than a PyObject*.

PyObject* PyDict Items(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the items from the dictionary, as in the dictinoary method
items() (see the Python Library Reference).

PyObject* PyDict Keys(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the keys from the dictionary, as in the dictionary method
keys() (see the Python Library Reference).

PyObject* PyDict Values(PyObject *p)
Return value: New reference.
Returns a PyListObject containing all the values from the dictionary p, as in the dictionary
method values() (see the Python Library Reference).

int PyDict Size(PyObject *p)
Returns the number of items in the dictionary. This is equivalent to ‘len(p)’ on a dictionary.

int PyDict Next(PyObject *p, int *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The int referred to by ppos must be initialized
to 0 prior to the first call to this function to start the iteration; the function returns true for
each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and
pvalue should either point to PyObject* variables that will be filled in with each key and value,
respectively, or may be NULL.

For example:

PyObject *key, *value;

int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {

/* do something interesting with the values... */

...

}

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify
the values of the keys as you iterate over the dictionary, but only so long as the set of keys does
not change. For example:

PyObject *key, *value;

int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {

int i = PyInt_AS_LONG(value) + 1;

PyObject *o = PyInt_FromLong(i);

if (o == NULL)

return -1;

7.4. Mapping Objects 53

if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);

return -1;

}

Py_DECREF(o);

}

int PyDict Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or
any object supporting PyMapping Keys() and PyObject GetItem(). If override is true, existing
pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if
there is not a matching key in a. Return 0 on success or -1 if an exception was raised. New in
version 2.2.

int PyDict Update(PyObject *a, PyObject *b)
This is the same as PyDict Merge(a, b, 1) in C, or a.update(b) in Python. Return 0 on success
or -1 if an exception was raised. New in version 2.2.

int PyDict MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2 . seq2 must be an iterable
object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys,
the last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was
raised. Equivalent Python (except for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):

for key, value in seq2:

if override or key not in a:

a[key] = value

New in version 2.2.

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library.
This is an implementation detail and may change in future releases of Python.

PyFileObject
This subtype of PyObject represents a Python file object.

PyTypeObject PyFile Type
This instance of PyTypeObject represents the Python file type. This is exposed to Python programs
as types.FileType.

int PyFile Check(PyObject *p)
Returns true if its argument is a PyFileObject or a subtype of PyFileObject. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyFile CheckExact(PyObject *p)
Returns true if its argument is a PyFileObject, but not a subtype of PyFileObject. New in
version 2.2.

PyObject* PyFile FromString(char *filename, char *mode)
Return value: New reference.
On success, returns a new file object that is opened on the file given by filename, with a file mode
given by mode, where mode has the same semantics as the standard C routine fopen(). On failure,
returns NULL.

PyObject* PyFile FromFile(FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference.

54 Chapter 7. Concrete Objects Layer

Creates a new PyFileObject from the already-open standard C file pointer, fp. The function close
will be called when the file should be closed. Returns NULL on failure.

FILE* PyFile AsFile(PyFileObject *p)
Returns the file object associated with p as a FILE*.

PyObject* PyFile GetLine(PyObject *p, int n)
Return value: New reference.
Equivalent to p.readline([n]), this function reads one line from the object p. p may be a file
object or any object with a readline() method. If n is 0, exactly one line is read, regardless of the
length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial
line can be returned. In both cases, an empty string is returned if the end of the file is reached
immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is
raised if the end of the file is reached immediately.

PyObject* PyFile Name(PyObject *p)
Return value: Borrowed reference.
Returns the name of the file specified by p as a string object.

void PyFile SetBufSize(PyFileObject *p, int n)
Available on systems with setvbuf() only. This should only be called immediately after file object
creation.

int PyFile SoftSpace(PyObject *p, int newflag)
This function exists for internal use by the interpreter. Sets the softspace attribute of p to
newflag and returns the previous value. p does not have to be a file object for this function to work
properly; any object is supported (thought its only interesting if the softspace attribute can be
set). This function clears any errors, and will return 0 as the previous value if the attribute either
does not exist or if there were errors in retrieving it. There is no way to detect errors from this
function, but doing so should not be needed.

int PyFile WriteObject(PyObject *obj, PyFileObject *p, int flags)
Writes object obj to file object p. The only supported flag for flags is Py PRINT RAW; if given, the
str() of the object is written instead of the repr(). Returns 0 on success or -1 on failure; the
appropriate exception will be set.

int PyFile WriteString(const char *s, PyFileObject *p)
Writes string s to file object p. Returns 0 on success or -1 on failure; the appropriate exception
will be set.

7.5.2 Instance Objects

There are very few functions specific to instance objects.

PyTypeObject PyInstance Type
Type object for class instances.

int PyInstance Check(PyObject *obj)
Returns true if obj is an instance.

PyObject* PyInstance New(PyObject *class, PyObject *arg, PyObject *kw)
Return value: New reference.
Create a new instance of a specific class. The parameters arg and kw are used as the positional
and keyword parameters to the object’s constructor.

PyObject* PyInstance NewRaw(PyObject *class, PyObject *dict)
Return value: New reference.
Create a new instance of a specific class without calling it’s constructor. class is the class of new
object. The dict parameter will be used as the object’s dict ; if NULL, a new dictionary will
be created for the instance.

7.5. Other Objects 55

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python
programs as types.MethodType.

int PyMethod Check(PyObject *o)
Return true if o is a method object (has type PyMethod Type). The parameter must not be NULL.

PyObject* PyMethod New(PyObject *func. PyObject *self, PyObject *class)
Return value: New reference.
Return a new method object, with func being any callable object; this is the function that will be
called when the method is called. If this method should be bound to an instance, self should be
the instance and class should be the class of self , otherwise self should be NULL and class should
be the class which provides the unbound method..

PyObject* PyMethod Class(PyObject *meth)
Return value: Borrowed reference.
Return the class object from which the method meth was created; if this was created from an
instance, it will be the class of the instance.

PyObject* PyMethod GET CLASS(PyObject *meth)
Return value: Borrowed reference.
Macro version of PyMethod Class() which avoids error checking.

PyObject* PyMethod Function(PyObject *meth)
Return value: Borrowed reference.
Return the function object associated with the method meth.

PyObject* PyMethod GET FUNCTION(PyObject *meth)
Return value: Borrowed reference.
Macro version of PyMethod Function() which avoids error checking.

PyObject* PyMethod Self(PyObject *meth)
Return value: Borrowed reference.
Return the instance associated with the method meth if it is bound, otherwise return NULL.

PyObject* PyMethod GET SELF(PyObject *meth)
Return value: Borrowed reference.
Macro version of PyMethod Self() which avoids error checking.

7.5.4 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python
programs as types.ModuleType.

int PyModule Check(PyObject *p)
Returns true if p is a module object, or a subtype of a module object. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyModule CheckExact(PyObject *p)
Returns true if p is a module object, but not a subtype of PyModule Type. New in version 2.2.

PyObject* PyModule New(char *name)
Return value: New reference.
Return a new module object with the name attribute set to name. Only the module’s

doc and name attributes are filled in; the caller is responsible for providing a file
attribute.

56 Chapter 7. Concrete Objects Layer

PyObject* PyModule GetDict(PyObject *module)
Return value: Borrowed reference.
Return the dictionary object that implements module’s namespace; this object is the same as the

dict attribute of the module object. This function never fails.

char* PyModule GetName(PyObject *module)
Return module’s name value. If the module does not provide one, or if it is not a string,
SystemError is raised and NULL is returned.

char* PyModule GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module’s file attribute. If
this is not defined, or if it is not a string, raise SystemError and return NULL.

int PyModule AddObject(PyObject *module, char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the
module’s initialization function. This steals a reference to value. Returns -1 on error, 0 on success.
New in version 2.0.

int PyModule AddIntConstant(PyObject *module, char *name, int value)
Add an integer constant to module as name. This convenience function can be used from the
module’s initialization function. Returns -1 on error, 0 on success. New in version 2.0.

int PyModule AddStringConstant(PyObject *module, char *name, char *value)
Add a string constant to module as name. This convenience function can be used from the module’s
initialization function. The string value must be null-terminated. Returns -1 on error, 0 on success.
New in version 2.0.

7.5.5 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an
arbitrary sequence supporting the getitem () method. The second works with a callable object
and a sentinel value, calling the callable for each item in the sequence, and ending the iteration when
the sentinel value is returned.

PyTypeObject PySeqIter Type
Type object for iterator objects returned by PySeqIter New() and the one-argument form of the
iter() built-in function for built-in sequence types. New in version 2.2.

int PySeqIter Check(op)
Return true if the type of op is PySeqIter Type. New in version 2.2.

PyObject* PySeqIter New(PyObject *seq)
Return value: New reference.
Return an iterator that works with a general sequence object, seq . The iteration ends when the
sequence raises IndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCallIter Type
Type object for iterator objects returned by PyCallIter New() and the two-argument form of the
iter() built-in function. New in version 2.2.

int PyCallIter Check(op)
Return true if the type of op is PyCallIter Type. New in version 2.2.

PyObject* PyCallIter New(PyObject *callable, PyObject *sentinel)
Return value: New reference.
Return a new iterator. The first parameter, callable, can be any Python callable object that can
be called with no parameters; each call to it should return the next item in the iteration. When
callable returns a value equal to sentinel , the iteration will be terminated. New in version 2.2.

7.5. Other Objects 57

7.5.6 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of
type objects.

PyTypeObject PyProperty Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr NewGetSet(PyTypeObject *type, PyGetSetDef *getset)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr NewMember(PyTypeObject *type, PyMemberDef *meth)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr NewMethod(PyTypeObject *type, PyMethodDef *meth)
Return value: New reference.
New in version 2.2.

PyObject* PyDescr NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.
New in version 2.2.

int PyDescr IsData(PyObject *descr)
Returns true if the descriptor objects descr describes a data attribute, or false if it describes a
method. descr must be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper New(PyObject *, PyObject *)
Return value: New reference.
New in version 2.2.

7.5.7 Slice Objects

PyTypeObject PySlice Type
The type object for slice objects. This is the same as types.SliceType.

int PySlice Check(PyObject *ob)
Returns true if ob is a slice object; ob must not be NULL.

PyObject* PySlice New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference.
Return a new slice object with the given values. The start , stop, and step parameters are used
as the values of the slice object attributes of the same names. Any of the values may be NULL, in
which case the None will be used for the corresponding attribute. Returns NULL if the new object
could not be allocated.

int PySlice GetIndices(PySliceObject *slice, int length, int *start, int *stop, int *step)

7.5.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly
implement weak references. The first is a simple reference object, and the second acts as a proxy for the
original object as much as it can.

int PyWeakref Check(ob)
Return true if ob is either a reference or proxy object. New in version 2.2.

int PyWeakref CheckRef(ob)
Return true if ob is a reference object. New in version 2.2.

int PyWeakref CheckProxy(ob)
Return true if ob is a proxy object. New in version 2.2.

58 Chapter 7. Concrete Objects Layer

PyObject* PyWeakref NewRef(PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference object for the object ob. This will always return a new reference, but is
not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback , can be a callable object that receives notification when ob is garbage collected;
it should accept a single paramter, which will be the weak reference object itself. callback may also
be None or NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError. New in version 2.2.

PyObject* PyWeakref NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference proxy object for the object ob. This will always return a new reference,
but is not guaranteed to create a new object; an existing proxy object may be returned. The
second parameter, callback , can be a callable object that receives notification when ob is garbage
collected; it should accept a single paramter, which will be the weak reference object itself. callback
may also be None or NULL. If ob is not a weakly-referencable object, or if callback is not callable,
None, or NULL, this will return NULL and raise TypeError. New in version 2.2.

PyObject* PyWeakref GetObject(PyObject *ref)
Return value: Borrowed reference.
Returns the referenced object from a weak reference, ref . If the referent is no longer live, returns
NULL. New in version 2.2.

PyObject* PyWeakref GET OBJECT(PyObject *ref)
Return value: Borrowed reference.
Similar to PyWeakref GetObject(), but implemented as a macro that does no error checking.
New in version 2.2.

7.5.9 CObjects

Refer to Extending and Embedding the Python Interpreter, section 1.12, “Providing a C API for an
Extension Module,” for more information on using these objects.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need
to pass an opaque value (as a void* pointer) through Python code to other C code. It is often
used to make a C function pointer defined in one module available to other modules, so the regular
import mechanism can be used to access C APIs defined in dynamically loaded modules.

int PyCObject Check(PyObject *p)
Returns true if its argument is a PyCObject.

PyObject* PyCObject FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference.
Creates a PyCObject from the void *cobj . The destr function will be called when the object is
reclaimed, unless it is NULL.

PyObject* PyCObject FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference.
Creates a PyCObject from the void *cobj . The destr function will be called when the object is
reclaimed. The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject AsVoidPtr(PyObject* self)
Returns the object void * that the PyCObject self was created with.

void* PyCObject GetDesc(PyObject* self)
Returns the description void * that the PyCObject self was created with.

7.5. Other Objects 59

7.5.10 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable,
a cell object is created to store the value; the local variables of each stack frame that references the
value contains a reference to the cells from outer scopes which also use that variable. When the value
is accessed, the value contained in the cell is used instead of the cell object itself. This de-referencing of
the cell object requires support from the generated byte-code; these are not automatically de-referenced
when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell Type
The type object corresponding to cell objects

int PyCell Check(ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell New(PyObject *ob)
Return value: New reference.
Create and return a new cell object containing the value ob. The parameter may be NULL.

PyObject* PyCell Get(PyObject *cell)
Return value: New reference.
Return the contents of the cell cell .

PyObject* PyCell GET(PyObject *cell)
Return value: Borrowed reference.
Return the contents of the cell cell , but without checking that cell is non-NULL and a call object.

int PyCell Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content
of the cell. value may be NULL. cell must be non-NULL; if it is not a cell object, -1 will be returned.
On success, 0 will be returned.

void PyCell SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are
made for safety; cell must be non-NULL and must be a cell object.

60 Chapter 7. Concrete Objects Layer

CHAPTER

EIGHT

Initialization, Finalization, and Threads

void Py Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called
before using any other Python/C API functions; with the exception of Py SetProgramName(),
PyEval InitThreads(), PyEval ReleaseLock(), and PyEval AcquireLock(). This initializes
the table of loaded modules (sys.modules), and creates the fundamental modules builtin ,

main and sys. It also initializes the module search path (sys.path). It does not set sys.argv;
use PySys SetArgv() for that. This is a no-op when called for a second time (without calling
Py Finalize() first). There is no return value; it is a fatal error if the initialization fails.

int Py IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize() is called, this returns false until Py Initialize() is called again.

void Py Finalize()
Undo all initializations made by Py Initialize() and subsequent use of Python/C API func-
tions, and destroy all sub-interpreters (see Py NewInterpreter() below) that were created and
not yet destroyed since the last call to Py Initialize(). Ideally, this frees all memory allo-
cated by the Python interpreter. This is a no-op when called for a second time (without calling
Py Initialize() again first). There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart
Python without having to restart the application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated
by Python before unloading the DLL. During a hunt for memory leaks in an application a developer
might want to free all memory allocated by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order;
this may cause destructors (del () methods) to fail when they depend on other objects
(even functions) or modules. Dynamically loaded extension modules loaded by Python are not
unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you
find a leak, please report it). Memory tied up in circular references between objects is not freed.
Some memory allocated by extension modules may not be freed. Some extension may not work
properly if their initialization routine is called more than once; this can happen if an applcation
calls Py Initialize() and Py Finalize() more than once.

PyThreadState* Py NewInterpreter()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of
Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtin , main and sys. The table of
loaded modules (sys.modules) and the module search path (sys.path) are also separate. The new
environment has no sys.argv variable. It has new standard I/O stream file objects sys.stdin,
sys.stdout and sys.stderr (however these refer to the same underlying FILE structures in the
C library).

The return value points to the first thread state created in the new sub-interpreter. This thread
state is made the current thread state. Note that no actual thread is created; see the discussion
of thread states below. If creation of the new interpreter is unsuccessful, NULL is returned; no
exception is set since the exception state is stored in the current thread state and there may not be

61

a current thread state. (Like all other Python/C API functions, the global interpreter lock must
be held before calling this function and is still held when it returns; however, unlike most other
Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is
squirreled away. When the same extension is imported by another (sub-)interpreter, a new module
is initialized and filled with the contents of this copy; the extension’s init function is not called.
Note that this is different from what happens when an extension is imported after the interpreter
has been completely re-initialized by calling Py Finalize() and Py Initialize(); in that case,
the extension’s initmodule function is called again.

Bugs and caveats: Because sub-interpreters (and the main interpreter) are part of the same
process, the insulation between them isn’t perfect — for example, using low-level file operations
like os.close() they can (accidentally or maliciously) affect each other’s open files. Because of
the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the
extension manipulates its module’s dictionary after its initialization. It is possible to insert objects
created in one sub-interpreter into a namespace of another sub-interpreter; this should be done
with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-
)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix bug that will be addressed
in a future release.)

void Py EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must
be the current thread state. See the discussion of thread states below. When the call returns,
the current thread state is NULL. All thread states associated with this interpreted are destroyed.
(The global interpreter lock must be held before calling this function and is still held when it
returns.) Py Finalize() will destroy all sub-interpreters that haven’t been explicitly destroyed
at that point.

void Py SetProgramName(char *name)
This function should be called before Py Initialize() is called for the first time, if it is called
at all. It tells the interpreter the value of the argv[0] argument to the main() function of the
program. This is used by Py GetPath() and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is ’python’. The argument
should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the
contents of this storage.

char* Py GetProgramName()
Return the program name set with Py SetProgramName(), or the default. The returned string
points into static storage; the caller should not modify its value.

char* Py GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of com-
plicated rules from the program name set with Py SetProgramName() and some environment vari-
ables; for example, if the program name is ’/usr/local/bin/python’, the prefix is ’/usr/local’.
The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the prefix variable in the top-level ‘Makefile’ and the --prefix argument to the configure
script at build time. The value is available to Python code as sys.prefix. It is only useful on
Unix. See also the next function.

char* Py GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number
of complicated rules from the program name set with Py SetProgramName() and some environ-
ment variables; for example, if the program name is ’/usr/local/bin/python’, the exec-prefix
is ’/usr/local’. The returned string points into static storage; the caller should not modify
its value. This corresponds to the exec prefix variable in the top-level ‘Makefile’ and the --exec-
prefix argument to the configure script at build time. The value is available to Python code as
sys.exec prefix. It is only useful on Unix.

62 Chapter 8. Initialization, Finalization, and Threads

Background: The exec-prefix differs from the prefix when platform dependent files (such as exe-
cutables and shared libraries) are installed in a different directory tree. In a typical installation,
platform dependent files may be installed in the ‘/usr/local/plat’ subtree while platform independent
may be installed in ‘/usr/local’.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc
machines running the Solaris 2.x operating system are considered the same platform, but Intel
machines running Solaris 2.x are another platform, and Intel machines running Linux are yet
another platform. Different major revisions of the same operating system generally also form
different platforms. Non-Unix operating systems are a different story; the installation strategies on
those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty
string. Note that compiled Python bytecode files are platform independent (but not independent
from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share
‘/usr/local’ between platforms while having ‘/usr/local/plat’ be a different filesystem for each plat-
form.

char* Py GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of
deriving the default module search path from the program name (set by Py SetProgramName()
above). The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as sys.executable.

char* Py GetPath()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter
character is ‘:’ on Unix, ‘;’ on DOS/Windows, and ‘\n’ (the ascii newline character) on Macin-
tosh. The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as the list sys.path, which may be modified to change the future
search path for loaded modules.

const char* Py GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three
characters are the major and minor version separated by a period. The returned string points into
static storage; the caller should not modify its value. The value is available to Python code as the
list sys.version.

const char* Py GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official”
name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is ’sunos5’. On Macintosh, it is
’mac’. On Windows, it is ’win’. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.platform.

const char* Py GetCopyright()
Return the official copyright string for the current Python version, for example

’Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as the list sys.copyright.

const char* Py GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets,
for example:

"[GCC 2.7.2.2]"

63

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

const char* Py GetBuildInfo()
Return information about the sequence number and build date and time of the current Python
interpreter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

int PySys SetArgv(int argc, char **argv)
Set sys.argv based on argc and argv . These parameters are similar to those passed to the pro-
gram’s main() function with the difference that the first entry should refer to the script file to be
executed rather than the executable hosting the Python interpreter. If there isn’t a script that will
be run, the first entry in argv can be an empty string. If this function fails to initialize sys.argv,
a fatal condition is signalled using Py FatalError().

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs,
there’s a global lock that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for
example, when two threads simultaneously increment the reference count of the same object, the reference
count could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate
on Python objects or call Python/C API functions. In order to support multi-threaded Python programs,
the interpreter regularly releases and reacquires the lock — by default, every ten bytecode instructions
(this can be changed with sys.setcheckinterval()). The lock is also released and reacquired around
potentially blocking I/O operations like reading or writing a file, so that other threads can run while the
thread that requests the I/O is waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it
uses a data structure called PyThreadState. This is new in Python 1.5; in earlier versions, such state
was stored in global variables, and switching threads could cause problems. In particular, exception
handling is now thread safe, when the application uses sys.exc info() to access the exception last
raised in the current thread.

There’s one global variable left, however: the pointer to the current PyThreadState structure. While
most thread packages have a way to store “per-thread global data,” Python’s internal platform in-
dependent thread abstraction doesn’t support this yet. Therefore, the current thread state must be
manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following
simple structure:

Save the thread state in a local variable.

Release the interpreter lock.

...Do some blocking I/O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS

...Do some blocking I/O operation...

Py_END_ALLOW_THREADS

64 Chapter 8. Initialization, Finalization, and Threads

The Py BEGIN ALLOW THREADS macro opens a new block and declares a hidden local variable; the
Py END ALLOW THREADS macro closes the block. Another advantage of using these two macros is that
when Python is compiled without thread support, they are defined empty, thus saving the thread state
and lock manipulations.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();

...Do some blocking I/O operation...

PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);

PyEval_ReleaseLock();

...Do some blocking I/O operation...

PyEval_AcquireLock();

PyThreadState_Swap(_save);

There are some subtle differences; in particular, PyEval RestoreThread() saves and restores the value
of the global variable errno, since the lock manipulation does not guarantee that errno is left alone.
Also, when thread support is disabled, PyEval SaveThread() and PyEval RestoreThread() don’t
manipulate the lock; in this case, PyEval ReleaseLock() and PyEval AcquireLock() are not available.
This is done so that dynamically loaded extensions compiled with thread support enabled can be loaded
by an interpreter that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing
the lock and saving the thread state, the current thread state pointer must be retrieved before the lock
is released (since another thread could immediately acquire the lock and store its own thread state in
the global variable). Conversely, when acquiring the lock and restoring the thread state, the lock must
be acquired before storing the thread state pointer.

Why am I going on with so much detail about this? Because when threads are created from C, they
don’t have the global interpreter lock, nor is there a thread state data structure for them. Such threads
must bootstrap themselves into existence, by first creating a thread state data structure, then acquiring
the lock, and finally storing their thread state pointer, before they can start using the Python/C API.
When they are done, they should reset the thread state pointer, release the lock, and finally free their
thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The
interpreter state data structure hold global data that is shared by all threads in an interpreter, for
example the module administration (sys.modules). Depending on your needs, you can either create a
new interpreter state data structure, or share the interpreter state data structure used by the Python
main thread (to access the latter, you must obtain the thread state and access its interp member; this
must be done by a thread that is created by Python or by the main thread after Python is initialized).

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads
belonging to the same interpreter share their module administration and a few other internal
items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available
memory, open file descriptors and such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

8.1. Thread State and the Global Interpreter Lock 65

void PyEval InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-
ating a second thread or engaging in any other thread operations such as PyEval ReleaseLock()
or PyEval ReleaseThread(tstate). It is not needed before calling PyEval SaveThread() or
PyEval RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before calling
Py Initialize().

When only the main thread exists, no lock operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit.
Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock:
when there is only a single thread, all object accesses are safe. Therefore, when this function initial-
izes the lock, it also acquires it. Before the Python thread module creates a new thread, knowing
that either it has the lock or the lock hasn’t been created yet, it calls PyEval InitThreads().
When this call returns, it is guaranteed that the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global
interpreter lock.

This function is not available when thread support is disabled at compile time.

void PyEval AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already
has the lock, a deadlock ensues. This function is not available when thread support is disabled at
compile time.

void PyEval ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier. This function is not
available when thread support is disabled at compile time.

void PyEval AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and then set the current thread state to tstate, which should
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock
ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have
been created earlier and must be held by the current thread. The tstate argument, which must not
be NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error
is reported. This function is not available when thread support is disabled at compile time.

PyThreadState* PyEval SaveThread()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the
thread state to NULL, returning the previous thread state (which is not NULL). If the lock has been
created, the current thread must have acquired it. (This function is available even when thread
support is disabled at compile time.)

void PyEval RestoreThread(PyThreadState *tstate)
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the
thread state to tstate, which must not be NULL. If the lock has been created, the current thread
must not have acquired it, otherwise deadlock ensues. (This function is available even when thread
support is disabled at compile time.)

The following macros are normally used without a trailing semicolon; look for example usage in the
Python source distribution.

Py BEGIN ALLOW THREADS
This macro expands to ‘{PyThreadState * save; save = PyEval SaveThread();’. Note that
it contains an opening brace; it must be matched with a following Py END ALLOW THREADS macro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at
compile time.

Py END ALLOW THREADS
This macro expands to ‘PyEval RestoreThread(save); }’. Note that it contains a closing
brace; it must be matched with an earlier Py BEGIN ALLOW THREADS macro. See above for further

66 Chapter 8. Initialization, Finalization, and Threads

discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py BLOCK THREADS
This macro expands to ‘PyEval RestoreThread(save);’: it is equivalent to
Py END ALLOW THREADS without the closing brace. It is a no-op when thread support is
disabled at compile time.

Py UNBLOCK THREADS
This macro expands to ‘ save = PyEval SaveThread();’: it is equivalent to
Py BEGIN ALLOW THREADS without the opening brace and variable declaration. It is a no-
op when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and
must be called only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it
is necessary to serialize calls to this function.

void PyInterpreterState Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state
must have been reset with a previous call to PyInterpreterState Clear().

PyThreadState* PyThreadState New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The interpreter lock
need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState Clear(PyThreadState *tstate)
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState Delete(PyThreadState *tstate)
Destroy a thread state object. The interpreter lock need not be held. The thread state must have
been reset with a previous call to PyThreadState Clear().

PyThreadState* PyThreadState Get()
Return the current thread state. The interpreter lock must be held. When the current thread state
is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be
NULL. The interpreter lock must be held.

PyObject* PyThreadState GetDict()
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension
should use a unique key to use to store state in the dictionary. If this function returns NULL, an
exception has been raised and the caller should allow it to propagate.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing
facilities. These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface
from C was added. This C interface allows the profiling or tracing code to avoid the overhead of calling
through Python-level callable objects, making a direct C function call instead. The essential attributes
of the facility have not changed; the interface allows trace functions to be installed per-thread, and the
basic events reported to the trace function are the same as had been reported to the Python-level trace
functions in previous versions.

int (*Py tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

8.2. Profiling and Tracing 67

The type of the trace function registered using PyEval SetProfile() and PyEval SetTrace().
The first parameter is the object passed to the registration function as obj , frame is the frame
object to which the event pertains, what is one of the constants PyTrace CALL, PyTrace EXCEPT,
PyTrace LINE or PyTrace RETURN, and arg depends on the value of what :

Value of what Meaning of arg
PyTrace CALL Always NULL.
PyTrace EXCEPT Exception information as returned by sys.exc info().
PyTrace LINE Always NULL.
PyTrace RETURN Value being returned to the caller.

int PyTrace CALL
The value of the what parameter to a Py tracefunc function when a new call to a function or
method is being reported, or a new entry into a generator. Note that the creation of the iterator
for a generator function is not reported as there is no control transfer to the Python bytecode in
the corresponding frame.

int PyTrace EXCEPT
The value of the what parameter to a Py tracefunc function when an exception has been raised.
The callback function is called with this value for what when after any bytecode is processed after
which the exception becomes set within the frame being executed. The effect of this is that as
exception propogation causes the Python stack to unwind, the callback is called upon return to
each frame as the exception propagates. Only trace functions receives these events; they are not
needed by the profiler.

int PyTrace LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a
line-number event is being reported.

int PyTrace RETURN
The value for the what parameter to Py tracefunc functions when a call is returning without
propogating an exception.

void PyEval SetProfile(Py tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter,
and may be any Python object, or NULL. If the profile function needs to maintain state, using a
different value for obj for each thread provides a convenient and thread-safe place to store it. The
profile function is called for all monitored events except the line-number events.

void PyEval SetTrace(Py tracefunc func, PyObject *obj)
Set the the tracing function to func. This is similar to PyEval SetProfile(), except the tracing
function does receive line-number events.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState Head()
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PyInterpreterState* PyInterpreterState Next(PyInterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects. New in
version 2.2.

PyThreadState * PyInterpreterState ThreadHead(PyInterpreterState *interp)
Return the a pointer to the first PyThreadState object in the list of threads associated with the
interpreter interp. New in version 2.2.

PyThreadState* PyThreadState Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the
same PyInterpreterState object. New in version 2.2.

68 Chapter 8. Initialization, Finalization, and Threads

CHAPTER

NINE

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data struc-
tures. The management of this private heap is ensured internally by the Python memory manager. The
Python memory manager has different components which deal with various dynamic storage management
aspects, like sharing, segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap
for storing all Python-related data by interacting with the memory manager of the operating system.
On top of the raw memory allocator, several object-specific allocators operate on the same heap and
implement distinct memory management policies adapted to the peculiarities of every object type. For
example, integer objects are managed differently within the heap than strings, tuples or dictionaries
because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter
operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter
itself and that the user has no control on it, even if she regularly manipulates object pointers to memory
blocks inside that heap. The allocation of heap space for Python objects and other internal buffers is
performed on demand by the Python memory manager through the Python/C API functions listed in
this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the
functions exported by the C library: malloc(), calloc(), realloc() and free(). This will result in
mixed calls between the C allocator and the Python memory manager with fatal consequences, because
they implement different algorithms and operate on different heaps. However, one may safely allocate
and release memory blocks with the C library allocator for individual purposes, as shown in the following
example:

PyObject *res;

char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

...Do some I/O operation involving buf...

res = PyString_FromString(buf);

free(buf); /* malloc’ed */

return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python
memory manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically
because the latter is under control of the Python memory manager. For example, this is required when
the interpreter is extended with new object types written in C. Another reason for using the Python
heap is the desire to inform the Python memory manager about the memory needs of the extension

69

module. Even when the requested memory is used exclusively for internal, highly-specific purposes,
delegating all memory requests to the Python memory manager causes the interpreter to have a more
accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the
Python memory manager may or may not trigger appropriate actions, like garbage collection, memory
compaction or other preventive procedures. Note that by using the C library allocator as shown in
the previous example, the allocated memory for the I/O buffer escapes completely the Python memory
manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, are available for allocating and releasing
memory from the Python heap:

void* PyMem Malloc(size t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the
request fails. Requesting zero bytes returns a non-NULL pointer. The memory will not have been
initialized in any way.

void* PyMem Realloc(void *p, size t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the
minimum of the old and the new sizes. If p is NULL, the call is equivalent to PyMem Malloc(n);
if n is equal to zero, the memory block is resized but is not freed, and the returned pointer is
non-NULL. Unless p is NULL, it must have been returned by a previous call to PyMem Malloc() or
PyMem Realloc().

void PyMem Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem Malloc() or PyMem Realloc(). Otherwise, or if PyMem Free(p) has been called before,
undefined behaviour occurs. If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem New(TYPE, size t n)
Same as PyMem Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a
pointer cast to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem Resize(void *p, TYPE, size t n)
Same as PyMem Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes.
Returns a pointer cast to TYPE*.

void PyMem Del(void *p)
Same as PyMem Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly,
without involving the C API functions listed above. However, note that their use does not preserve
binary compatibility accross Python versions and is therefore deprecated in extension modules.

PyMem MALLOC(), PyMem REALLOC(), PyMem FREE().

PyMem NEW(), PyMem RESIZE(), PyMem DEL().

9.3 Examples

Here is the example from section 9.1, rewritten so that the I/O buffer is allocated from the Python heap
by using the first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

70 Chapter 9. Memory Management

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_Free(buf); /* allocated with PyMem_Malloc */

return res;

The same code using the type-oriented function set:

PyObject *res;

char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_Del(buf); /* allocated with PyMem_New */

return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the
same set. Indeed, it is required to use the same memory API family for a given memory block, so that
the risk of mixing different allocators is reduced to a minimum. The following code sequence contains
two errors, one of which is labeled as fatal because it mixes two different allocators operating on different
heaps.

char *buf1 = PyMem_New(char, BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);

...

PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */

free(buf2); /* Right -- allocated via malloc() */

free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in
Python are allocated and released with PyObject New(), PyObject NewVar() and PyObject Del(),
or with their corresponding macros PyObject NEW(), PyObject NEW VAR() and PyObject DEL().

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 71

72

CHAPTER

TEN

Defining New Object Types

10.1 Allocating Objects on the Heap

PyObject* PyObject New(PyTypeObject *type)
Return value: New reference.

PyObject* PyObject NewVar(PyTypeObject *type, int size)
Return value: New reference.

void PyObject Del(PyObject *op)

PyObject* PyObject Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference.
Initialize a newly-allocated object op with its type and initial reference. Returns the initialized
object. If type indicates that the object participates in the cyclic garbage detector, it it added to
the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject* PyObject InitVar(PyVarObject *op, PyTypeObject *type, int size)
Return value: Borrowed reference.
This does everything PyObject Init() does, and also initializes the length information for a
variable-size object.

TYPE* PyObject New(TYPE, PyTypeObject *type)
Allocate a new Python object using the C structure type TYPE and the Python type object type.
Fields not defined by the Python object header are not initialized; the object’s reference count will
be one. The size of the memory allocation is determined from the tp basicsize field of the type
object.

TYPE* PyObject NewVar(TYPE, PyTypeObject *type, int size)
Allocate a new Python object using the C structure type TYPE and the Python type object type.
Fields not defined by the Python object header are not initialized. The allocated memory allows
for the TYPE structure plus size fields of the size given by the tp itemsize field of type. This is
useful for implementing objects like tuples, which are able to determine their size at construction
time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

void PyObject Del(PyObject *op)
Releases memory allocated to an object using PyObject New() or PyObject NewVar(). This is
normally called from the tp dealloc handler specified in the object’s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

TYPE* PyObject NEW(TYPE, PyTypeObject *type)
Macro version of PyObject New(), to gain performance at the expense of safety. This does not
check type for a NULL value.

TYPE* PyObject NEW VAR(TYPE, PyTypeObject *type, int size)
Macro version of PyObject NewVar(), to gain performance at the expense of safety. This does not

73

check type for a NULL value.

void PyObject DEL(PyObject *op)
Macro version of PyObject Del().

PyObject* Py InitModule(char *name, PyMethodDef *methods)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module
object.

PyObject* Py InitModule3(char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module
object. If doc is non-NULL, it will be used to define the docstring for the module.

PyObject* Py InitModule4(char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module
object. If doc is non-NULL, it will be used to define the docstring for the module. If self is non-NULL,
it will passed to the functions of the module as their (otherwise NULL) first parameter. (This was
added as an experimental feature, and there are no known uses in the current version of Python.)
For apiver , the only value which should be passed is defined by the constant PYTHON API VERSION.

Note: Most uses of this function should probably be using the Py InitModule3() instead; only
use this if you are sure you need it.

DL IMPORT

PyObject Py NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py None macro,
which evaluates to a pointer to this object.

10.2 Common Object Structures

PyObject, PyVarObject

PyObject HEAD, PyObject HEAD INIT, PyObject VAR HEAD

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjarg-
proc, intintobjargproc, objobjargproc, destructor, printfunc, getattrfunc, getattrofunc, setattrfunc, se-
tattrofunc, cmpfunc, reprfunc, hashfunc

PyCFunction
Type of the functions used to implement most Python callables in C.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml name char * name of the method
ml meth PyCFunction pointer to the C implementation
ml flags int flag bits indicating how the call should be constructed
ml doc char * points to the contents of the docstring

The ml meth is a C function pointer. The functions may be of different types, but they always return
PyObject*. If the function is not of the PyCFunction, the compiler will require a cast in the method
table. Even though PyCFunction defines the first parameter as PyObject*, it is common that the method
implementation uses a the specific C type of the self object.

The flags can have the following values. Only METH VARARGS and METH KEYWORDS can be combined; the
others can’t.

METH VARARGS
This is the typical calling convention, where the methods have the type PyMethodDef. The function
expects two PyObject* values. The first one is the self object for methods; for module functions,

74 Chapter 10. Defining New Object Types

it has the value given to Py InitModule4() (or NULL if Py InitModule() was used). The second
parameter (often called args) is a tuple object representing all arguments. This parameter is
typically processed using PyArg ParseTuple().

METH KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self , args, and a dictionary of all the keyword arguments. The flag
is typically combined with METH VARARGS, and the parameters are typically processed using
PyArg ParseTupleAndKeywords().

METH NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed
with the METH NOARGS flag. They need to be of type PyNoArgsFunction: they expect a single
single PyObject* as a parameter. When used with object methods, this parameter is typically
named self and will hold a reference to the object instance.

METH O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg ParseTuple() with a "O" argument. They have the type PyCFunction, with the self
parameter, and a PyObject* parameter representing the single argument.

METH OLDARGS
This calling convention is deprecated. The method must be of type PyCFunction. The second
argument is NULL if no arguments are given, a single object if exactly one argument is given, and
a tuple of objects if more than one argument is given. There is no way for a function using this
convention to distinguish between a call with multiple arguments and a call with a tuple as the
only argument.

PyObject* Py FindMethod(PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference.
Return a bound method object for an extension type implemented in C. This can be use-
ful in the implementation of a tp getattro or tp getattr handler that does not use the
PyObject GenericGetAttr() function.

10.3 Mapping Object Structures

PyMappingMethods
Structure used to hold pointers to the functions used to implement the mapping protocol for an
extension type.

10.4 Number Object Structures

PyNumberMethods
Structure used to hold pointers to the functions an extension type uses to implement the number
protocol.

10.5 Sequence Object Structures

PySequenceMethods
Structure used to hold pointers to the functions which an object uses to implement the sequence
protocol.

10.6 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of
data, where each chunk is specified as a pointer/length pair. These chunks are called segments and are

10.3. Mapping Object Structures 75

presumed to be non-contiguous in memory.

If an object does not export the buffer interface, then its tp as buffer member in the PyTypeObject
structure should be NULL. Otherwise, the tp as buffer will point to a PyBufferProcs structure.

Note: It is very important that your PyTypeObject structure uses Py TPFLAGS DEFAULT for the value of
the tp flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure
contains the bf getcharbuffer slot. Older versions of Python did not have this member, so a new
Python interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

The first slot is bf getreadbuffer, of type getreadbufferproc. If this slot is NULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors
should fill this in, but callers should test that the slot contains a non-NULL value.

The next slot is bf getwritebuffer having type getwritebufferproc. This slot may be NULL if
the object does not allow writing into its returned buffers.

The third slot is bf getsegcount, with type getsegcountproc. This slot must not be NULL
and is used to inform the caller how many segments the object contains. Simple objects such as
PyString Type and PyBuffer Type objects contain a single segment.

The last slot is bf getcharbuffer, of type getcharbufferproc. This slot will only be present
if the Py TPFLAGS HAVE GETCHARBUFFER flag is present in the tp flags field of the object’s
PyTypeObject. Before using this slot, the caller should test whether it is present by using the
PyType HasFeature() function. If present, it may be NULL, indicating that the object’s contents
cannot be used as 8-bit characters. The slot function may also raise an error if the object’s
contents cannot be interpreted as 8-bit characters. For example, if the object is an array which
is configured to hold floating point values, an exception may be raised if a caller attempts to use
bf getcharbuffer to fetch a sequence of 8-bit characters. This notion of exporting the internal
buffers as “text” is used to distinguish between objects that are binary in nature, and those which
have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This
implies that a buffer size of N does not mean there are N characters present.

Py TPFLAGS HAVE GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf getcharbuffer slot is known. This being
set does not indicate that the object supports the buffer interface or that the bf getcharbuffer
slot is non-NULL.

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a readable segment of the buffer. This function is allowed to raise an exception,
in which case it must return -1. The segment which is passed must be zero or positive, and strictly
less than the number of segments returned by the bf getsegcount slot function. On success, it
returns the length of the buffer memory, and sets *ptrptr to a pointer to that memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a writable memory buffer in *ptrptr , and the length of that segment as the
function return value. The memory buffer must correspond to buffer segment segment . Must return
-1 and set an exception on error. TypeError should be raised if the object only supports read-only
buffers, and SystemError should be raised when segment specifies a segment that doesn’t exist.

int (*getsegcountproc) (PyObject *self, int *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the
implementation must report the sum of the sizes (in bytes) of all segments in *lenp. The function
cannot fail.

int (*getcharbufferproc) (PyObject *self, int segment, const char **ptrptr)
Return the size of the memory buffer in ptrptr for segment segment . *ptrptr is set to the memory
buffer.

76 Chapter 10. Defining New Object Types

10.7 Supporting the Iterator Protocol

10.8 Supporting Cyclic Garbarge Collection

Python’s support for detecting and collecting garbage which involves circular references requires support
from object types which are “containers” for other objects which may also be containers. Types which
do not store references to other objects, or which only store references to atomic types (such as numbers
or strings), do not need to provide any explicit support for garbage collection.

To create a container type, the tp flags field of the type object must include the Py TPFLAGS HAVE GC
and provide an implementation of the tp traverse handler. If instances of the type are mutable, a
tp clear implementation must also be provided.

Py TPFLAGS HAVE GC
Objects with a type with this flag set must conform with the rules documented here. For conve-
nience these objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated using PyObject GC New() or
PyObject GC VarNew().

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject GC Track().

TYPE* PyObject GC New(TYPE, PyTypeObject *type)
Analogous to PyObject New() but for container objects with the Py TPFLAGS HAVE GC flag set.

TYPE* PyObject GC NewVar(TYPE, PyTypeObject *type, int size)
Analogous to PyObject NewVar() but for container objects with the Py TPFLAGS HAVE GC flag
set.

PyVarObject * PyObject GC Resize(PyVarObject *op, int)
Resize an object allocated by PyObject NewVar(). Returns the resized object or NULL on failure.

void PyObject GC Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at
unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp traverse handler become valid, usually near the end of the constructor.

void PyObject GC TRACK(PyObject *op)
A macro version of PyObject GC Track(). It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyObject GC UnTrack() must be
called.

2. The object’s memory must be deallocated using PyObject GC Del().

void PyObject GC Del(PyObject *op)
Releases memory allocated to an object using PyObject GC New() or PyObject GC NewVar().

void PyObject GC UnTrack(PyObject *op)
Remove the object op from the set of container objects tracked by the collector. Note that
PyObject GC Track() can be called again on this object to add it back to the set of tracked
objects. The deallocator (tp dealloc handler) should call this for the object before any of the
fields used by the tp traverse handler become invalid.

void PyObject GC UNTRACK(PyObject *op)
A macro version of PyObject GC UnTrack(). It should not be used for extension modules.

The tp traverse handler accepts a function parameter of this type:

10.7. Supporting the Iterator Protocol 77

int (*visitproc)(PyObject *object, void *arg)
Type of the visitor function passed to the tp traverse handler. The function should be called
with an object to traverse as object and the third parameter to the tp traverse handler as arg .

The tp traverse handler must have the following type:

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each
object directly contained by self , with the parameters to visit being the contained object and the
arg value passed to the handler. If visit returns a non-zero value then an error has occurred and
that value should be returned immediately.

The tp clear handler must be of the inquiry type, or NULL if the object is immutable.

int (*inquiry)(PyObject *self)
Drop references that may have created reference cycles. Immutable objects do not have to define
this method since they can never directly create reference cycles. Note that the object must still
be valid after calling this method (don’t just call Py DECREF() on a reference). The collector will
call this method if it detects that this object is involved in a reference cycle.

10.8.1 Example Cycle Collector Support

This example shows only enough of the implementation of an extension type to show how the garbage
collector support needs to be added. It shows the definition of the object structure, the tp traverse,
tp clear and tp dealloc implementations, the type structure, and a constructor — the module ini-
tialization needed to export the constructor to Python is not shown as there are no special considerations
there for the collector. To make this interesting, assume that the module exposes ways for the container
field of the object to be modified. Note that since no checks are made on the type of the object used to
initialize container, we have to assume that it may be a container.

#include "Python.h"

typedef struct {

PyObject_HEAD

PyObject *container;

} MyObject;

static int

my_traverse(MyObject *self, visitproc visit, void *arg)

{

if (self->container != NULL)

return visit(self->container, arg);

else

return 0;

}

static int

my_clear(MyObject *self)

{

Py_XDECREF(self->container);

self->container = NULL;

return 0;

}

static void

my_dealloc(MyObject *self)

{

PyObject_GC_UnTrack((PyObject *) self);

Py_XDECREF(self->container);

PyObject_GC_Del(self);

}

78 Chapter 10. Defining New Object Types

statichere PyTypeObject

MyObject_Type = {

PyObject_HEAD_INIT(NULL)

0,

"MyObject",

sizeof(MyObject),

0,

(destructor)my_dealloc, /* tp_dealloc */

0, /* tp_print */

0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_compare */

0, /* tp_repr */

0, /* tp_as_number */

0, /* tp_as_sequence */

0, /* tp_as_mapping */

0, /* tp_hash */

0, /* tp_call */

0, /* tp_str */

0, /* tp_getattro */

0, /* tp_setattro */

0, /* tp_as_buffer */

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,

0, /* tp_doc */

(traverseproc)my_traverse, /* tp_traverse */

(inquiry)my_clear, /* tp_clear */

0, /* tp_richcompare */

0, /* tp_weaklistoffset */

};

/* This constructor should be made accessible from Python. */

static PyObject *

new_object(PyObject *unused, PyObject *args)

{

PyObject *container = NULL;

MyObject *result = NULL;

if (PyArg_ParseTuple(args, "|O:new_object", &container)) {

result = PyObject_GC_New(MyObject, &MyObject_Type);

if (result != NULL) {

result->container = container;

PyObject_GC_Track(result);

}

}

return (PyObject *) result;

}

10.8. Supporting Cyclic Garbarge Collection 79

80

APPENDIX

A

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to
maintain this reputation, the developers would like to know of any deficiencies you find in Python or its
documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for
the developers to contact you for additional information if needed. It is not possible to submit a bug
report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows per-
tinent information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The
advantage in doing so, aside from saving the developers time, is that you learn what has been done to
fix it; it may be that the problem has already been fixed for the next release, or additional information
is needed (in which case you are welcome to provide it if you can!). To do this, search the bug database
using the search box near the bottom of the page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to
open the bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and
“Details” fields. For the summary, enter a very short description of the problem; less than ten words is
good. In the Details field, describe the problem in detail, including what you expected to happen and
what did happen. Be sure to include the version of Python you used, whether any extension modules
were involved, and what hardware and software platform you were using (including version information
as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug
report into a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the
problem. You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what
kind of information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but
describes general good practices.

81

82

APPENDIX

B

History and License

B.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI,
see http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains
Python’s principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI,
see http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonLabs team. In October of the same year, the PythonLabs team moved to Zope Corporation
(then Digital Creations; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF,
see http://www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-
related Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). His-
torically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes
the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with other software that is released under
the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

83

B.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the
Individual or Organization (“Licensee”) accessing and otherwise using Python 2.2.3 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 2.2.3 alone or in any
derivative version, provided, however, that PSF’s License Agreement and PSF’s notice of copyright,
i.e., “Copyright c© 2001, 2002 Python Software Foundation; All Rights Reserved” are retained in
Python 2.2.3 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.2.3 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 2.2.3.

4. PSF is making Python 2.2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 2.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.2.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.2.3, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership,
or joint venture between PSF and Licensee. This License Agreement does not grant permission
to use PSF trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.2.3, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) access-
ing and otherwise using this software in source or binary form and its associated documentation
(“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and otherwise use the Software alone
or in any derivative version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESEN-
TATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD
PARTY RIGHTS.

84 Appendix B. History and License

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFT-
WARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of
the State of California, excluding conflict of law provisions. Nothing in this License Agree-
ment shall be deemed to create any relationship of agency, partnership, or joint venture be-
tween BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services
of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that
web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, hav-
ing an office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 1.6.1 software in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee
a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or dis-
play publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or in
any derivative version, provided, however, that CNRI’s License Agreement and CNRI’s notice of
copyright, i.e., “Copyright c© 1995-2001 Corporation for National Research Initiatives; All Rights
Reserved” are retained in Python 1.6.1 alone or in any derivative version prepared by Licensee.
Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the following text (omit-
ting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in CNRI’s
License Agreement. This Agreement together with Python 1.6.1 may be located on the Inter-
net using the following unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S. federal

B.2. Terms and conditions for accessing or otherwise using Python 85

law does not apply, by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed under the GNU
General Public License (GPL), the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and 7 of this License
Agreement. Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does
not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using
Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSO-
EVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

86 Appendix B. History and License

INDEX

Symbols
PyImport FindExtension(), 21
PyImport Fini(), 21
PyImport FixupExtension(), 21
PyImport Init(), 21
PyObject Del(), 73
PyObject GC TRACK(), 77
PyObject GC UNTRACK(), 77
PyObject New(), 73
PyObject NewVar(), 73
PyString Resize(), 41
PyTuple Resize(), 51
Py NoneStruct, 74
Py c diff(), 39
Py c neg(), 39
Py c pow(), 39
Py c prod(), 39
Py c quot(), 39
Py c sum(), 39
all (package variable), 20
builtin (built-in module), 7, 61
dict (module attribute), 57
doc (module attribute), 56
file (module attribute), 56, 57
import () (built-in function), 20
main (built-in module), 7, 61
name (module attribute), 56, 57

A
abort(), 19
abs() (built-in function), 29
apply() (built-in function), 27
argv (in module sys), 64

B
buffer

object, 49
buffer interface, 49
BufferType (in module types), 49

C
calloc(), 69
cleanup functions, 20
close() (in module os), 62
cmp() (built-in function), 26

CObject
object, 59

coerce() (built-in function), 31
compile() (built-in function), 21
complex number

object, 38
copyright (in module sys), 63

D
dictionary

object, 52
DictionaryType (in module types), 52
DictType (in module types), 52
divmod() (built-in function), 29

E
environment variables

PATH, 7
PYTHONHOME, 7
PYTHONPATH, 7
exec prefix, 1, 2
prefix, 1, 2

EOFError (built-in exception), 55
errno, 65
exc info() (in module sys), 5, 64
exc traceback (in module sys), 5, 13
exc type (in module sys), 5, 13
exc value (in module sys), 5, 13
Exception (built-in exception), 17
exceptions (built-in module), 7
exec prefix, 1, 2
executable (in module sys), 63
exit(), 20

F
file

object, 54
FileType (in module types), 54
float() (built-in function), 31
floating point

object, 38
FloatType (in modules types), 38
fopen(), 54
free(), 69
freeze utility, 21

87

G
global interpreter lock, 64

H
hash() (built-in function), 27

I
ihooks (standard module), 20
incr item(), 6, 7
instance

object, 55
int() (built-in function), 31
getcharbufferproc (C type), 76
getreadbufferproc (C type), 76
getsegcountproc (C type), 76
getwritebufferproc (C type), 76
inquiry (C type), 78
Py tracefunc (C type), 67
traverseproc (C type), 78
visitproc (C type), 78
integer

object, 36
interpreter lock, 64
IntType (in modules types), 36

K
KeyboardInterrupt (built-in exception), 15

L
len() (built-in function), 28, 31, 33, 51, 53
list

object, 51
ListType (in module types), 51
lock, interpreter, 64
long() (built-in function), 31
long integer

object, 36
LONG MAX, 36, 37
LongType (in modules types), 37

M
main(), 62, 64
malloc(), 69
mapping

object, 52
METH KEYWORDS (data in), 75
METH NOARGS (data in), 75
METH O (data in), 75
METH OLDARGS (data in), 75
METH VARARGS (data in), 74
method

object, 56
MethodType (in module types), 56
module

object, 56
search path, 7, 61, 63

modules (in module sys), 20, 61

ModuleType (in module types), 56

N
None

object, 36
numeric

object, 36

O
object

buffer, 49
CObject, 59
complex number, 38
dictionary, 52
file, 54
floating point, 38
instance, 55
integer, 36
list, 51
long integer, 36
mapping, 52
method, 56
module, 56
None, 36
numeric, 36
sequence, 39
string, 39
tuple, 50
type, 2, 35

OverflowError (built-in exception), 37

P
package variable

all , 20
PATH, 7
path

module search, 7, 61, 63
path (in module sys), 7, 61, 63
platform (in module sys), 63
pow() (built-in function), 29, 30
prefix, 1, 2
Py AtExit(), 20
Py BEGIN ALLOW THREADS, 65
Py BEGIN ALLOW THREADS (macro), 66
Py BLOCK THREADS (macro), 67
Py BuildValue(), 24
Py CompileString(), 10
Py CompileString(), 10
Py complex (C type), 38
Py DECREF(), 11
Py DECREF(), 2
Py END ALLOW THREADS, 65
Py END ALLOW THREADS (macro), 66
Py END OF BUFFER, 49
Py EndInterpreter(), 62
Py eval input, 10
Py Exit(), 20
Py FatalError(), 19

88 Index

Py FatalError(), 64
Py FdIsInteractive(), 19
Py file input, 10
Py Finalize(), 61
Py Finalize(), 20, 61, 62
Py FindMethod(), 75
Py GetBuildInfo(), 64
Py GetCompiler(), 63
Py GetCopyright(), 63
Py GetExecPrefix(), 62
Py GetExecPrefix(), 7
Py GetPath(), 63
Py GetPath(), 7, 62
Py GetPlatform(), 63
Py GetPrefix(), 62
Py GetPrefix(), 7
Py GetProgramFullPath(), 63
Py GetProgramFullPath(), 7
Py GetProgramName(), 62
Py GetVersion(), 63
Py INCREF(), 11
Py INCREF(), 2
Py Initialize(), 61
Py Initialize(), 7, 62, 66
Py InitModule(), 74
Py InitModule3(), 74
Py InitModule4(), 74
Py IsInitialized(), 61
Py IsInitialized(), 7
Py Main(), 9
Py NewInterpreter(), 61
Py None, 36
Py PRINT RAW, 55
Py SetProgramName(), 62
Py SetProgramName(), 7, 61–63
Py single input, 10
Py TPFLAGS HAVE GC (data in), 77
Py TPFLAGS HAVE GETCHARBUFFER (data in),

76
Py UNBLOCK THREADS (macro), 67
Py UNICODE (C type), 42
Py UNICODE ISALNUM(), 43
Py UNICODE ISALPHA(), 43
Py UNICODE ISDECIMAL(), 43
Py UNICODE ISDIGIT(), 43
Py UNICODE ISLINEBREAK(), 43
Py UNICODE ISLOWER(), 42
Py UNICODE ISNUMERIC(), 43
Py UNICODE ISSPACE(), 42
Py UNICODE ISTITLE(), 43
Py UNICODE ISUPPER(), 43
Py UNICODE TODECIMAL(), 43
Py UNICODE TODIGIT(), 43
Py UNICODE TOLOWER(), 43
Py UNICODE TONUMERIC(), 43
Py UNICODE TOTITLE(), 43
Py UNICODE TOUPPER(), 43
Py XDECREF(), 11

Py XDECREF(), 7
Py XINCREF(), 11
PyArg Parse(), 23
PyArg ParseTuple(), 23
PyArg ParseTupleAndKeywords(), 23
PyArg UnpackTuple(), 23
PyBuffer Check(), 49
PyBuffer FromMemory(), 50
PyBuffer FromObject(), 49
PyBuffer FromReadWriteMemory(), 50
PyBuffer FromReadWriteObject(), 50
PyBuffer New(), 50
PyBuffer Type, 49
PyBufferObject (C type), 49
PyBufferProcs, 49
PyBufferProcs (C type), 76
PyCallable Check(), 26
PyCallIter Check(), 57
PyCallIter New(), 57
PyCallIter Type, 57
PyCell Check(), 60
PyCell GET(), 60
PyCell Get(), 60
PyCell New(), 60
PyCell SET(), 60
PyCell Set(), 60
PyCell Type, 60
PyCellObject (C type), 60
PyCFunction (C type), 74
PyCObject (C type), 59
PyCObject AsVoidPtr(), 59
PyCObject Check(), 59
PyCObject FromVoidPtr(), 59
PyCObject FromVoidPtrAndDesc(), 59
PyCObject GetDesc(), 59
PyComplex AsCComplex(), 39
PyComplex Check(), 39
PyComplex CheckExact(), 39
PyComplex FromCComplex(), 39
PyComplex FromDoubles(), 39
PyComplex ImagAsDouble(), 39
PyComplex RealAsDouble(), 39
PyComplex Type, 39
PyComplexObject (C type), 39
PyDescr IsData(), 58
PyDescr NewGetSet(), 58
PyDescr NewMember(), 58
PyDescr NewMethod(), 58
PyDescr NewWrapper(), 58
PyDict Check(), 52
PyDict Clear(), 52
PyDict Copy(), 52
PyDict DelItem(), 53
PyDict DelItemString(), 53
PyDict GetItem(), 53
PyDict GetItemString(), 53
PyDict Items(), 53
PyDict Keys(), 53

Index 89

PyDict Merge(), 54
PyDict MergeFromSeq2(), 54
PyDict New(), 52
PyDict Next(), 53
PyDict SetItem(), 52
PyDict SetItemString(), 52
PyDict Size(), 53
PyDict Type, 52
PyDict Update(), 54
PyDict Values(), 53
PyDictObject (C type), 52
PyDictProxy New(), 52
PyErr BadArgument(), 14
PyErr BadInternalCall(), 15
PyErr CheckSignals(), 15
PyErr Clear(), 14
PyErr Clear(), 5, 7
PyErr ExceptionMatches(), 13
PyErr ExceptionMatches(), 7
PyErr Fetch(), 14
PyErr Format(), 14
PyErr GivenExceptionMatches(), 13
PyErr NewException(), 15
PyErr NoMemory(), 14
PyErr NormalizeException(), 13
PyErr Occurred(), 13
PyErr Occurred(), 5
PyErr Print(), 13
PyErr Restore(), 14
PyErr SetFromErrno(), 14
PyErr SetFromErrnoWithFilename(), 15
PyErr SetInterrupt(), 15
PyErr SetNone(), 14
PyErr SetObject(), 14
PyErr SetString(), 14
PyErr SetString(), 5
PyErr Warn(), 15
PyErr WarnExplicit(), 15
PyErr WriteUnraisable(), 16
PyEval AcquireLock(), 66
PyEval AcquireLock(), 61, 65
PyEval AcquireThread(), 66
PyEval InitThreads(), 66
PyEval InitThreads(), 61
PyEval ReleaseLock(), 66
PyEval ReleaseLock(), 61, 65, 66
PyEval ReleaseThread(), 66
PyEval ReleaseThread(), 66
PyEval RestoreThread(), 66
PyEval RestoreThread(), 65, 66
PyEval SaveThread(), 66
PyEval SaveThread(), 65, 66
PyEval SetProfile(), 68
PyEval SetTrace(), 68
PyFile AsFile(), 55
PyFile Check(), 54
PyFile CheckExact(), 54
PyFile FromFile(), 54

PyFile FromString(), 54
PyFile GetLine(), 55
PyFile Name(), 55
PyFile SetBufSize(), 55
PyFile SoftSpace(), 55
PyFile Type, 54
PyFile WriteObject(), 55
PyFile WriteString(), 55
PyFileObject (C type), 54
PyFloat AS DOUBLE(), 38
PyFloat AsDouble(), 38
PyFloat Check(), 38
PyFloat CheckExact(), 38
PyFloat FromDouble(), 38
PyFloat Type, 38
PyFloatObject (C type), 38
PyImport AddModule(), 20
PyImport AppendInittab(), 21
PyImport Cleanup(), 21
PyImport ExecCodeModule(), 20
PyImport ExtendInittab(), 22
PyImport FrozenModules, 21
PyImport GetMagicNumber(), 21
PyImport GetModuleDict(), 21
PyImport Import(), 20
PyImport ImportFrozenModule(), 21
PyImport ImportModule(), 20
PyImport ImportModuleEx(), 20
PyImport ReloadModule(), 20
PyInstance Check(), 55
PyInstance New(), 55
PyInstance NewRaw(), 55
PyInstance Type, 55
PyInt AS LONG(), 36
PyInt AsLong(), 36
PyInt Check(), 36
PyInt CheckExact(), 36
PyInt FromLong(), 36
PyInt GetMax(), 36
PyInt Type, 36
PyInterpreterState (C type), 65
PyInterpreterState Clear(), 67
PyInterpreterState Delete(), 67
PyInterpreterState Head(), 68
PyInterpreterState New(), 67
PyInterpreterState Next(), 68
PyInterpreterState ThreadHead(), 68
PyIntObject (C type), 36
PyIter Check(), 33
PyIter Next(), 34
PyList Append(), 52
PyList AsTuple(), 52
PyList Check(), 51
PyList GET ITEM(), 51
PyList GET SIZE(), 51
PyList GetItem(), 51
PyList GetItem(), 4
PyList GetSlice(), 52

90 Index

PyList Insert(), 51
PyList New(), 51
PyList Reverse(), 52
PyList SET ITEM(), 51
PyList SetItem(), 51
PyList SetItem(), 3
PyList SetSlice(), 52
PyList Size(), 51
PyList Sort(), 52
PyList Type, 51
PyListObject (C type), 51
PyLong AsDouble(), 38
PyLong AsLong(), 37
PyLong AsLongLong(), 37
PyLong AsUnsignedLong(), 37
PyLong AsUnsignedLongLong(), 38
PyLong AsVoidPtr(), 38
PyLong Check(), 37
PyLong CheckExact(), 37
PyLong FromDouble(), 37
PyLong FromLong(), 37
PyLong FromLongLong(), 37
PyLong FromString(), 37
PyLong FromUnicode(), 37
PyLong FromUnsignedLong(), 37
PyLong FromUnsignedLongLong(), 37
PyLong FromVoidPtr(), 37
PyLong Type, 37
PyLongObject (C type), 36
PyMapping Check(), 33
PyMapping DelItem(), 33
PyMapping DelItemString(), 33
PyMapping GetItemString(), 33
PyMapping HasKey(), 33
PyMapping HasKeyString(), 33
PyMapping Items(), 33
PyMapping Keys(), 33
PyMapping Length(), 33
PyMapping SetItemString(), 33
PyMapping Values(), 33
PyMappingMethods (C type), 75
PyMarshal ReadLastObjectFromFile(), 22
PyMarshal ReadLongFromFile(), 22
PyMarshal ReadObjectFromFile(), 22
PyMarshal ReadObjectFromString(), 23
PyMarshal ReadShortFromFile(), 22
PyMarshal WriteLongToFile(), 22
PyMarshal WriteObjectToFile(), 22
PyMarshal WriteObjectToString(), 22
PyMarshal WriteShortToFile(), 22
PyMem Del(), 70
PyMem Free(), 70
PyMem Malloc(), 70
PyMem New(), 70
PyMem Realloc(), 70
PyMem Resize(), 70
PyMethod Check(), 56
PyMethod Class(), 56

PyMethod Function(), 56
PyMethod GET CLASS(), 56
PyMethod GET FUNCTION(), 56
PyMethod GET SELF(), 56
PyMethod New(), 56
PyMethod Self(), 56
PyMethod Type, 56
PyMethodDef (C type), 74
PyModule AddIntConstant(), 57
PyModule AddObject(), 57
PyModule AddStringConstant(), 57
PyModule Check(), 56
PyModule CheckExact(), 56
PyModule GetDict(), 57
PyModule GetFilename(), 57
PyModule GetName(), 57
PyModule New(), 56
PyModule Type, 56
PyNumber Absolute(), 29
PyNumber Add(), 28
PyNumber And(), 29
PyNumber Check(), 28
PyNumber Coerce(), 31
PyNumber Divide(), 28
PyNumber Divmod(), 29
PyNumber Float(), 31
PyNumber FloorDivide(), 28
PyNumber InPlaceAdd(), 30
PyNumber InPlaceAnd(), 30
PyNumber InPlaceDivide(), 30
PyNumber InPlaceFloorDivide(), 30
PyNumber InPlaceLshift(), 30
PyNumber InPlaceMultiply(), 30
PyNumber InPlaceOr(), 31
PyNumber InPlacePower(), 30
PyNumber InPlaceRemainder(), 30
PyNumber InPlaceRshift(), 30
PyNumber InPlaceSubtract(), 30
PyNumber InPlaceTrueDivide(), 30
PyNumber InPlaceXor(), 31
PyNumber Int(), 31
PyNumber Invert(), 29
PyNumber Long(), 31
PyNumber Lshift(), 29
PyNumber Multiply(), 28
PyNumber Negative(), 29
PyNumber Or(), 29
PyNumber Positive(), 29
PyNumber Power(), 29
PyNumber Remainder(), 29
PyNumber Rshift(), 29
PyNumber Subtract(), 28
PyNumber TrueDivide(), 29
PyNumber Xor(), 29
PyNumberMethods (C type), 75
PyObject AsCharBuffer(), 34
PyObject AsFileDescriptor(), 28
PyObject AsReadBuffer(), 34

Index 91

PyObject AsWriteBuffer(), 34
PyObject CallFunction(), 27
PyObject CallFunctionObjArgs(), 27
PyObject CallMethod(), 27
PyObject CallMethodObjArgs(), 27
PyObject CallObject(), 27
PyObject CheckReadBuffer(), 34
PyObject Cmp(), 26
PyObject Compare(), 26
PyObject DEL(), 74
PyObject Del(), 73
PyObject DelAttr(), 25
PyObject DelAttrString(), 25
PyObject DelItem(), 28
PyObject Dir(), 28
PyObject GC Del(), 77
PyObject GC New(), 77
PyObject GC NewVar(), 77
PyObject GC Resize(), 77
PyObject GC Track(), 77
PyObject GC UnTrack(), 77
PyObject GetAttr(), 25
PyObject GetAttrString(), 25
PyObject GetItem(), 28
PyObject GetIter(), 28
PyObject HasAttr(), 25
PyObject HasAttrString(), 25
PyObject Hash(), 27
PyObject Init(), 73
PyObject InitVar(), 73
PyObject IsInstance(), 26
PyObject IsSubclass(), 26
PyObject IsTrue(), 27
PyObject Length(), 27
PyObject NEW(), 73
PyObject New(), 73
PyObject NEW VAR(), 73
PyObject NewVar(), 73
PyObject Not(), 27
PyObject Print(), 25
PyObject Repr(), 26
PyObject RichCompare(), 25
PyObject RichCompareBool(), 26
PyObject SetAttr(), 25
PyObject SetAttrString(), 25
PyObject SetItem(), 28
PyObject Str(), 26
PyObject Type(), 27
PyObject TypeCheck(), 27
PyObject Unicode(), 26
PyOS AfterFork(), 19
PyOS CheckStack(), 19
PyOS GetLastModificationTime(), 19
PyOS getsig(), 19
PyOS setsig(), 19
PyParser SimpleParseFile(), 10
PyParser SimpleParseString(), 9
PyProperty Type, 58

PyRun AnyFile(), 9
PyRun File(), 10
PyRun InteractiveLoop(), 9
PyRun InteractiveOne(), 9
PyRun SimpleFile(), 9
PyRun SimpleString(), 9
PyRun String(), 10
PySeqIter Check(), 57
PySeqIter New(), 57
PySeqIter Type, 57
PySequence Check(), 31
PySequence Concat(), 31
PySequence Contains(), 32
PySequence Count(), 32
PySequence DelItem(), 32
PySequence DelSlice(), 32
PySequence Fast(), 32
PySequence Fast GET ITEM(), 32
PySequence Fast GET SIZE(), 33
PySequence GetItem(), 32
PySequence GetItem(), 4
PySequence GetSlice(), 32
PySequence Index(), 32
PySequence InPlaceConcat(), 31
PySequence InPlaceRepeat(), 31
PySequence Length(), 31
PySequence List(), 32
PySequence Repeat(), 31
PySequence SetItem(), 32
PySequence SetSlice(), 32
PySequence Size(), 31
PySequence Tuple(), 32
PySequenceMethods (C type), 75
PySlice Check(), 58
PySlice GetIndices(), 58
PySlice New(), 58
PySlice Type, 58
PyString AS STRING(), 40
PyString AsDecodedObject(), 41
PyString AsEncodedObject(), 42
PyString AsString(), 40
PyString AsStringAndSize(), 41
PyString Check(), 40
PyString CheckExact(), 40
PyString Concat(), 41
PyString ConcatAndDel(), 41
PyString Decode(), 41
PyString Encode(), 42
PyString Format(), 41
PyString FromFormat(), 40
PyString FromFormatV(), 40
PyString FromString(), 40
PyString FromString(), 52
PyString FromStringAndSize(), 40
PyString GET SIZE(), 40
PyString InternFromString(), 41
PyString InternInPlace(), 41
PyString Size(), 40

92 Index

PyString Type, 40
PyStringObject (C type), 40
PySys SetArgv(), 64
PySys SetArgv(), 7, 61
PYTHONHOME, 7
PYTHONPATH, 7
PyThreadState, 64
PyThreadState (C type), 65
PyThreadState Clear(), 67
PyThreadState Delete(), 67
PyThreadState Get(), 67
PyThreadState GetDict(), 67
PyThreadState New(), 67
PyThreadState Next(), 68
PyThreadState Swap(), 67
PyTrace CALL, 68
PyTrace EXCEPT, 68
PyTrace LINE, 68
PyTrace RETURN, 68
PyTuple Check(), 50
PyTuple CheckExact(), 50
PyTuple GET ITEM(), 50
PyTuple GET SIZE(), 50
PyTuple GetItem(), 50
PyTuple GetSlice(), 50
PyTuple New(), 50
PyTuple SET ITEM(), 51
PyTuple SetItem(), 51
PyTuple SetItem(), 3
PyTuple Size(), 50
PyTuple Type, 50
PyTupleObject (C type), 50
PyType Check(), 35
PyType CheckExact(), 35
PyType GenericAlloc(), 35
PyType GenericNew(), 36
PyType HasFeature(), 35
PyType HasFeature(), 76
PyType IS GC(), 35
PyType IsSubtype(), 35
PyType Ready(), 36
PyType Type, 35
PyTypeObject (C type), 35
PyUnicode AS DATA(), 42
PyUnicode AS UNICODE(), 42
PyUnicode AsASCIIString(), 46
PyUnicode AsCharmapString(), 47
PyUnicode AsEncodedString(), 45
PyUnicode AsLatin1String(), 46
PyUnicode AsMBCSString(), 47
PyUnicode AsRawUnicodeEscapeString(), 46
PyUnicode AsUnicode(), 43
PyUnicode AsUnicodeEscapeString(), 46
PyUnicode AsUTF16String(), 45
PyUnicode AsUTF8String(), 45
PyUnicode AsWideChar(), 44
PyUnicode Check(), 42
PyUnicode CheckExact(), 42

PyUnicode Compare(), 48
PyUnicode Concat(), 48
PyUnicode Contains(), 49
PyUnicode Count(), 48
PyUnicode Decode(), 44
PyUnicode DecodeASCII(), 46
PyUnicode DecodeCharmap(), 47
PyUnicode DecodeLatin1(), 46
PyUnicode DecodeMBCS(), 47
PyUnicode DecodeRawUnicodeEscape(), 46
PyUnicode DecodeUnicodeEscape(), 46
PyUnicode DecodeUTF16(), 45
PyUnicode DecodeUTF8(), 45
PyUnicode Encode(), 44
PyUnicode EncodeASCII(), 46
PyUnicode EncodeCharmap(), 47
PyUnicode EncodeLatin1(), 46
PyUnicode EncodeMBCS(), 47
PyUnicode EncodeRawUnicodeEscape(), 46
PyUnicode EncodeUnicodeEscape(), 46
PyUnicode EncodeUTF16(), 45
PyUnicode EncodeUTF8(), 45
PyUnicode Find(), 48
PyUnicode Format(), 49
PyUnicode FromEncodedObject(), 43
PyUnicode FromObject(), 44
PyUnicode FromUnicode(), 43
PyUnicode FromWideChar(), 44
PyUnicode GET DATA SIZE(), 42
PyUnicode GET SIZE(), 42
PyUnicode GetSize(), 43
PyUnicode Join(), 48
PyUnicode Replace(), 48
PyUnicode Split(), 48
PyUnicode Splitlines(), 48
PyUnicode Tailmatch(), 48
PyUnicode Translate(), 48
PyUnicode TranslateCharmap(), 47
PyUnicode Type, 42
PyUnicodeObject (C type), 42
PyWeakref Check(), 58
PyWeakref CheckProxy(), 58
PyWeakref CheckRef(), 58
PyWeakref GET OBJECT(), 59
PyWeakref GetObject(), 59
PyWeakref NewProxy(), 59
PyWeakref NewRef(), 59
PyWrapper New(), 58

R
realloc(), 69
reload() (built-in function), 20
repr() (built-in function), 26
rexec (standard module), 20

S
search

path, module, 7, 61, 63

Index 93

sequence
object, 39

set all(), 4
setcheckinterval() (in module sys), 64
setvbuf(), 55
SIGINT, 15
signal (built-in module), 15
SliceType (in module types), 58
softspace (file attribute), 55
stderr (in module sys), 61
stdin (in module sys), 61
stdout (in module sys), 61
str() (built-in function), 26
strerror(), 14
string

object, 39
StringType (in module types), 40
frozen (C type), 21
inittab (C type), 21

sum list(), 4
sum sequence(), 5, 6
sys (built-in module), 7, 61
SystemError (built-in exception), 57

T
thread (built-in module), 66
tuple

object, 50
tuple() (built-in function), 32, 52
TupleType (in module types), 50
type

object, 2, 35
type() (built-in function), 27
TypeType (in module types), 35

U
ULONG MAX, 37
unicode() (built-in function), 26

V
version (in module sys), 63, 64

94 Index

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	Reference Count Details

	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5 Utilities
	5.1 Operating System Utilities
	5.2 Process Control
	5.3 Importing Modules
	5.4 Data marshalling support
	5.5 Parsing arguments and building values

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Iterator Protocol
	6.6 Buffer Protocol

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Numeric Objects
	7.2.1 Plain Integer Objects
	7.2.2 Long Integer Objects
	7.2.3 Floating Point Objects
	7.2.4 Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	7.3 Sequence Objects
	7.3.1 String Objects
	7.3.2 Unicode Objects
	Built-in Codecs
	Methods and Slot Functions

	7.3.3 Buffer Objects
	7.3.4 Tuple Objects
	7.3.5 List Objects

	7.4 Mapping Objects
	7.4.1 Dictionary Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Instance Objects
	7.5.3 Method Objects
	7.5.4 Module Objects
	7.5.5 Iterator Objects
	7.5.6 Descriptor Objects
	7.5.7 Slice Objects
	7.5.8 Weak Reference Objects
	7.5.9 CObjects
	7.5.10 Cell Objects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock
	8.2 Profiling and Tracing
	8.3 Advanced Debugger Support

	9 Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10 Defining New Object Types
	10.1 Allocating Objects on the Heap
	10.2 Common Object Structures
	10.3 Mapping Object Structures
	10.4 Number Object Structures
	10.5 Sequence Object Structures
	10.6 Buffer Object Structures
	10.7 Supporting the Iterator Protocol
	10.8 Supporting Cyclic Garbarge Collection
	10.8.1 Example Cycle Collector Support

	A Reporting Bugs
	B History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python

	Index

