

Page 341

Annexe D : BNF du formalisme H-COSTAM

Version 1.0,
Kordon Fabrice & El Kaim William,

Laboratoire LIP6, Thème Systèmes Répartis Coopératifs

E-mail : Fabrice.Kordon@lip6.fr - William.El-Kaim@lip6.fr

1. Preliminary definitions

char_alpha ::=

A

|

B

|

C

|

D

|

E

|

F

|

G

|

H

|

I

|

J

|

K

|

L

|

M

|

N

|

O

|

P

|

Q

|

R

|

S

|

T

|

U

|

V

|

W

|

X

|

Y

|

Z

|

_

(1)

char_num ::=

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|

9

 char ::= char_alpha

|

 char_num

identifier

(2)

::= alpha_char

{

char

}

list_identifier ::= identifier

|

identifier

, list_identifier

integer_value ::= positive_value |
negative_value

positive_value := char_alpha{char_alpha}

negative_value ::= - positive_value

string ::= ’ {char}’

Comments are possible in H-COSTAM. They start anywhere in a line by // and finish at
the end of the current line. Comments may occur anywhere in any description.

In this document :
• Predefined constructions presented above are referenced using italic characters;
• Characters space, tab et carriage return will be considered as separator except in

comments or strings;
• Keywords and delimitors are displayed this way : KEY_WORD;
• You should pay attention on the comment position. Comments may not take place

anywhere in the attributes.

1.1. List of special words that cannot be identifiers in H-COSTAM
Identifiers may not be H-COSTAM Keywords.

Actually, there are external and internal keywords in H-COSTAM. External keywords
are the ones defined in the grammar this document describes. Internal Keywords are
the ones that are necessary to identify part of text that comes from a graphical descrip-
tion (the one provided by Macao).

Hereafter is the list of unauthorised identifiers in H-COSTAM.

(1) Lower and upper cases are consireded equal.
(2) An identifier cannot be a reserved word of H-COSTAM declaration.

Annexe D : BNF du formalisme H-COSTAM

Page 342

2. Declarations in H-COSTAM pages

Declarations in H-COSTAM are associated to nodes that cannot be removed from the
specification. Their shape is the one defined on the left. Of course, there are two types of
declarations : one for macro-level pages and one for micro-level pages.

Each declaration objet has five attributes :
• name that gives the page id (optional except for the root page). This attribute has

to be an identifier;
• author that is a one line free text zone;
• version that specifies the version of the current page. This attribute has to respect

the following format : integer[.integer[.integer]] ;
• comments that is a free text multiline zone to write comments about the current

page;
• declaration that defines declarative items. This attribute value has to respect a

syntax provided in section 2.2., page 343;

A declarative item is composed with the following elements :
i. generic types and generic constants (both macro and micro levels);
ii. types and constants (micro and macro levels);
iii. local instanciation (macro-level only);
iv. context definition (micro-level only).

2.1. Visibility rules of declarative items
Visibility rules of any declaration item in an H-COSTAM specification do respect the
following rules :

• If a page is not generic, any item having class (i) or (ii) on any upper level is visi-
ble. Local overwriting of any definition is forbbiden. New items will be added to
the other one;

• If a page is generic, all declarative items having class (i) or (ii) on any upper level
are forbidens. Only generic parameters and new declarations are visible;

• The visibility of declaration items having class (iii) or (iv) is reduced to the current
page.

As mentionned, the default rule is a convenient top down visibility. genericity is dedica-
ted to component reuse. For that reason, visible types are the one explicitely specified
by the system designer.

Figure 110 illustrates the visibility rules in H-COSTAM. This example relies on a three
pages model. In page (2), it is possible to use types XXX, XXX2 and ZZZ as well as cons-
tants YYY and TTT. In page (3), only types AAA and CCC, or constants BBB and DDD are
visible. There is no inheritance of definitions coming from page (1) because the page is
generic. However, it is specified (page (1)) that in page (3), AAA renames XXX and BBB
renames YYY. So, page (3), types XXX (ranamed AAA) and CCC, as well as constants YYY
(renamed BBB) and DDD are visible.

Macao

micro

Macao

M acro

Annexe D : BNF du formalisme H-COSTAM

Page 343

Figure 110 : Visibility rules of declarative items in H-COSTAM.

2.2. BNF of the declaration attribute
Declaration of micro page entities is very similar to the one for macro page entities. The
main difference is that instanciation of enclosed «boxes» (processes or subsystems) are
only allowed in macro pages and context definition (for a process) is only allowed in
micro pages.

Both macro and micro pages may declare local types or constants and may take advan-
tage of genericity.

page_declaration ::= micro_page_decl |
macro_page_decl

macro_page_declaration ::=[generic_declaration] local_declaration [instanciations]

micro_page_declaration ::=[generic_declaration] local_declaration context_declaration
initial_state_declaration

Generic part
Generic parameters of a page may be either generic types or generic constants. If a page
is generic, it must contains at least one type declaration.

generic_declaration ::=GENERIC
 one_generic_type
 {one_generic_type}
 {one_generic_constant}

Generic type parameters may be either elementary (it is a finite set of values) or com-
posed (it is a product of at least two others types). Composed types are used to define
tuples.

The definition of a generic type parameter enables or disables some operations on it.
There are two types of generic parameters :

• Elementary generic types that enable the use of =, ≠, <, ≤, >, ≥, ++(3), --(4), .all(5) and
product operators;

• Composed generic types that only enable the use of =, ≠, # (6) and product opera-
tors. However, # function is only possible if some hypothesis are defined on the
composed types. Each hypothesis specifies, for one given field, the type of infor-
mation it contains. It is then possible to partially define the prototype of a com-
posed token.

(3) Circular successor function.
(4) Circular predecessor function.
(5) Broadcast function.
(6) Extraction of one field in the composed type.

(1)

(3)(2)

type XXX...
type XXX2
constant YYY...
instanciation of (3) with AAA => XXX and BBB => YYY.

type ZZZ...
constant TTT ...

generic
 type AAA ...
 constant BBB
 type CCC ...
 constant DDDD ...

Annexe D : BNF du formalisme H-COSTAM

Page 344

one_generic_type ::=TYPE identifier IS type_definition;

type_definition ::= ELEMENTARY |
COMPOSED [WITH one_hypothesis {, one_hypothesis}]

one_hypothesis ::=FIELD positive_value HAS TYPE identifier

one_generic_constant ::=CONSTANT identifier HAS TYPE identifier;

Declaration part
Local declaration may be empty. If not, it contains at least one type definition.

local_declaration ::= DECLARATION declaration_body

declaration_body ::= NONE; |
type_declaration {type_declaration} [{constant_declaration}]

There are three sort of types in H-COSTAM :
• integer types (elementary types) that corresponds to a finite range of values;
• enumerative types (elementary types) that group a finite set of enumerative

values;
• product types (composed types) that defines tuples composed of either elemen-

tary or composed fields.

type_declaration ::= TYPE identifier IS type_definition;

type_definition ::= RANGE integer_value .. integer_value |
(list_identifier) |
PRODUCT list_identifier

constant_declaration ::=CONSTANT identifier : identifier := cst_value;

Constants may correspond to :
• an immediate value (integer or enumeration litteral);
• a reference to another constant;
• a one level agregate value, it is then associated to a product type. Aggregates are

composed constants in the sense of [Ada 83, Ada 95].

cst_value ::= integer_value |
identifier |
constant_reference |
(one_agregate_value {, one_agregate_value})

constant_reference ::=$identifier

one_agregate_value ::=integer_value |
identifier |
constant_reference

Instanciation part (macro pages only)
The instanciation part of a macro-level page defines the generic parameter association
of any generic box enclosed in the current page. Each generic box in the page must be
instanciated at least once. An instanciation may be nammed for readability conve-
nience(7) (optional directive at the end of the instanciation instruction).

instanciations ::= ENCLOSED one_instanciation {one_instanciation}

one_instanciation ::= IN GENERIC identifier USE (par_association {, par_association})
[TO MAKE identifier];

par_association ::=identifier => one_agregate_value

(7) This enables production of more readable programs in code generation.

Annexe D : BNF du formalisme H-COSTAM

Page 345

Context definition part (micro pages only)
The context definition of a micro-level page defines a set of variables. It is possible to
associate a default value to these variables.

context_declaration ::=CONTEXT context_body

context_body ::= NONE |
context_element {context_element}

context_element ::= identifier : identifier [:= one_agregate_value];

initial_state definition part (micro pages only)
The initial state declarative part does define the set of initial instances for the current
process in the micro level page. If it is set to «none», it means that there are no initial ins-
tances for the current process. Otherwise, the system designer has to specify the number
of instances having a given profile.

Each profile should contains the following definitions :
• the initial process-state of the process;
• a set of default values for some context piece. If some context_piece is not enume-

rated, no value will be preaffected to it(8).

initial_state_declaration ::=INITIAL_STATE init_state_content

init_state_content ::=NONE; |
one_proc_instance_profile
{one_proc_instance_profile}

one_proc_instance_profile ::=positive_value INSTANCE HAS STATE => identifier
AND CONTEXT => (one_process_profile);

one_process_profile ::=NONE |
one_ctx_elem_default_value
{, one_ctx_elem_default_value}

one_ctx_elem_default_value::=identifier => one_agregate_value

3. Media and Factory definition (micro and macro level)

Media in H-COSTAM define a communication mechanism. There are two classes of
media : passive media that describe asynchroneous communication, and active media
that operate more complex communication mechenism that could need to be managed
by a specific server.

Passive media are FIFO links, LIFO links and Random links. There is only one Active
media : the multi-rendez-vous(9).

3.1. Passive media
Passive media all contain the same attributes that respect the same rules. These attribu-
tes are :

• name that identify the media;
• data_type that identify the class of data that goes through the media;
• capacity that defines the maximum number of messages the media may contains;
• initial_state that defines messages that are initially contained in the media.

All attributes are reachable when a media take place in a macro level page. Attributes
name and data_type are the only one visible in a micro level page.

(8) Their initial value is then a random one.
(9) a RPC communication mechanism should be added soon.

Annexe D : BNF du formalisme H-COSTAM

Page 346

BNF of the name attribute
This attribute does not have to be set in a macro-level page(10). If it is not, an automatic
name is generated. If a name is provided, it has to be an identifier.

passive_media_name ::=identifier

BNF of the data_type attribute
This attribute has a default valuee : NONE that means only non typed information
(events) is transfered. Otherwise, this attribute has to refer a type previously defined in
the declaration part of the page.

passive_media_data_type ::=identifier |
NONE

BNF of the capacity attribute
This attribute should be an integer. It has a special value : INFINITY that means the
media is never full. This special value is the one assumed if the attribute is not set

passive_media_capacity ::=positive_value |
INFINITY

BNF of the initial_state attribute
This attribute is not yet implemented. The oinly available value is EMPTY that means
there is no initial messages in the media when the system starts.

passive_media_initial_state ::=INFINITY

3.2. Active media
Multi-rendez-vous is the only possible active media. It is defined using the following
attribute :

• name that identify the media;
• condition that defines the activation rules that are related to the multi-rendez-

vous;
• interface that defines the type of message sent and received by means of this attri-

bute.

The first attribute (name is required in both macro and micro level pages). Condition is
required in a macro-level page when the media does not represent an interface. Inter-
face only appear in a micro level page. The name attribute do respect the rule that is
defined for media (see definition page 346).

BNF of the condition attribute
The condition attribute defines rules that are used to evaluate a multi-rendez-vous acti-
vation and the information exchange performed when this activation occurs.

mrdv_condition_attribute ::= [input_output_declaration]
[bool_expression] (11)

[data_exchange]

It is composed with a declarative part that can remain undefined when the_condition is
reduced to TRUE or FALSE. The data_exchange part is optional.

input_output_declaration ::= one_declaration
{one_declaration}

one_declaration ::= direction unit : variable HAS TYPE type_reference;

(10) It has to be set in a micro level page because it may be refered in some expression (condition of modifiers). To get
more informations, see XXX

(11) Here, keyword [and] are expected.

Annexe D : BNF du formalisme H-COSTAM

Page 347

direction ::= TO |
FROM

unit ::= identifier

variable ::= identifier

type_reference ::= identifier

Each variable is declared either as an input (FROM) of an output (TO) variable. An input
variable may appear in either bool_expression or the right hand of an affectation in the
data_exchange part. An output variable can only appear in the left hand of an affecta-
tion in the data_exchange part.

bool_expression ::= elementary_bool_expr |
not bool_expression |
bool_expression AND bool_expression |
bool_expression OR bool_expression |
(bool_expression)

elementary_bool_expr ::=TRUE |
FALSE |
reference cmp_operator reference

cmp_operator ::= = | /= | > | < | >= | <=

reference ::= variable_reference |
constant_reference(12) |
identifier |
integer_value

variable_reference ::=&identifier |
&identifier#positive_value

It is possible to refer a complete variable (expression «&var») or a component if this
variable belongs to a composed type. The position of this component is then referenced.
So, the expression «&var#3& means «the third component of variable var».

Complex boolean expressions have to fully parenthesed.

data_exchange ::= one_data_affectation
{one_data_affectation}

one_data_affectation ::= variable_reference := expression;

expression ::= one_agregate_expression |
(one_agregate_expression {, one_agregate_expression})

one_agregate_expression ::= reference |
variable_reference ++ positive_value |
variable_reference -- positive_value

++ and -- operators are recpectively successor and predecessor. So, the expression
«&var ++ 4» means : «the successor of rank 4 for the variable var». It is possible to com-
pose agregates but they are limited to one level depth only.

Important Remark : when the attribute is not set, the following default value is
assumed : [true].

BNF of the interface attribute
Not yet implemented.

(12) See the definition of this rule page 344.

Annexe D : BNF du formalisme H-COSTAM

Page 348

4. Automata definition (micro level)

A micro level page in H-COSTAM describes a sequential state machine. To achieve that,
we use a state transition model composed with two classes of nodes :

• State-processes represent one state in the automata;
• Action-processes represent one action that is performed by a process.

4.1. State-process
A state process has only one attribute : its name that can remain unset. In that case, a
default name is assumed. However, it is necessary to provide a name to the state-pro-
cesses that are initial states of a static instance (see the definition page 345).

The name attribute do respect the rule that is defined for media (see definition
page 346).

4.2. Action-process
An action process has three attributes :

• Name identifies it. This attribute respects the rules defined for media (page 346);
• Condition defines the activation rules that are related to the condition;
• Modifier describes what hapens when an action has fired.

BNF of the condition attribute
This attribute describes the conditions that should be respected when the actions fires.

act_proc_condition_attribute::=[ap_bool_expression] (13)

Unlikely to multi-rendez-vous conditions, inputs are not declared in the condition itself.
The condition is applied on both elements the process context (see page 345) and input
media.

ap_bool_expression ::= ap_elementary_bool_expr |
not ap_bool_expression |
ap_bool_expression AND ap_bool_expression |
ap_bool_expression OR ap_bool_expression |
(ap_bool_expression)

ap_elementary_bool_expr ::=TRUE |
FALSE |
ap_reference cmp_operator ap_reference

ap_cmp_operator ::== | /= | > | < | >= | <=

ap_reference ::= ap_context_reference |
ap_media_reference |
constant_reference(14) |
identifier |
integer_value

ap_context_reference ::=&identifier |
&identifier#positive_value

ap_media_reference ::=%identifier |
%identifier#positive_value

It is possible to refer a complete entity (expression «&ctx_elem» or «%media_ref») or a
component if this entity values is of a composed type. The position of this component is

(13) Here, keyword [and] are expected.
(14) See the definition of this rule page 344.

Annexe D : BNF du formalisme H-COSTAM

Page 349

then referenced. So, the expression «&ctx_elem#3& means «the third component of con-
text element ctx_elem».

Complex boolean expressions have to fully parenthesed.

Important Remark : when the attribute is not set, the following default value is
assumed : [true].

BNF of the modifier attribute
This attribute defines the actions to be performed when an action has fired. It may affect
any element of the process context. Messages that are produced to output media do
have to be specified here.

act_proc_modifier_attribute ::=[one_modification {one_modification}]

one_modification ::= modif_reference := expression;

expression ::= one_m_agregate_expression |
(one_m_agregate_expression {, one_m_agregate_expression})

one_m_agregate_expression::= ap_reference |
ap_reference ++ positive_value |
ap_reference -- positive_value

Unlikely to the data exchange performed when a multi-rendez-vous has been fired (see
page 347), one modification involves all the output media connected to the process-
action. Ther may also content some modification of elements in the current process con-
text.

Each modification expression is composed with a left hand and a right hand part. The
left hand part should only refer either an element of context or an output media. The
right hand part should only refer to read-only elements that are either element of the
process context or input media of the action.

Annexe D : BNF du formalisme H-COSTAM

Page 350

