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Abstract

In this manuscript we present the mathematical aggregation operators and their
application to the video querying. This work is divided in three parts. The first one
offers the definition of mathematical aggregation operators and some properties,
followed by an extensive overview of the existing operators.

The second part is dedicated to the study of the aggregation under uncertainty. We
present a deep study on t-norms and t-conorms, pursued by a study on aggregation of
truth and falsity values in non-phrase calculus way. We also introduce a
non-axiomatic way, based on the metaphor of a balance, which in the one hand
allows the visualization of the global behavior and of the sensitivity of an operator
and in the other hand offers a guide for the construction of additive generated
operators.

The third part is devoted to the illustration of the theoretical results in the framework
of video querying. We expound two complementary approaches. The first one based
on "computing with words" explains how to browse a video with temporal queries.
The second one makes obvious how to aggregate criteria pointing to the same
conclusion. We prove the feasibility of the approach with real search engine and we
expound the used technology (Java, XML, etc.)
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Résumé

Dans ce manuscrit nous présentons les opérateurs mathématiques dédiés à
l'agrégation et leur application à la recherche d'information dans la vidéo. Cet
ouvrage est divisée en trois parties. La première présente d'abord la définition d'un
opérateur mathématique d'agrégation accompagnée de quelques propriétés
souhaitables. Ensuite suit une vue d'ensemble des opérateurs existants.

La deuxième partie est dédiée à l'investigation de l'agrégation dans l'incertain. Nous
présentons une étude approfondie des t-normes et t-conormes, suivie d'une étude sur
l'agrégation des valeurs de vérité et de fausseté différente du calcul de type logique.
Nous introduisons aussi une approche non-axiomatique, qui s'appuie sur la
métaphore d'une balance. Avec ceci nous pouvons d'une part visualiser le
comportement global et la sensibilité d'un opérateur et d'autre part construire des
opérateurs générés additivement.

La troisième partie est dévolue à la description de la façon dont ces résultats
théoriques s'intègrent dans le cadre de la recherche d'information dans la vidéo. Nous
explicitons deux approches complémentaires. La première, inspirée du "computing
with words" de L.A. Zadeh, présente la façon de naviguer dans une vidéo en utilisant
des requêtes  temporelles. La seconde montre comment agréger différents critères
indiquant la même conclusion. Nous démontrons la faisabilité de notre approche en
offrant un prototype de moteur de recherche et en exposant la technologie utilisée
(Java, XML, etc.)

Mots clefs :

Agrégation Multimédia Logique Floue

Fusion de données Vidéo Vrai et Faux

Opérateurs Mathématiques Requêtes Métaphore d'une Balance
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Introduction

Aggregation and fusion of information are major problems for all kinds of knowledge
based systems, from image processing to decision making, from pattern recognition to
machine learning. But now it is becoming urgent with the explosion of the multimedia
data. If we look at the information richest multimedia channel, the video, we will
witness an explosion in the amount of information, not only because of its inherent
richness, but also because to its popularity due to this richness.

Video as format of computer related material is becoming more and more common.
Every day new multimedia information systems appear on the market containing more
and more video. Also the format of information on Internet is clearly evolving to a
video form. Initially we saw the embedding of images on text pages, now we see simple
animation on almost every web page. We also know that the amount of information
stored in computers is growing. So, the question that naturally arises is : "How to get the
information you want?" And a natural answer to this question is : "Tell us what you
want!". In other words, in order to provide the user the information he is looking for, we
need to be able to answer his queries. But, now the problem of aggregating all the
information available in order to answer the questions emerges.

In a more general framework aggregation has for  purpose the use simultaneously of
pieces of information provided by several sources in order to come to a conclusion or a
decision. This problem being particularly significant for the information stored
numerically in the computers (and here we are not only talking about multimedia).
Aggregation methods are fundamental to resume information dispersed on different
descriptors.

In many cases, the available information is imperfect which means that some elements
are uncertain and/or imprecise, and some of them are missing (information is then
incomplete). Several methodologies are useful to manage such imperfect information.
Among the most important ones are probability theory, evidence theory, possibility
theory and fuzzy set theory. We focus our work on the last one, because it is directly
connected to the logical aggregation, usually used in a boolean way in the querying
systems. Fuzzy logic is actually the most adapted method for the numerical
representation of logical uncertainties and imperfections.
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In this thesis we propose to study the mathematical aggregation operators that are on the
basis of every aggregation or fusion in a computer. We illustrate our theoretical results
by presenting solutions for the video querying. We opt to offer a coherent and
homogeneous discourse by only presenting the results directly related to the
mathematical aggregation. We drop off aspects as for instance the architecture of the
video search engine [76], or the investigations on the ranking methods [18], [26] and on
the defuzzification techniques [27], [25].

This manuscript is divided in three parts. The first one defines and presents the wide
range of mathematical aggregation operators. The second one puts forward the
investigation done around the aggregation of uncertain information. And the third one,
illustrates in the video query framework the results of the theoretical investigation.

The first part : The Mathematical Aggregation Operators
The first section presenting the mathematical aggregation operator is divided into two
chapters.

Chapter 1 propounds a definition for mathematical aggregation operators, by fixing a
minimal set of mathematical conditions. This minimal set guarantees some coherence to
this family of operators. It also presents other mathematical properties that can be
expected from any aggregation operator.

Chapter 2 reveals a catalogue of the existing operators. We portray their characteristics
and advantages, but we try to be objective by giving also their disadvantages. In this
catalogue we find operators going from the quasi-arithmetic means to the t-norms and
t-conorms, going through the fuzzy integral or even the OWA operators.

Second part : Studying the Aggregation of Uncertain Information
In this second part we present our investigations and results around the aggregation of
the uncertain. This  section is divided into 4 chapters.

The first one, chapter 3, presents a study on how the different traditionally used logical
aggregation operators (t-norms and t-conorms) aggregate the logical values. The idea is
to focus our analysis on just one point, the "most fuzzy" one.

The results of the previous study suggested that the different t-norms and t-conorms had
different attitudes with respect to the uncertainty. In particular a gap in their attitude was
found. Based on this, we study in chapter 4 a way of creating new operators by
reducing t-norms and augmenting t-conorms. Unfortunately we notice that the resulting
operators are in general not associative. However we discover an interesting operator,
for which we exhibit its worth in the temporal querying calculus presented in chapter 7.

The prior studies on the t-norms and t-conorms pointed out that the purpose of this
aggregation is to compute the truth value of a logical phrase. In chapter 5 we are
interested in the aggregation of different truth values observed for the same logical
phrase. This study leads to the characterization of two families of aggregation operators,
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the prudent and the enthusiastic aggregation operator. Also a deep study on the
contradiction of information is presented

A main result of chapter 5 is that the most suitable form of aggregation of truth and
falsity values is an additive generated operator. So, in chapter 6 we propose a new
framework (philosophy) for additive generated operators. We do not base our work on
an axiomatic set but on the metaphor of a balance. We used a metaphor in order to allow
intuitive representation of the global behavior of the operator, the visualization of its
sensitivity and the analysis of a particular aggregation. But the visualization is not the
only use of the metaphor, we also present a guide of how to construct an aggregation
operator, using the balance. The metaphor allowing this time to make the right choices
while conceiving an aggregation operator.

Third part : The Video Querying
In this third part we present how the theoretical results (shown in the second part) can
be implemented in order to solve the problem of aggregation of information in the video
querying problematic.  This part is divided into two chapters.

In chapter 7, we present a model that enables us to browse a video using imperfect
temporal queries. We propose a fuzzy query system based on fuzzy continuous
annotations. We introduced a dictionary with the basic concepts and the way to
construct new ones using t-norms and t-conorms. However the choice of the operator is
not always an easy task, we suggest some solution based on the previous results. Also
we notice that in the case of the video the number of aggregation can easily explode, so
we propose an approximation of t-norms founded in the second part.

Although, as pointed out in chapter 5, when aggregating different sources indicating the
same result, we should  use another kind of aggregation than t-norms and t-conorms. In
Chapter 8, we present a Java based in-video search engine that illustrates this particular
problem.

We bring to a close this work by offering some conclusions that summarize the
principal results and provide some perspectives.





First Part

The mathematical
Aggregation Operators

The aggregation operators are mathematical objects that have the function of reducing a
set of numbers into a unique representative (or meaningful) number. We insist in the
mathematical aspect of this aggregation since we are dealing with aggregation of real
numbers and not fusion of information at a higher level as for instance the aggregation
of rules. But it is important to notice that any aggregation or fusion process done with a
computer underlies numerical aggregation. In other words, the mathematical
aggregation operators are the key in this kind of processes.

Here we present a catalogue of the existing operators. We portray their characteristics
and advantages, but we try to be objective by giving also their disadvantages, which is
rarely done in the papers presenting the operators.

We start this first part (chapter 1) by adopting a minimal set of mathematical
conditions that define an aggregation operator. This is essential, because any
mathematical operator that transforms a set of numbers into a unique one does not
necessarily give a representative or meaningful final value. More precisely this
mathematical axiom set guarantees that we are not obtaining injudicious results. We
proceed by presenting other mathematical properties that we can be expected from any
operator. Here again we try to give an interpretation to the mathematical characteristics.

The second part (chapter 2) presents a catalogue of the existing operators. We portray
their characteristics and advantages, but we try to be objective by giving also their
disadvantages, which is rarely done in the papers presenting the operators.

We try in this first part to summarize the different points of view in order to obtain a
global vision on the domain. This part will be used as the starting point for the next part.
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Chapter 1

Aggregation Operators

1.1  Definition

In a rather informal way, the aggregation problem consist in aggregating n-tuples of
objects all belonging to a given set, into a single object of the same set. In the case of
mathematical aggregation operator this set is all the real numbers.  In this setting, an
aggregation operator is simply a function, which assigns a real number y to any n-tuple
(x1,x2, …,xn) of real numbers :

( )nxxxAggregy ,,, 21 �= (1)

Naturally, we should impose certain conditions on Aggreg to justify the name of
"aggregation operator".  Several authors [65],[71] have proposed a set of fundamental
conditions defining the aggregation operators. It is to notice that these basic definitions
are not compatible.

Recently, Mesiar and Komorníková [67] proposed a set of fundamental properties that
group all the precedent definitions under weaker conditions. So, we define an

aggregation operator as a function [ ] [ ]1,01,0: →
∈
�

Nn

nAgreg  that satisfies :

•  Aggreg (x) = x

•  Aggreg (0,…,0) = 0 and Aggreg (1,…,1) = 1

•  Aggreg (x1,…, xn) ≤ Aggreg (y1,…, yn)

                        if   (x1,…, xn) ≤ (y1,…, yn)

Identity when unary

Boundary conditions

Non decreasing

These conditions seem to be recurrent in all other proposed definitions of an
aggregation operator.  All other properties may come in addition to this fundamental
group. In the next section we present an overview of the properties we may expect from
an aggregation operator.
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1.2  Properties of an aggregation operator

We divided the set of properties into two families : the mathematical properties and the
behavioral properties. For more details, see Fodor [42] and Grabisch [47].

Mathematical properties

1.2.1  Boundary Conditions
Here we turn our attention to the behavior of the aggregator in the best and in the worst
cases. We expect that an aggregation operator satisfies :

( ) 00,,0,0 =�Aggreg (2)

( ) 11,,1,1 =�Aggreg (3)

Condition (2) means that if we observe only completely bad, false or not satisfactory
criteria the total aggregation has to be also completely bad, false or not satisfactory. We
have that (3) translates that if we observe only true or completely satisfactory criteria
then the total aggregation has to be also completely true or satisfactory.

As Mesiar and Komorníková pointed out in [67], this property seems to be fundamental
in the definition of aggregation operators.

Extension of this basic condition has been proposed. For example Mayor and Trillas
[65] propose as a fundamental condition for an aggregation operator the following :

[ ] ( ) ( ) xAggregxAggregx ⋅=∈∀ 0,10,1,0 (4)

[ ] ( ) ( )( ) ( )0,10,111,1,0 AggregxAggregxAggregx +⋅−=∈∀ (5)

We notice that (4) requires that the value ( )0,xAggreg  is the weighted arithmetic mean

of x and 0 ; in the same way ( )1,xAggreg  is the weighted arithmetic mean of x and 1
(see (5)). These two conditions constrain a little bit more the group of aggregation
operators. In fact (2) and (3) are particular cases for x=0 and  x=1 respectively for (4)
and (5).

1.2.2  Monotonicity (non decreasing)
We deal more precisely with a non-decreasingness with respect to each variable. We
expect that if an argument increases then the final aggregation increases (or at least not
decreases, remaining equal) :

( ) ( )niniii xxxAggregxyxAggregxy ,,,,,,,, 11 ���� ≥⇒≥ (6)

Strict monotonicity = cancellativity
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1.2.3  Continuity
The function Aggreg is continuous with respect to each of its variables. This property is
a guaranty for certain robustness, for a certain consistency and for a non chaotic
behavior.

1.2.4  Associativity
An interesting property is to be able to aggregate by packages. We expect that the
choice of the packages has no influence on the result.  For three arguments the property
can be written :

( ) ( )( )321321 ,,,, xxxAggregAggregxxxAggreg =

                              ( )( )321 ,, xxAggregxAggreg=
(7)

This property can also be useful if the operator is defined only for two elements, then
the Associativity allows extending the definition to n arguments without ambiguity.

1.2.5  Symmetry
Also known as commutativity or anonymity : The order of the arguments has no
influence on the result. This property is compulsory when the aggregation is made of
arguments having the same importance or arises from anonymous experts or sources.

For every permutation σ of {1,2, … , n } the operator satisfies :

( ) ( )nn xxxAggregxxxAggreg ,,,,,, 21)()2()1( �� =σσσ (8)

1.2.6  Bisymmetry
Bisymmetry is a property associated to the aggregation of n2 inputs for a n-ary
operators. If we write these inputs in a square matrix, then the bisymmetry translates the
fact that it does not matter whether you first aggregate the column vectors and then the
outputs of thereof, or vice versa, first you aggregate row vectors and then the relevant
outputs. For a binary operator A this means for all x11, x12, x21, x22, that :

( ) ( )( ) ( ) ( )( ),2212,2111,2221,1211 ,,,,,, xxAxxAAxxAxxAA = (9)

Note : If an operator is commutative and associative then it is necessarily bisymmetric,
however, neither commutativity nor associativity is implied by bisymmetry.

1.2.7  Absorbent Element
If the aggregation operator has an absorbent element a, then it can be used like an
eliminating score or like a veto (it can be also considered as a qualifying score) :

( ) axaxAggreg n =,,,,1 �� (10)

This element is also called annihilator.
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1.2.8  Neutral Element
If the operator of aggregation has a neutral element e, then it can be used to be
associated to an argument that should not have any influence on the aggregation :

[ ] ( ) [ ] ( )11
1

11 ,,,,,, −
−

− = n
n

n
n xxAggregxexAggreg ��� (11)

1.2.9  Idempotence
Also known as unanimity or agreement : If we aggregate n times the same value, we
expect to find the initial value :  

( ) xxxxAggreg =,,, � (12)

This property and the reinforcement property are incompatible.

1.2.10  Compensation
Also known as Pareto property. Here we expect that the result of the aggregation is
lower than the highest element aggregated (the maximum) and higher than the lowest
one (the minimum) :

( ) ( ) ( )i

n

i
ni

n

i
xxxxAggregx

1
21

1
max,,,min

==
≤≤ � (13)

This property is not to be confused with the counterbalance property.

1.2.11  Counterbalancement
Also called by some authors compensation. This means that some confusion may appear
with the previous property.

We call the counterbalance property, the behavior of an operator that decreases the final
result if there are arguments that go into an opposite direction.

] [ ( ) ( )mn yyxxt �� ,,,1,0 11 ∃∀∈∀

                     so that  ( ) tyyxxAggreg mn =�� ,,, 11

(14)

1.2.12  Reinforcement
One characteristic of many types of human information processing, which was
strikingly pointed out by Elkan [41], is what Yager and Rybalov [87] full
reinforcement. By this property we mean to indicate the tendency, on the one hand, of
a collection of high scores to reinforce each other to give a resulting score more
affirmative then any of the individual scores alone and on the other hand the tendency
of a collection of low scores to reinforce each other to give a resulting score more
"disfirmative" than any of the individual scores.  The first concept is called upward
reinforcement and the second concept is called downward reinforcement. Yager shows
[87] that the t-norms have only a downward reinforcement behavior, while the



 Chapter 1 :  Definition and Proprieties

27

t-conorms have only an upward reinforcement behavior. He also shows that the
uninorms have a full reinforcement behavior.

This property can be very interesting. For example, in medical diagnosis the appearance
of a number of symptoms indicative of a disease will make us more confident in
diagnosing a patient as having the disease than any symptoms alone while the lack of
appearance of this symptoms will make us more confident diagnosing a patient as not
having the disease.

1.2.13  Stability for a linear function
This property translates a stability of the operator for a change of measurement scale :

( ) ( )( ) txxxAggregrtxrtxrtxrAggreg nn +⋅=+⋅+⋅+⋅ ,,,,,, 2121 �� (15)

A widely study particular case is the self-duality (see [78] and [29]). It corresponds to
the stability for the linear function where r = -1 and t = 1.

1.2.14  Invariance
When aggregating numbers (x1,x2, …,xn) represent measurement of certain criteria, we
should specify a scale in which these measurements were performed. Moreover, we may
want the aggregation function Aggreg to respect a meaningful relation with respect to
the given scale. The notion of meaningfulness is formalized in the representational
theory of measurement [62] as the invariance property :

For any admissible transformation f, we have :

( ) ( )( )nn xxxAggregfxfxfxfAggreg ,,,)(,),(),( 2121 �� = (16)

Note : the only aggregation operator totally invariant (invariant for any bijection  f ) is
the projection.

Behavioral properties

1.2.15  Decisional behavior
It is useful to have the possibility to express the behavior of the decision-maker. For
example : tolerant, optimistic, pessimistic or strict. These behaviors are in multi-criteria
usually named disjunctive and conjunctive behaviors.

1.2.16  Interpretability of the parameters
It is to be hoped that the parameters have almost evident semantic interpretation. This
property forbids the use of a black box methodology.

1.2.17  Weights on the arguments
It is crucial to have the possibility to express weights on the arguments. This can be
understood as privileging some of them.
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Chapter 2

The Mathematical Operators

In this chapter, we present an overview of the existing mathematical operators. We
explain their main properties and particularities. We also present some notable
particular cases.

We start by presenting some of most often used aggregation operators. We call them
the basic ones. In this group we find the prototype of an aggregation operator, the
average, but also we find the median, the minimum and the maximum, as well as
some classical generalizations like the weighted mean and the k-order statistics.

We proceed the chapter by presenting the quasi-arithmetic means, a large useful
family built on a transformation of average operator. Then we continue by presenting
a generalization of the weighted mean, the ordered weighted average (OWA), which
has also as particular case the minimum and the maximum. This leads us to the
discrete fuzzy integrals : Choquet and Sugeno. The Choquet integral generalizes the
OWA operators, while the Sugeno generalizes the weighted  maximum and the
weighted minimum operators . All these operators give a representative value "in the
middle" of the aggregated set.

After the precedent, we present two families specialized on the aggregation under
uncertainty : the t-norms and the t-conorms. These operators do not look for giving a
"middle value", but instead they compute the intersection and union (respectively) of
fuzzy sets. These operators are often used, since they can also be seen as a
generalization of the logical aggregation operators : AND (t-norms) and OR
(t-conorms).

Some research works reveal that human do not aggregate "logically" as the t-norms
and t-conorms do. These works stressed on the fact that the operators classically used
do not compensate "low" with "high" values. We present some of the proposed
solutions that were based on t-norms and t-conorms : the compensatory operators.

Other kind of operators appeared when relaxing the axiom that differentiates the
t-norm and t-conorm : the uninorms. These operators solve another problem of the
t-norms and t-conorms, which is the lack of full (downwards and upwards)
reinforcement.

We try here to present an objective overview of the domain, by presenting the
characteristics, the advantages and disadvantages of each operator. A very good
overview is also available in the form of a book [7] edited by Bouchon-Meunier.
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2.1  Basic Operators

2.1.1  The arithmetic mean
The simplest and most common way to aggregate is to use a simple arithmetic mean
(also know as the average). Mathematically we have :
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This operator is interesting because it gives an aggregated value that is smaller than the
greatest argument and bigger than the smallest one.  So, the resulting aggregation is "a
middle value". This property is known as the compensation property
(see section 1.2.10), and is described mathematically by :
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It is often used since it is simple and satisfies the properties of monotonicity, continuity,
symmetry, associativity, idempotence and stability for linear transformations. But it has
neither absorbent nor neutral element and has no behavioral properties.

There exists a classical extension : the weighted mean, which allows placing weights
on the arguments. But we loose the property of symmetry. It is expressed
mathematically by :
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 where the weights are non  negative and 1
1

=∑
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n

i
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2.1.2  The median
Another operator that follows the idea obtaining "a middle value" is the median. It
consists in ordering the arguments from the smallest one to the biggest one. And then
taking the element in the middle. If the cardinality of the set of arguments is not odd
then there is not a middle argument but a pair. We take then the mean of the middle
pair.

This aggregation operator satisfies the boundary conditions, the monotonicity, the
symmetry, the idempotence and evidently the compensation behavior.

There exists a generalization of this operator : the k-order statistic, with which we can
choose the element on the kth position on the ordered list (from the smallest to the
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biggest element). Recent works present even more general median-based operators, see
Calvo and Mesiar  [9].

2.1.3  The minimum and the maximum
Two remarkable particular cases of the k-order statistic are the minimum and the
maximum. The minimum gives the smallest value of a set, while the maximum gives
the greatest one. They are aggregation operators since they satisfy the axioms of the
definition.

The main properties of these operators are : monotonicity, symmetry, associativity,
idempotence. Mathematically speaking they have a compensation behavior, but these
are the limit cases. Using these operators we will never obtain an aggregated value "in
the middle". For this reason, we do not consider that we can talk about compensation
behavior in this case.

If we work in a restricted interval [a,b] the minimum has for absorbent element a and
for neutral element b, while for the maximum it will be the opposite : a will be the
neutral element and b the absorbent one.

It is important to notice that the minimum has a conjunctive behavior and it is a
particular t-norm (see below). The maximum is a t-conorm (see below) and has a
disjunctive behavior.

Since the possibility of giving weights is important, Yager introduced in [92] the
weighted minimum :
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And the weighted maximum :
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2.2  Quasi-arithmetic means

Many extensions of the simple arithmetic mean have been introduced such as the
geometric mean :
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and the harmonic mean :
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In fact all these common means belong to the family of the quasi-arithmetic means. This
family has been studied in detail by Kolmogorov [59] and by Aczel [1], [47] and is
defined as follows :
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where f is a strictly monotone continuous function in the extended real line. We should
notice that a generator f is not unique. Think for instance on the linear transformation of
a generator : bxfaxf +⋅=′ )()( , where a ≠0 .

We notice that the geometric mean (22) is the particular case of (24) with xxf log)( =

and the harmonic mean (23) is the particular case of (24) with 
x

xf
1

)( = .

A particular attention should be taken in the case, when there exist arguments xi and xj

that have for images f (xi) = -∞ and f (xj) = +∞. In this case the convention for the
addition of minus infinity and plus infinity should be specified.

A very notable particular case, studied in detail by Dujmovic [39] and by Dyckhoff [40]
corresponds to the function f is defined by αxxf →: . We obtain then a quasi
arithmetic mean of the form :
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This family is particularly interesting, because it generalizes a group of common means,
only by changing the value of α :
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•  ��������-1 we obtain the harmonic mean
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��-∞, formula (25) tends to the maximum operator.
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���∞, formula (25) tends to the minimum operator.
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�������������(25) tends to the geometric mean.
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2.3  Symmetric Sum

We call a symmetric sum a continuous self-dual aggregation operator S. We recall the
self-duality is defined by :

)1,,1,1(1),,,( 2121 nn xxxSxxxS −−−−= �� (26)

This operator was studied in detail by Silvert [78]. In particular he showed that the
symmetric sum of two arguments can be written under the form :
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where G is a continuous, increasing, positive function satisfying G(0,0)=0. It is to notice
there is not a unique function G characterizing each symmetric sum. It is also important

to notice that we use the convention 
2

1

0

0 = .

We remark that symmetric sums are in general not symmetric or commutative. A good
example of symmetric sums is the weighted mean (19).

An interesting particular case is the additive generated aggregation :
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where the generator f is a strictly monotone continuous function in the extended real
line and satisfying :

0)1()( =−+ xfxf (29)

In this case, we obtain an associative symmetric sum. If the range of f is [-∞,+∞], then
we obtain the associativity on [0,1]2 \ {(0,1),(1,0)}. In other words it is associative as
long as we do not aggregate the values 0 and 1.
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2.4  Ordered Weighted Averaging Operators

The Ordered Weighted Averaging Operators (OWA) were originally introduced by
Yager in [95] to provide a means for aggregating scores associated with the satisfaction
of multiple criteria, which unifies in one operator the conjunctive and disjunctive
behavior :
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where σ is a permutation that orders the elements : )()2()1( nxxx σσσ ≤≤≤ � . The

weights are all non negative (wi ≥ 0) and their sum equals one ( 1
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This operator has been proved to be very useful, because of his versatility, and it is the
object of a book edited in 1997 by Yager and Kacprzyk [86].

The OWA operators provide a parameterized family of aggregation operators, which
include many of the well-known operators such as the maximum, the minimum, the
k-order statistics, the median and the arithmetic mean.  In order to obtain these
particular operators we should simply choose particular weights (see Table 1).
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Table 1. Particular cases of OWA
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The Ordered Weighted Averaging operators are commutative, monotone, idempotent,
they are stable for positive linear transformations and they have a compensatory
behavior. This last property translates the fact that the aggregation done by an OWA
operator always is between the maximum and the minimum. Since this operator
generalizes the minimum and the maximum, it can be seen as a parameterized way to go
from the min to the max. In this context Yager introduced in [95] a degree of maxness
(initially called orness), defined by :
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We see that for the minimum, we have that maxness(1,0,…,0)=0 and for the maximum
maxness(0, …,0,1)=1.

Another operator was introduced by Yager [95] and used by O'Hagan in [70] to
characterize a particular OWA. This degree describes the dispersion  of the weights and
it is based on the idea of entropy :
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One issue of considerable interest related to the use of these operators is the
development of an appropriate methodology for the derivation of the weights used in
the OWA aggregation. Two of the main approaches used are the following :

The first one introduced by O'Hagan [70] makes use of the measure of maxness and the
measure of dispersion. In this approach we only required that the user provides a value
α ∈ [0,1] corresponding to the degree of maxness suited. The idea is to maximize the
dispersion of the weights under the constraint of a fixed maxness. The following
mathematical programming problem computes the weights, for a given α :
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Table 2. Mathematical program that computes OWA weights
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The second  approach makes use of the knowledge of a linguistic quantifier to guide the
aggregation [99].  We are interested in regular increasing monotone quantifiers defined
by :

•  Q(0) = 0 and Q(1) = 1.

•  if x ≤ y then Q(x) ≤ Q(y) .

These quantifiers translate notions like most, almost all, many, at least half and some.

Figure 1. Regular increasing monotone quantifier "at least k %"

On the basis of this kind of quantifiers Yager in [95] proposed to compute the weights
using the formula :
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Using this approach we can define goal functions under the constraint :

Q criteria should be satisfied

To illustrate this approach, let us consider one limit case. For instance if we want that
"at least 100%" of the criteria to be satisfied, then we observe that the OWA operators is
the minimum. And when the minimum is satisfied all other criteria are satisfied.
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2.5  Choquet & Sugeno discrete Fuzzy Integrals

2.5.1  Definitions
The fuzzy integral with respect to a fuzzy measure has mainly been studied in a
multicriteria decision making framework (see [47] and [45]). It is based on the notion of
a fuzzy measure, which can be viewed as the weight of importance of a set.
Mathematically we define the fuzzy measure as follows :

Let us denote by C = {c1,…, cn} the set of criteria, and P(C) the power set of C, i.e. the
set of all subsets of C. A fuzzy measure on C is a set function ]1,0[)(: →CPµ ,
satisfying the following axioms.

•  0)( =∅µ  and 1)( =Cµ . Boundary conditions

•  for A,B∈ P(C), if BA ⊂  then ( ) ( )BA µµ ≤ . Monotonicity

This kind of measure is more flexible than a probability, which is constrained by its
additivity property. In fact, the importance of two criteria in the probability framework
cannot be anything else than the sum of the individual importances, while the fuzzy
measures can provide a greater (superadditive measure) or a lower (subadditive
measure) value. This allows us to model interaction between criteria.

Now, using a fuzzy measure we introduce fuzzy integrals :

The discrete Sugeno integral [80] of scores x1,…, xn for criteria c1,…, cn with respect
to a fuzzy measure �, is defined by :
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where σ is a permutation that orders the elements : )()2()1( nxxx σσσ ≤≤≤ �  , where and

C1(i)={c1(i),…, c1(n)}.

The discrete Choquet integral [12] of scores x1,…, xn for criteria c1,…, cn with respect
to a fuzzy measure �, is defined by :

∑
=

− ⋅−=
n

i
iiin CxxxxxChoquet

1
)()1()(21 )()(),,,( σσσµ µ� (35)

with the same notation as above, and x1(0) = 0.

An equivalent expression of (35) is
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2.5.2  Properties
Sugeno and Choquet integrals are interesting since they are monotone, continuous,
idempotent operators, with a compensation behavior. The Choquet integral is stable
under positive linear transformation, while the Sugeno integral is stable under a similar
transformation with minimum and maximum replacing the product and the sum
respectively. This last property  points out that the Sugeno integral is more suitable for
ordinal aggregation (where only the order of the elements is important) while the
Choquet integral is suitable for cardinal aggregation (where the distance between the
numbers has a meaning).

The commutativity is only obtained when the fuzzy measure just depends on the
cardinality of the sets, i.e. )()( BA µµ =  if card(A) = card(B). The associativity is
usually not satisfied.

The generalization capability of the Choquet and Sugeno integrals is remarkable. Both
contain the order statistics and in particular the minimum and the maximum. The
Choquet integral generalizes the weighted means and the OWA operator, while the
Sugeno integral generalizes the weighted minimum and the weighted maximum. In the
following table we present the corresponding measures in order to get a particular
operator (for details see [45],[47],[80]).
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Table 3. Particular cases of the Sugeno Integral
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Choquet integral
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Table 4. Particular cases of the Choquet Integral

The main problem in the use of Choquet or Sugeno integral (besides the fact that they
are not associative and commutative) is the number 2n of weights to be provided, for a
simple n criteria aggregation. These weights being nothing else than the characterization
of the fuzzy measure. A main aspect of the actual research is based on the methods to
determine or reduce the number of these weights. Some solutions have been proposed :

A first approach is to work on the measure, by defining (for instance) decomposable
measures. An interesting approach was proposed by Grabisch in [46], where he suggests
to use k-additive fuzzy measures. The idea is to define measures that are multilinear of
degree k, i.e. if card(A) > k  then  m(A) = 0. This approach allows to model the strength

of small coalitions and reduces the number of weights to ∑
=
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of 2-additive measure has been pointed out as particularly interesting. The number of
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Another approach is to determine the weights by learning on examples. The data being a
set of n-dimensional vectors : ),,,( 21

k
n

kk xxx � and their corresponding aggregated

values : yk. Then we identify the fuzzy measure by minimizing the following error :
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It can be shown [47] that (38) can be put under a quadratic program form, that is

  minimize ucDuu tt +⋅
2

1

under the constraint 0≥+ bAu

Table 5. Quadratic program computing the
weights for a Choquet Integral

where u is the vector containing all the weights of the fuzzy measure.

It appears as an interesting solution, but if there is not enough data the matrices may be

ill conditioned. In fact there must be at least [ ]2)!2/(

!

n

n
 training vectors.
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2.6  Fusion Operators

This section gives an overview of the group of specific operators dealing with
fusion. The authors of this operators were particularly aware of the problem of the
reliability of the sources.

 2.6.1 The Bayesian Appr o ach
The idea in the Bayesian approach is to estimate the most probable "x"

knowing that we observed "x1" from source 1 and "x2" from source 2. Mathematically
we are looking for the maximum of the a posteriori probability ),( 21 xxxP .

The a posteriori probability can be derived using the Bayes theorem and
knowing the value of the a priori probability ),( 21 xxxP  :
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If we assume that the sources are independent, we obtain the most usual
Bayesian fusion formula :
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Note that the a priori probabilities )( 1 xxP  and )( 2 xxP  can be seen as the

credibility of the source (expert). They actually translate the probability of source 1 (and
source 2) to observe x1 (and x2), given the "real value" x.

The main default of this method is that the a priori probabilities are not easy to
obtain. Also some critics come from the independence assumption. Some solutions are
reviewed in [14].

 2.6.2 Possibilistic approa c hes
The first idea is to modify directly the information provided by the source

given its reliability. Let α be the degree of certainty that a given source is reliable, then
Yager [92] (also Prade [72]) proposes to modify the possibility distribution π provided
by the source, using the operator :

��1max(�� −=′ , (41)

When α=1 (fully reliable source), π'=π, and when α=0 (absolutely unreliable source),
then 1)(� =′∀ xx  (total ignorance). Note that 0 does not mean that the source lies, but
that it is impossible to known whether its advice is good or not.

There exist other proposals for certainty qualification that behave similarly in the limit
cases (α=1 and α=0). Yager suggested an expression of the form :
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.-1.�� +∗=′ (42)

where ∗  stands for minimum, product or linear product (max(0,a+b-1).

Another point of view is to consider that the reliability of the sources imply
priorities in the aggregation. The idea of a prioritized fusion is to accept the conjunctive
merging of information from a reliable source 1 and source 2 as long as the data coming
from the second is consistent with the former. In case of inconsistency, the information
given by the less reliable is simply discarded. If π1 is obtained from source 1 and  π2

from source 2, the degree of consistency of π1 and π2 is defined by :

( )(x))�),(min(�sup)�,(� 2121 xh x= (43)

and the following prioritized conjunction has been proposed by Dubois and Prade [37]
(see also Yager [94]) :

)))�,(�1,�max(,�min(� 212121 h−=∧ (44)

Note that when h(π1, π2) =0, source 1 contradicts source 2 and the only opinion of
source 1 is retained (i.e. π1), while if h(π1, π2) =1 we have the minimum, which is a
conjunction.

The disjunctive counterpart of this prioritized operator has been proposed by Dubois
and Prade [38] :

)))�,(�,�min(,�max(� 212121 h=∨ (45)

The effect of this operator is to truncate the information supplied by the less prioritary
source, while disjunctively combined with source 1. Again if the two sources disagree
( h(π1, π2) =0) then we have π1; if h(π1, π2) =1 then we have the maximum of π1 and π2 .

A very complete overview of the possibilistic fusion is offered in [36].
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2.7  T-norms and t-conorms

The concept of a triangular norm was introduced by Menger [66] in order to
generalize the triangular inequality of a metric. The current notion of a t-norm and its
dual operator (t-conorm) is due to Schweizer and Sklar [75] [74]. Both of these
operations can also be used as a generalization of the Boolean logic connectives to
multi-valued logic. The t-norms generalize the conjunctive 'AND' operator and the
t-conorms generalize the disjunctive 'OR' operator. This situation allows them to be
used to define the intersection and union operations in fuzzy logic. This possibility was
first noted by Hohle [51]. Klement [56], Dubois and Prade [30] and Alsina, Trillas, and
Valverde [4] very early appreciated the possibilities of this generalization. Bonissone
[6] investigated the properties of these operators with the goal of using them in the
development of intelligent systems. t-norm and t-conorms have been well-studied and
very good overviews and classifications of these operators can be found in the literature,
see [57],[31]. A particular complete work is presented in a book [54] explicitly
dedicated to these operators.

 2.7.1  Definitions

t-norm : A t-norm is a function T : [0,1]x[0,1] → [0,1], having the following properties

•  T(x,y) = T(y,x) (T1) Commutativity

•  T(x,y)  ≤ T(u,v), if x ≤ u and y ≤ v (T2) Monotonicity (increasing)

•  T(x,T(y,z)) = T(T(x,y),z) (T3) Associativity

•  T(x,1) = x (T4) One as a neutral element

A well known property of t-norms is :

•  T(x,y)  ≤  min (x,y) (46)

Proof : Using the monotonicity (T2) and axiom T4, we have T(x,y) ≤ T(x,1) = x and
using the commutativity we have T(x,y) ≤ T(1,y) = y. So, T(x,y)  ≤  min (x,y).

t-conorm : Formally, a t-conorm is a function S : [0,1]x[0,1] → [0,1], having the
following properties :

•  S(x,y) = S(y,x) (S1) Commutativity

•  S(x,y)  ≤ S(u,v), if x ≤ u and y ≤ v (S2) Monotonicity (increasing)

•  S(x,S(y,z)) = S(S(x,y),z) (S3) Associativity

•  S(x,0) = x (S4) Zero as a neutral element

A well known property of t-conorms is :

•  S(x,y)  ≥ Max (x,y) (47)

It is actually a consequence of axioms (S1, S2, S4).
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 2.7.2  Dual t-norms and t-c o norms
We say that a t-norm and a t-conorm are dual (or associated) if they satisfy the
DeMorgan law.

•  ( ) ( )yxSyxT ,, = (the DeMorgan law)

where the line over the expression means the negation of the expression. We will use
the most typical negation defined by :

•  xx −= 1 (negation)

 2.7.3  Examples
The definitions of t-norms and t-conorms are always given for only two elements, since
these operators are by definition associative and in this case the generalization to n
elements is trivial. The more common t-norms and their dual t-conorms are :

t-norm t-conorm

Min-Max ( )yx,min ( )yx,max

Probabilistic yx ⋅ yxyx ⋅−+

Lukasiewicz ( )0,1max −+ yx ( )1,min yx +

Drastic






=
=

elseanywhere0

1if

1if

xy

yx







=
=

elseanywhere1

0if

0if

xy

yx

Table 6. Common t-norms and their dual t-conorms

We would like to insist here in some important particularities of these t-norms and
t-conorms :

The minimum is the biggest t-norm (i.e. when using the min, we obtain a higher value
than when using any other t-norm). It is also the only idempotent t-norm. Its dual is also
idempotent and it is the smallest t-conorm.

The probabilistic case has the nice property to be "smooth". This can be translated
mathematically through a continuous derivative.

The Lukasiewicz t-norm satisfies the classical logical law of non-contradiction (i.e.
( ) 0, =xxT ). And its dual the Lukasiewicz t-conorm satisfies the classical logical law of

the excluded middle (i.e. ( ) 1, =xxS ).

The drastic case is interesting only from the mathematical point of view. These
operators give the values 0 or 1 except when they are forced by the axioms. They are
not continuous. The main interesting aspect is that the drastic t-norm is the smallest
t-norm and the drastic t-conorm is the biggest t-conorm.
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A main result is that we can construct any continuous t-norm by using the precedent
t-norms and the equivalent result exists for the continuous t-conorms.

 2.7.4  Parameterized t-no r ms and t-conorms
We have also parameterized t-norms and t-conorms. As special cases we obtain some of
the precedent t-norms and t-conorms :

t-norm t-conorm

Hamacher (γ ≥ 0)
)()1( yxyx

yx

⋅−+⋅−+
⋅

γγ yx

yxyxyx

⋅⋅−−
⋅⋅−−⋅−+
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)1(

γ
γ
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Table 7. Parameterized t-norms and t-conorms.

It is to notice that the precedent t-norms and t-conorms are dual, besides in the
Weber-Sugeno case. In this last case, the duality is satisfied if the parameters satisfy

T

T
S λ

λλ
+

=
1

 .

 2.7.5  The Archimedean t-n orms and t-conorms

A t-norm T is called Archimedean if for each (x,y) ∈ ]0,1[2 there is an number n so that :

 yxxT
n

<
−

),,(
times
���� (48)

The subset of continuous Archimedean t-norms (and t-conorms) is particularly
interesting because they can be represented by means of a single function that we will
call the additive generator. It can be shown that for every continuous Archimedean
t-norm T, there exists a continuous decreasing function f such that :
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( )

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
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=

−
n

i
in xffxxT

1

)1(
1 ),,( � (49)

with [ ]+∞→ ,0]1,0[:f satisfying f (1)=0 and  f  (-1) is the pseudo inverse of f, defined by :

( ) ( ) [ ]
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
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),0( if0
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)1(

fz
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An equivalent theorem exists for the t-conorms.

In Table 7 we present the most common continuous Archimedean t-norms and
t-conorms and the corresponding additive generators. We present two simple t-norms
and t-conorms and two parameterized families. For a complete overview see [57].

Usual representation Additive generator: )(uf

t-norm yx ⋅ )ln(u−
Probabilistic

t-conorm yxyx ⋅−+ ( )u−− 1ln
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ppp yx pu)1( −

Yager

t-conorm [ ] 


 + 1,min
1

ppp yx pu

Table 8. T-norms and t-conorms and their additive generators.

Note : the minimum and the maximum are not Archimedean, but they can be limit cases
of Archimedean parameterized cases.
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2.8  Compensatory Operators

Several authors noticed that t-norms and t-conorms lack of compensation behavior and
that this particular property seems crucial in the aggregation process. One of the first
authors to notice this were Zimmermann and Zysno [101]. They discover that in a
decision making context humans do not follow exactly the behavior of a t-norm (nor of
a t-conorm) when aggregating. In order to get closer to the human aggregation process,
they proposed an operator on the unit interval based on t-norms and t-conorms :

( )
γγ

γ 



 −−⋅



= ∏∏

=

−

=

n

i
i

n

i
in xxxxZ

1

1

1
1 )1(1,,� (51)

Here the parameter � indicates the degree of compensation. This operator is a particular
case of the exponential compensatory operators [83] :

( ) ( ) ( )γγ
γ

),,(),,(,, 1
1

11
,

nnn
ST xxSxxTxxE ��� ⋅= −

(52)

where T is a t-norm and S a t-conorm.

It is important to notice that the exponential compensatory operators are not associative
for � different from 0 or 1.

Another class of non-associative t-norm and t-conorm-based compensatory operator is
the convex-linear compensatory operator [83], [63] :

( ) ( ) ),,(),,(1,, 111
,

nnn
ST xxSxxTxxL ��� ⋅+⋅−= γγ

γ (53)

Setting the value of the parameter � is a delicate issue. Zimmerman and Zysno
calculated the best � to match the human behavior. Yager and Rybalov proposed in [87]
and [93] a method based on fuzzy modeling techniques to compute the parameter � :

( )
( ) ( )nn

n

xxTxxT

xxT

−−+
=

1,,1,,

,,

11

1

��

�γ (54)

where ( )nxxT ,,1 � is called the highness and ( )nxxT −− 1,,1 1 � the lowness.

Another approach to the construction of compensatory operators based on t-norms and
t-conorms was taken by Klement, Mesiar and Pap [55]. They based their construction
on the additive generators of continuous Archimedean t-norms and t-conorms. Their
associative compensatory operator is defined by :

C (x,y)= f -1( f (x )  + f (y)) (55)

where the function f is defined by :
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where g is an additive generator of a t-norm, h is an additive generator of a t-conorm
and e is a neutral element. It is to notice that this operator is a particular case of
uninorms (see next section 2.9).
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2.9  Uninorms

T-norms and t-conorms play a notable role in fuzzy logic theory, unfortunately these
operators do not admit a compensating behavior. In fact t-norms do not allow low
values to be compensated by high values and t-conorms do not allow high values to be
compensated by low values (see [87]). For this reason Fodor, Yager and Rybalov
introduced in [43] (see also [91]) the family of uniform aggregation operators
(uninorm), as a generalization of both t-norm and t-conorm. This operator has a neutral
element laying anywhere in the unit interval rather than at one or zero as for the t-norms
and t-conorms respectively.

2.9.1  Definition

Formally, a uninorm is a function U : [0,1]x[0,1] → [0,1], having the following
properties :

•  U(x,y) = U(y,x) (U1) Commutativity

•  U(x,y)  ≤ U(u,v), if x ≤ u and y ≤ v (U2) Monotonicity (increasing)

•  U(x,U(y,z)) = U(U(x,y),z) (U3) Associativity

•  [ ] [ ] xexUxe =∈∀∈∃ ),(1,01,0 (U4)  e is the neutral element

We see that the first three properties (U1, U2, U3) are common to uninorms, t-norms
and t-conorms, but the fourth condition U4 is more general in the case of uninorms, in
that it allows any value for the identity. These properties seem to be interesting for
aggregation purposes. In fact, the commutativity translates the property of an operator to
give the same result independently of the order of the values to be aggregated. The
monotonicity translates the fact that if one of the aggregated element augments its value,
then the aggregated value at least does not decrease. The associativity imposes to the
operator the property of accepting the aggregation by groups. With an associative
operator we can aggregate by groups and then aggregate all the groups and obtain the
same result as when aggregating all the elements directly. The associativity is also
interesting when aggregating new information, in that case we would not need to
re-compute the aggregation with all the arguments, but simply aggregate the old
calculated value with the new one. Finally, the neutral element is interesting, because it
can be considered as the score that we would give to an argument, which should not
have any influence in the aggregation. It is somehow a null vote.

2.9.2  Other Properties
One characteristic of many types of human information processing, which was pointed
out by Elkan [41], is what we shall call full reinforcement. Yager shows in [87] that
the uninorms have a full reinforcement behavior, if the neutral element e is different to
zero or one. In fact, a uninorm having e=1 as a neutral element is a t-norm, and a
t-conorm for e=0.

If we now take a look more precisely at the uninorms we discover that a uninorm
behaves as a t-norm in the square [0,e] 2 and as a t-conorm on the square [e,1] 2. In fact,



Chapter 2 : Mathematical operators

51

De Baets and Fodor showed in [16] that to any uninorm with neutral element e∈ ]0,1[,
there corresponds a t-norm T and a t-conorm S such that :
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Another interesting property is the compensation behavior. Neither the t-norms nor the
t-conorms present a compensation behavior. De Baets and Fodor showed in [16] that on
[ [ ] ] ] ] [ [eeee ,01,1,,0 ×× �  any uninorm U satisfies :

( )yxyxUyx ,max),(),min( ≤≤ , (59)

In other words uninorms show partially a compensating behavior. This property is
particularly interesting when we think about the fact that if we use a t-norm the
occurrence of an input small positive value would mean that the result is small, no
matter what the other inputs are. They can for instance all equal one. A uninorm will
allow to compensate these low values with other high values. We notice that as for the
t-norms, the t-conorms do not have a compensating behavior. The appearance of a high
value (i.e. close to one) will not be compensated using a t-conorm.

2.9.3  Minimal and maximal uninorms
We first note that for e = 1 or e = 0, there exists a large class of such uninorms
(corresponding to the t-norms and t-conorms respectively). However, for the purpose of
finding full reinforcement operators we need uninorms with neutral element other than 1
or 0. In [43] Fodor, Yager and Rybalov introduced two general classes of uninorms for
any e. We will call them the minimal uninorms and the maximal uninorms.

The minimal uninorm is the weakest uninorm U given a t-norm T, a t-conorm S and a
neutral element e. This operator will be defined by :
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The maximal uninorm is the strongest uninorm U given a t-norm T, a t-conorm S and a
neutral element e. This operator will be defined by :
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We observe that the two families satisfy all the properties announced before, besides the
compensation behavior, because we have a min or a max operator elsewhere. Another
great disadvantage of these uninorms is that they have discontinuities around the neutral
element. In fact for the maximal uninorm for any a < e, we have the following :

when we approach with values smaller than the neutral element, we have :

( ) a
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and when we approach with values greater than the neutral element we have :

( ) ( ) eexaexaU =→=→ ++ ,max,max (63)

Comparing (62) and (63) we see that the value of the uninorm springs from a<e to e,
when we go from a little bit smaller than e to a little bit bigger than e.

In an analogous way, we have for the conjunctive uninorm for any a > e :

when we approach with values greater than the neutral element :
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and when we approach with values smaller than the neutral element we have :

( ) ( ) eexaexaU =→=→ −− ,min,min (65)

Comparing (64) and (65) we see that the value of the uninorm springs from a > e to e,
when we go from a little bit bigger than e to a little bit smaller than e.
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2.9.4  Generated uninorms
In [43] Fodor, Yager and Rybalov showed the following additive generated
representation theorem, which gives an almost continuous uninorm :

Suppose U is continuous on [0,1]2 \ {(0,1),(1,0)} with neutral element e∈ ]0,1[. Then
there exists a strictly increasing continuous function g :[0,1]→[-∞,+∞], with g(e)=0
such that the representation

( ) ( ) ( ))()(, 1 ygxggyxU += − (66)

holds if and only if the following two conditions are satisfied :

•  U is strictly increasing on the open unit square.

•  U is self-dual with respect to a strong negation N with fixed point e.

In this case g(0)= -∞, g(1)= +∞ and g(-1) = g -1.

We remark that generated uninorms were already introduced as an interesting class of
aggregation operators by Klement, Mesiar and Pap in [54], and were called the
associative compensatory operator (see compensatory operators in section 2.8). Also
Dombi [29] arrived to the same construction when presenting his aggregative
operator.

2.8.5 Nullnorms
Nullnorms were found as solutions of the Frank equation for uninorms [11] :

( ) ( ) yxyxNyxU +=+ ,, (67)

From this follows that a nullnorm N is a commutative, associative and increasing
operator, with an absorbent element a∈ [0,1] and that satisfies xxNax =∈∀ )0,(],0[
and xxNax =∈∀ )1,(]1,[ .

It can be shown that a nullnorm can be written under the following form :
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From this it is clear that this class contains t-norms (for a=0) and t-conorms (for a=1)
as special cases.





Second  Part

Studying the Aggregation
of Uncertain Information

In this second part we present the new developments we propose for the aggregation
operators. We base our work on the operators presented in the first part.

We start in chapter 3 by studying how the different t-norms and t-conorms aggregate
the uncertain. The idea is to focus our analysis on just one point, the "most fuzzy" one.
This approach gives as a first result a classification method and as a second one, an
interesting way of normalization of the parameters of the parameterized t-norms and
t-conorm families. This new parameterization giving not only a meaning to the
parameters, but also a common scale of work.

The results of the previous study suggested that the different t-norms and t-conorms
have different attitudes with respect to the uncertainty. These attitudes are a more or less
relaxed aggregation of the arguments (i.e. a higher or lower result for the same "to be
aggregated" set). Based on this and on the observation that several aggregation
operators were created by some simple mathematical operation, we study in chapter 4 a
way of creating new operators by reducing t-norms and augmenting t-conorms.
Unfortunately we notice that the resulting operators are not in general t-norms (or
t-conorms), because they were not associative. We finish the chapter by showing the
example of the non-associative "Yager t-norm"-like operator, which illustrates the fact
that these kind of constructions maybe interesting.

The prior studies on t-norms and t-conorms pointed out that the purpose of this
aggregation is to compute the truth value of a logical phrase. In chapter 5 we are
interested in the aggregation of different truth values observed for the same logical
phrase. We propose an axiom set for the aggregation of truth values, which leads to the
characterization of two truth-aggregation families, a prudent and an enthusiastic. The
first one has a cautious attitude choosing between two observed values the one which is
more uncertain. The second one has an enthusiastic behavior and will reinforce the



result if twice the truth or twice the falsity is observed. When observing falsity and truth
the operator gives a compensated value. We finish the chapter by expounding the use of
these operators and their relationship with the traditionally used truth-aggregation
operators : the t-norms and t-conorms.

A main result of aggregation of truth and falsity values, presented in chapter 5 is the
following : on the one hand we have a prudent aggregation that tends to the ignorance.
So, if we repeat the aggregation several times, we are going quickly to finish with
"total" ignorance at the end. On the other hand we have an enthusiastic aggregation
operator that is in general not continuous. We proposed an almost continuous solution
based in an additive generated operator. So, in chapter 6 we propose a new framework
(philosophy) for additive generated operators. This time we do not base our work on an
axiomatic set but on the metaphor of a balance. We use a metaphor in order to allow
intuitive representation (visualization) of the operator (section 6.4). Pushing further the
established analogy, we also discover the notion of the sensitivity of an operator.

But the visualization is not the only use of the metaphor. In the second part of chapter 6
(section 6.5), we present a guide of how to construct an aggregation operator, using the
balance. The metaphor allowing this time to make the right choices while conceiving an
aggregation operator.

It is remarkable that the balance not only generalizes most of the aggregation operators
presented in chapter 2, but also that it offers a larger framework that allows the
interpretation not mathematical friendly properties, as for instance a non continuous
additive generator. The balance framework also opens new perspectives for further
research, in particular on new kind of weight association.
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Chapter 3

Aggregating Uncertainty
by means of t-norms
and t-conorms

One goal of fuzzy logic is to extend the classical binary logic. When we talk about
"fuzzy", we think about something between falsity and truth. If we denote the value
truth by one and the value of false by zero, what is then more fuzzy, more central
than 1/2? In fact, one of the first studies on multi-valued logic was done by
Lukasiewicz, who originally worked with 3 truth values : 0, 1/2 and 1.

Important components of logic are the logical operators like negation, conjunction,
disjunction and implication. In extending the binary logic to fuzzy logic an
interesting and central question concerns the behavior of these logical operators at
this middle point of truth-value. In this chapter we investigate this question.

T-norms and t-conorms were introduced to define the intersection and the union
(respectively) of fuzzy sets. But these operations can also be used as a generalization
of the boolean logic connectives. T-norms generalize the conjunctive 'AND' operator
and t-conorms generalize the disjunctive 'OR' operator. We start here on the results
presented in section 2.7. In this chapter we concentrate our attention in these two
particular aggregation operators.

In order to study the t-norms at the "most fuzzy" point we will study the t-norms on
(1/2,1/2). We show, taking into account the definitional constraints, how central this
point is. We also indicate that defining a t-norm on this point can be a natural step
after fulfilling the classical logic constraints. These results push us to suggest that
t-norms can be classified observing their image on the (1/2,1/2) point. We consider
some usual t-norms. We pursuit our study by observing what happens in the case of
parameterized t-norms. We consider three different families.

Finally based on the presented classification method, we propose a uniform method
for computing the parameters. This method allows not only to have the same
parameter scale for all the families, but it also gives an intuitional sense to the
parameters. The parameter is the expected value for the most uncertain aggregation.
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3.1  The middle point for a t-norms

Let us here focus on the t-norms, but keeping in mind that analogous observations could
be made for the t-conorms based on the duality between these operators.

We recall (see section 2.7.1) that formally, a t-norm T : [0,1] x [0,1] → [0,1], which is a
continuous, monotone, associative and has the unity as neutral element.

A first deduction that can be made from this is :

T(a,0) = 0 (69)

Proof : We know that T(a,0)∈ [0,1], so 0 ≤ T(a,0). And using axiom T2 (monotonicity)
and T4 we have T(a,0) ≤ T(1,0) = 0, since a ≤ 1.

Another (well-known) property associated with this operator is T(a,b)  ≤ min (a,b), and
so, T(a,a) ≤ a. Viewed as a logical connective, 'AND' operator, the t-norm has the
general tendency of making truth decrease.

Using the commutativity property, we have the boundary properties :

•  T(a,1) = a

•  T(1,a) = a

•  T(a,0) = 0

•  T(0,a) = 0

(B1) = axiom T4

(B2)

(B3)

(B4)

In other words the t-norms are completely defined on the edges of the unit square as
shown in Figure 2.

Figure 2 : Definition of t-norms on edges of the unit square

a

T(a,b)

b

1
0

1

0

T(a,1) = a

T(0,b) = 0

T(a,0) = 0

T(1,b) = b
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We notice that the vertices of the unit square correspond to the arguments of the
classical binary logic and here the t-norm emulates the classical 'AND' operator :

•  T(1,1) = 1 is the value of  "True AND True" = "True"

•  T(1,0) = 0 is the value of  "True AND False" = "False"

•  T(0,1) = 0 is the value of  "False AND True" = "False"

•  T(0,0) = 0 is the value of  "False AND False" = "False"

Figure 3 : Definition of t-norms on the vertices of the unit square

3.1.1  The middle point
As noted the t-norms are constrained not only to follow the classical behavior at vertices
of the unit square, but also to satisfy the limit properties (B1-B4), on the edges of the
unit square. We observe that in the middle area of the unit square we have the freedom
of choice. It is in this area that we distinguish between different t-norm operators. An
interesting point in this middle area, because of its central position is the point (1/2,1/2).
We know that it is the gravitational center of the square, it is also the intersection of the
diagonals, the intersection of the middle lines and the barycenter of the edges of the
square (the classical points). It can also be shown that it is the point of the unit square
that is at the maximal distance from the points of the border. In other words it is the
"most distant" point of the already defined points and therefore it should be a useful
point to characterize t-norm operators.

We can also attach a sense to this point. The value 1/2 is exactly the point between
False (0 point) and True (1 point). So studying the image of the point (1/2, 1/2) we are
examining the behavior of the t-norm on the more fuzzy point. More particularly if a is
a truth value then  Fuz(a) = 1-|a-(1-a)| measures the degree of fuzziness of the value a.
The degree of fuzziness for a pair of points (a,b) can be measured as the average of the
two, Fuz(a) = 1/2 ( Fuz(a) + Fuz(b) ). Thus on (1/2, 1/2) we are dealing with the most
confused situation. It appears that specifying the value of a t-norm would be very useful
to characterize a t-norm.

a

T(a,b)

b
T(1,1) = 1

T(0,1) = 1

T(1,0) = 0T(0,0) = 0
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3.1.2  Usual t-norms
Let us now take a look at what the image of (1/2, 1/2) for some of the most typical
t-norms (see section 2.7.3). First we note that while we have some freedom in selecting
T(1/2, 1/2) we have some restriction. In particular we note that T(1/2, 1/2) ≤ T(1, 1/2) =
1/2 and    T(1/2, 1/2) ≥ T(0, 1/2) = 0, thus T(1/2, 1/2) ∈  [0,1/2]. We see that the common
t-norms have different values for the image of (1/2, 1/2). The most common t-norm is
the minimum t-norm defined by :

( ) ( )babaT ,min,minimum = (70)

We observe of course that all the conditions (B1-B4) are fulfilled. The value of this
t-norm at the point (1/2, 1/2) is 1/2. This operator takes the most uncertain truth-value.
Actually this is the largest possible value we can get at the point (1/2, 1/2).

Consider now the probabilistic t-norm, defined by :

( ) babaT ⋅=,ticprobabilis (71)

The value of this t-norm at the point (1/2, 1/2) is 1/4.

Another interesting case is the Lukasiewicz t-norm, defined by :

( ) ( )0,1max,zLukasiewic −+= babaT (72)

Here the middle value is 0. And of course the limit points are fulfilled.

It would be nice if we could uniquely define a t-norm by giving its middle value. But
things are not so easy. In fact we can have quite different t-norms for the same
T(1/2,1/2) value. A very good example is the Lukasiewicz t-norm (72) and the drastic
t-norm defined by :

( )






=
=

=
elseanywhere0

1if

1if

,drastic ab

ba

baT (73)

In both cases the middle point value equals 0.

As indicated above T(1/2,1/2) is a value of the [0,1/2] interval. And this interval cannot
be reduced, since we have shown an example for each extreme.

While we have shown that in general it is not possible to uniquely specify a t-norm by
indicating its value at the middle point, for some classes of t-norms the specification of
the middle can be used to uniquely identify a t-norm. In agreement with this goal we
shall look at some parameterized t-norms.
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3.2  Parameterized t-norms

Considerable interest in the literature on t-norms has focused on the study of
parameterized families of t-norms. Klir and Folger [41] provide a comprehensive list of
families of parameterized t-norms. We are going to study here just three families : the
Hamacher, the Weber-Sugeno and the Yager t-norms.

3.2.1  Hamacher

The Hamacher t-norms [48] are defined for γ ≥ 0 by :

( )
)()1(

,Hamacher baba

ba
baT

⋅−+⋅−+
⋅=

γγ (74)

This equation is reduced in the middle point to :

( )
3

1

)1(34

1
21,21Hamacher +

=
−⋅+⋅

=
γγγ

T (75)

If we plot the value of T(1/2,1/2) we obtain the following graph :

Figure 4 : T (1/2,1/2)  for different parameter values of the Hamacher t-norm

We see that T(1/2,1/2) varies between 0 and 1/3. So we can only obtain t-norms with the
middle point in this domain. We see that it is a bijection in this region. It means that for
each γ we have a unique value of T(1/2,1/2) and vice-versa for each value of T(1/2,1/2)
we can find a γ. The formula that allows us to obtain γ from the middle point value is :
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3
)21,21(

1 −=
T

γ (76)

We see that this formula allows us to obtain a γ by giving the value of T(1/2,1/2)
∈ [0,1/3]. We can now study interesting particular cases :

•  T(1/2,1/2) = 1/4. With (76) we obtain γ = 1 and replacing this in (74) we
obtain the probabilistic t-norm (71).

•  T(1/2,1/2) → 0+. With (76) we obtain γ → +∞ and replacing this in (74) we
obtain that the t-norm tends to the drastic t-norm (73).

•  T(1/2,1/2) = 1/2 . We observed in the graph that for γ > 0,  T(1/2,1/2) > 1/3 is
impossible. So we can immediately conclude that Hamacher t-norm cannot
generalize even approach the minimum t-norm (70).

•  T(1/2,1/2) = 1/3. This implies that γ = 0 and we obtain that Hamacher t-norm
equals the quotient of the probabilistic t-norm and the probabilistic t-conorm.

3.2.2  Weber-Sugeno
The Weber-Sugeno t-norms [85����������
��������� �-1 by :

 ( ) 






+
⋅⋅+−+= 0,

1

1
max,Weber λ

λ baba
baT (77)

This equation is reduced in the middle point to :

 ( ) ( ) 





+⋅

= 0,
14

max21,21Weber λ
λ

T (78)

If we plot the value of T(1/2,1/2) we obtain the following graph :

Figure 5 : T (1/2,1/2)  for different parameter values of  the Weber-Sugeno t-norm
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We obtain that T��!���!��� ����� 	�
���
� �� �
�� �!"#� ��� �	���$�� 
��
� ���� �∈ ]-1,0],
T��!���!��������
�
�

��
���������%���#�������≥ 0, we have a bijection. It means that for
�������&���
�$�������$�����������

�$��������T(1/2,1/2) and vice-versa for each value of
T(1/2,1/2)∈ ����!"'���� ��
� ��
�� ���#� �����∈ [-1,0], we note that T(1/2,1/2)=0, in other
words we have an infinity of Weber-Sugeno t-norms having the middle point value
������ 
�� %���#� (��� �������� 
��
� ������� ��� 
�� �	
��
��≥0 from the middle point value

)21,21(Tt = ∈ ]0,1/4[ is :

t

t

⋅−
⋅=
41

4λ (79)

��� ���� 
��
� 
���� �������� ������� ��� 
�� �	
��
� �� �� 	)� *�$�
*� 
��� $����� ��� T(1/2,1/2)
∈ ]0,1/4[. We can now note interesting particular cases :

•  T��!���!������!�#�����	���$����
�
���*��&��
��
������ -1, T(1/2,1/2) <1/4. So we
can immediately conclude that Weber-Sugeno t-norm cannot generalize (even
approach) the Zadeh t-norm (70).

•  T(1/2,1/2) → 1/4. With (79)�����	
��
���→ ∞ , we obtain that (77) tends to the
probabilistic t-norm (71).

•  T(1/2,1/2) = 0. With (79)�����	
��
��������
����&����
*�
�����
�(77) we obtain the
Lukasiewicz t-norm (72).

We notice for T(1/2,1/2) = 0 we obtain the Lukasiewicz t-norm using the formula (79)

�����&�
���#�+�
���
���������
�
���$����	�,��
��
�����-�.�� ≤0 we cannot obtain using
this formula, the t-
����� ��
�� �∈ ]-1,0]. In particular we cannot obtain the drastic
t-norm, that is the particular case of (77)��������→-1+.

3.2.3  Yager
The Yager t-norms [89] are defined for p > 0 by :

( ) ( ) ( )[ ] 




 −+−−= 0,111max,

1

Yager
ppp babaT (80)

This equation is reduced in the middle point to :

( ) 









−=

−

0,21max21,21
1

Yager
p

p

T (81)

If we plot the value of T(1/2,1/2) we obtain the following graph :
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 Figure 6 : T (1/2,1/2)  for different parameter values of the Yager t-norm

We see that T(1/2,1/2) lies between 0 and 1/2. We observe that for p∈ ]0,1], T(1/2,1/2) is
constant and equals zero, in other words we have an infinity of Yager t-norms having
the middle point value equal to zero. For p≥1, we have a bijection. This means that for
each p≥1 we have a different value of T(1/2,1/2) and vice-versa for each value of
T(1/2,1/2)∈ ]0,1/2[ we can find a distinct value of  p. The formula that allows us to
obtain p≥1 from the middle point value )21,21(Tt = ∈ ]0,1/2] is :

( )tp
−+

=
1ln1

1

2

(82)

We see that this formula allows us to obtain a p by giving the value of T(1/2,1/2)
∈ [0,1/2[. We now note interesting particular cases :

•  T(1/2,1/2) → 1/2. With (82) we obtain p → ∞ and replacing this in (80) we obtain
that the t-norm tends to the minimum t-norm (70).

•  T(1/2,1/2) = 1/4 . With (82) we obtain p =1.709 and replacing this in (80) we obtain
a t-norm that is not the probabilistic t-norm (71), but is the closest one in the Yager
family, in the sense that it equals the product on the boundary (B1-B4) and in
(1/2,1/2).

•  T(1/2,1/2) = 0.  With (82) we obtain p = 1 and replacing this in (80) we obtain the
Lukasiewicz t-norm (72).

We notice for t = 0 we obtain the Lukasiewicz t-norm using formula (82) to compute p.
But since we do not have a bijection for 0< p ≤1 we cannot obtain using this formula the
t-norms with p∈ [0,1[. In particular we cannot obtain the drastic t-norm, that is the
particular case of (80) for p→0.
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3.3  The inverting functions

In the precedent section we introduced for each of the considered parameterized t-norms
an inverting function : for Hamacher t-norm it was formula (76), for Weber-Sugeno
t-norm it was formula (79) and for Yager t-norm it was (82).

t-norm family Inverting function

Hamacher t-norm 3
1 −=
t

γ

Weber-Sugeno t-norm
t

t

⋅−
⋅=
41

4λ

Yager t-norm ( )tp
−+

=
1ln1

1

2

Table 9. Inverting function for parameterized families.

These inverting functions allow us to obtain the parameter required so that the
parameterized t-norm has a particular t = T(1/2,1/2) value. In other words if we impose
the value of T(1/2,1/2), using this formulas we can obtain the parameter that allows the
t-norm to have this particular value.

From another perspective we can consider that the value of T(1/2,1/2) is the parameter,
through the inverting formulas. This perspective has the advantage of having a uniform
parameter for all the parameterized t-norms :

•  In all cases the parameter t satisfies 0≤ t ≤1/2. So, we work always on the same
scale, which is not the case when using directly the parameters.

•  We observe that using this parameterization we will always evolve from the most
drastic t-norm for t = 0 to the closest to the 'min' operator for t = 1/2. So, we have
always the same kind of variation when the parameter t increases or decreases. This
is not the case using directly the parameters, for instance we could compare
Hamacher and Yager families.

•  We also notice that in order to obtain for example the probabilistic t-norm the
parameter t will have to equal 1/4, for any parameterized family. So, we have
necessarily to use the same parameter for all parameterized t-norm families in order
to obtain a certain particular case. For the minimum t-norm t = 1/2 and for the
Lukasiewicz and the drastic t-norms t =0.

Notes : The fact that T(1/2,1/2) has a particular value does not guarantee that we
generalize a behavior. For example, with this method we can obtain a Yager t-norm
satisfying T(1/2,1/2)=1/4. We observed that it is not the probabilistic t-norm, but
another t-norm of the class t = 1/4. But we can say that we have "the closest" Yager
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t-norm to the product, in the sense that they are equal on all the edges of the unit square
and also in the middle point.

The value of T(1/2,1/2) says only in which class of t-norm we are. But it does not say
anything about which t-norm in this class we are generalizing. For example for T=0 we
can have the drastic t-norm or the Lukasiewicz t-norm.

Another important point that we would like to point out here is that T(1/2,1/2) in
function of the parameters is usually only a bijection on a part of the [0,1/2] interval.
The consequence of this is that the inverting function does not cover all the values of
the parameter. In other words there are particular t-norms that are generalized by the
usual definition of the parameterized t-norm family, that cannot be obtained using the
inverting function. An example of that is that Yager t-norm generalizes t-norms that are
more drastic than the Lukasiewicz t-norm (for 0<p<1), but we cannot obtain these
t-norms using the inverting formula (82) for t ∈  [0,1/2[. In a more general way we can
say that the group of t-norms stricter than the Lukasiewicz t-norm are indistinguishable
for our method, since all of these operators have all T(1/2,1/2)=0. But it seems in the
literature that these operators are not often very used, besides the drastic t-norm that has
a mathematical interest.
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3.4  The middle point as a classification method

In the previous section we saw that the inverting function offers a uniform method for
computing the parameter of each family on a parameter scale. Since we have a common
and intuitive scale for all the t-norms we can compare and classify them. This
classification translates their attitude with respect to the aggregation of  1/2 and 1/2.
Here we draw in a same graph (Figure 7) the behavior of some usual t-norms (see
section 2.7).

Figure 7. Classification of some usual t-norms

We can immediately conclude when looking at Figure 7 that the usual parameterized
t-norms (see section 2.7.4) have a very strict attitude. Usually the aggregation of
(1/2,1/2) is 1/4 or less. We can be disappointed, since a parameterized t-norm should
primarily aim to cover the range [0,1/2], giving a large choice of attitudes. Instead the
usual t-norms take care of the generalization of t-norms placed somewhere between the
Lukasiewicz one and the drastic one, all having very similar attitudes.

Two particular families should be pointed out : the Frank family and Yager's one. Both
cover the range ]0,1/2[, the boundaries being not reached limit cases. The main
difference is at T(1/2,1/2) =1/4, the Frank t-norm has as a non reached limit case the
product, while Yager t-norm presents another t-norm for this value (see section 3.2.3).
This makes the Yager family more comfortable for application, but as shown at the end
of the next chapter (see section 4.7) the computational effort is relatively high.
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Chapter 4

Reducing t-norms and
augmenting t-conorms

In the last chapter we noticed that t-norms have different attitudes with respect to the
aggregation of the "most fuzzy point". In particular we remarked that in general the
attitude of the parameterized families is very severe (usually the generalized t-norms
are stronger than the product). In other words there are not so many parameterized
families offering particular cases for the most interesting range [0,1/2], and specially
on the upper half of this range. We are going to use this observation as a starting
point.

We also remarked that the minimum operator is the biggest possible t-norm. Taking
into account these two facts we propose to reduce this operator in order to obtain
more drastic t-norms, having naturally a range starting at 1/2 and then being reduced
until 0. Unfortunately, we discover that when reducing the t-norms, we usually lose
the associativity. However, the resulting operators are similar to t-norm aggregation
operators. So, we investigate the reduction of some typical t-norms. We also study
the dual operator of the reduced t-norm, which can be interpreted as an augmented
t-conorm, and again some particular cases.

We finish the chapter (section 4.7) by studying in detail the reduction of the most
promising operator, the minimum. And we compare it to the most extensive and
comfortable t-norms, the Yager t-norms. We note that both operators are very
similar, besides the fact that the reduced minimum is not associative, but
computationally much lighter. This leads to the conclusion that this operator should
be used for repetitive t-norm like aggregation or for large number of arguments.
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4.1  Reducing t-norms

Let us begin with the t-norms. As we just indicated, the largest t-norm is the min
operator. Let us consider reducing the result obtained from this t-norm operator by
subtracting a value from it, in here the value is computed as f (a,b). This gives us :

( ) ( )bafba ,,min − (83)

We insure that the resulting operator does not give any negative result by means of the
max operator :

( ) ( )[ ]0,,,minmax),( bafbabaG −= (84)

In order to obtain an interesting operator, we consider a function f that has the
following properties :

•  f(a,b) = f(b,a)

•  f(a,b)  ≥  f(c,d), if a ≤ c and b ≤ d

•  f(a,1) = 0

(F1) Commutativity

(F2) Monotonicity (decreasing)

(F3) One is a null factor

Then G is commutative, increasingly monotone and 1 is a neutral element. We notice
that G is almost a t-norm, but this operator is not necessarily associative.

The function f can be expressed in terms of the negation of a t-conorm, a generalization
of the classical 'nor' function (also called the Pierce function) :

( ) ( )baSbaf ,, ⋅= β (85)

where β ≥ 0  is a parameter and S is a t-conorm. Using (85), expression (84) becomes :

( ) ( ) ]0,,,max[min),( baSbabaG ⋅−= β (86)

We can generalize this result to other t-norms than the min operator. In that case we will
have the general expression :

( ) ( ) ]0,,,max[),( baSbaTbaR ST ⋅−=− β (87)

We observe that RT-S  is almost a t-norm, but this operator is not necessarily associative.
However this operator is an aggregation operator as defined in chapter 1.

Proof : In fact, we can define RT-S (x) = x. For the boundary conditions, we have
T (0,0) =0 and S (0,0) = 0 and consequently RT-S

 (0,0) =0. In the same way
T (1,1) =1 and S(1,1)=1 and consequently RT-S

 (1,1) =1. The reduced t-norm is
non-decreasing because :
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( ) ( ) ( ) ( ) βββ −⋅+=⋅− baSbaTbaSbaT ,,,, (88)

The t-norm is not decreasing, the t-conorm is not decreasing and the addition or
multiplication by a positive constant does not change the monotonicity. Neither
does the truncation with the max.

Other interesting basic properties of this aggregation operator are the commutativity and
having 1 as a neutral element.

Proof : In fact, the reduced t-norm is commutative, because the t-norm and the
t-conorm are commutative. And, 1 is a neutral element, because T(a,1) = a. Using
the DeMorgan law and the property of the t-conorms (47), we have that

( ) ( ) 1,1,1max1 ≤≤= aSa and so ( ) 0,1 =aS . Consequently :

[ ] aaaR ST =⋅−=− 0,0max),1( β (89)

To resume we have that the reduced t-norm is a commutative aggregation operator with
neutral element 1. If looked more in detail this operator, we will discover that it also
satisfies the following interesting properties :

Property 1 : The reduced t-norm is continuous, if the underlying t-norm and t-conorm
are continuous.

Proof : In fact, if the t-norm and the t-conorm are continuous, their linear
combination is still continuous. And the truncation by the max gives also a
continuous operator.

Property 2 : Zero is an absorbent element of the reduced t-norms, mathematically :

0)0,( =− aR ST (90)

Proof : We know that because of the introduced max, we have that RT-S(a,0) ≥0.
And using the monotonicity and the fact that 1 is neutral element, we have that,
RT-S

 (a,0) ≤ RT-S
 (1,0) = 0, since a ≤ 1.

Property 3 : The operator defined in (87) can be written also using only t-norms :

Using the DeMorgan laws ( ( ) ( )baTbaS ,, =  ), we can write the expression (87) under
the form :

( ) ( ) ]0,,,max[),(),( 21
2121 baTbaTbaRbaR TTST ⋅−== −− β (91)

We observe that it is not compulsory to have twice the same t-norm. We can have
T1 ≠ T2 . This remark applies also to the definition (87) : there are no special constraints
on the choice of S and T.
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We can consider now that β  is a parameter that we vary in order to obtain different
aggregation operators. We will have then :

Property 4 : for β = 0, we obtain for every t-norm T :   RT-S (a,b) = T(a,b).

Proof : Trivial.

Property 5 : for β → +∞, we obtain for every t-norm T  reduced by non saturated
t-conorm S (i.e. that if a≠1 and b≠1 then S(a,b)≠1 ) : RT-S → Tdrastic , the drastic t-norm
(see section 3.1.2).

Proof : In fact, for a ≠ 1 and  b ≠ 1, we have for a t-norm without zero divisors,

that ( ) 0, >baT . So for β large enough we will have ( ) ( ) 0,, <⋅− baTbaT β , and

in this way ( ) ( ) 0]0,,,max[ =⋅− baTbaT β . For a = 1, we have that ( ) 0, =baT

and ( ) 0, ≥= bbaT . In this way we obtain ( ) ( )[ ] bbaTbaT =⋅− 0,,,max β .  The
case b = 1 can be shown with the commutativity property.

Property 5 : for β = 1, for every t-norm and t-conorm pair from the Frank t-norm
family [44], RT-S = TLukasiewicz , the Lukasiewicz t-norm (see section 3.1.2).

Proof : In fact,

( ) ( )baTbaT ,, − = ( ) ( )baSbaT ,, − (using DeMorgan law)

= ( ) ( )( )baSbaT ,1, −− (using the definition of negation)

= ( ) ( ) 1,, −+ baSbaT

The t-norms of the Frank family satisfy ( ) ( ) babaSbaT +=+ ,, . So we obtain

then the reduced t-norm RT-S
  = ( )0,1max −+ ba , which is the Lukasiewicz t-norm.

Note : the Frank family is a very large class of t-norms including the most popular
t-norms as the product, the minimum and the Lukasiewicz. The precedent result is
also true for ordinal sum of Frank t-norms and their dual copulas.
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4.2  Reducing some typical t-norms

Now that we have shown some general properties, let us take a look at some particular
cases. We will study in this section what happens when we reduce some typical
t-norms :

Minimum :  As we said, at the beginning of this chapter, the biggest t-norm is the
minimum. We can reduce this t-norm. We choose here to use the dual pair (min, max).
Following definition (91), we only need to use the min and we obtain :

( ) ( ) ( )( )[ ]0,1,1min,minmax),( bababaR minmin −−⋅−=− β (92)

Another form for this same operator is (see definition (87) ) :

( ) ( )( )[ ]0,,max1,minmax),( bababaR maxmin −⋅−=− β (93)

We observe that we obtain the expected properties :

•  for β = 0, we obtain the minimum.

•  for β = 1, we obtain the Lukasiewicz t-norm.

•  for β → +∞, we tend to the drastic t-norm.

The "reduced min" seems to be an interesting operator that strangely looks like the
Yager t-norm, without being associative, but instead having a lower computational
effort. For details see the fast non-associative "Yager t-norm"-like operator at the end of
this chapter (section 4.7).

Probabilistic t-norm : Another very famous t-norm is the product. Reducing the
probabilistic t-norm by the dual t-conorm and using (91), we obtain the following
definition :

( ) ( )( )[ ]0,11max),( bababaR probaproba −⋅−⋅−⋅=− β (94)

We remark here that the reduced probabilistic t-norm is associative and in this way it is
a t-norm.

We observe that we obtain the expected properties :

•  for β = 0, we obtain the product.

•  for β = 1, we obtain the Lukasiewicz t-norm.

•  for β → +∞, we tend to the drastic t-norm.

Here an interesting point is that this operator generalizes the probabilistic and the drastic
t-norm in the same way  as Hamacher t-norm family [48] does. We also notice that the
reduced probabilistic t-norm generalizes also the Lukasiewicz t-norm, which is not the
case for the Hamacher t-norm.
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Let us now compare the reduced probabilistic t-norm with the Weber-Sugeno t-norms
[85�������
��������� �-1 by :








+
⋅⋅+−+= 0,

1

1
max),(

λ
λ baba

baTWeber (95)

We observe that both of these operators generalize the same typical operators. And if
we take a look closer we will discover that in fact the reduced probabilistic t-norm is the

Weber-Sugeno t-norm for the parameter 
λ

β
+

=
1

1
. We notice that in this case the

operator is associative and therefore a t-norm.

Lukasiewicz t-norm : The Lukasiewicz t-norm seems to be central because of the
theorem affirming that for every t-norm from the Frank family [44], for β = 1 we obtain
the Lukasiewicz t-norm. What happens if we try now to reduce the Lukasiewicz t-norm
by the corresponding t-conorm? Using the definition (91), we obtain :

( ) ( ) ( )( )[ ]0,111max0,1maxmax),( −−+−⋅−−+=− bababaR LukaLuka β (96)

We observe that if  (a + b-1) ≥ 0, then ((1-a)+(1-b)-1) = (1 - a - b ) ≤ 0. So, we can
reduce the expression to :

( ) ),(0,1max),( baTbabaR zLukasiewic
LukaLuka =−+=− (97)

which is exactly the Lukasiewicz t-norm. In other words we cannot reduce the
Lukasiewicz t-norm using the associated t-conorm.

Note : We can reduce the Lukasiewicz t-norm by using another t-norm that is not the
associated Lukasiewicz t-conorm.

Drastic t-norm : Another interesting case is the drastic t-norm. We know that the
drastic t-norm is the smallest t-norm. We have for any t-norm T the following property :

•  T(a,b)  ≥ Tdrastic (a,b) (98)

So, what happens if we try to reduce the drastic t-norm? Let us try to reduce the drastic
t-norm with any t-conorm (not only the associated). Using the definition (87), we
obtain :

( ) ( )[ ]0,,,max),( baSbaTbaR drastic
Sdrastic ⋅−=− β (99)

We observe that for a ≠ 1 and b ≠ 1, Tdrastic (a,b) = 0 and so ( ) ( ) 0,, ≤⋅− baSbaTdrastic β  ,

so the reduced drastic t-norm equal 0. For a = 1, Tdrastic (a,b) = b and for any t-conorm

we have ( ) 0, =baS . In other words the operator is the drastic t-norm. We can conclude
by saying that we cannot reduce the drastic t-norm.
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4.3  The augmented t-conorms

Now that we have studied the reduced t-norms, let us take a look at their dual operators.
We start with the expression (87) and by using the DeMorgan law, we obtain :

( ) ( )baRbaF ST ,, −=

= ( ) ( ) 



 ⋅− 0,,,max baSbaT β

= ( ) ( ) 



 ⋅− 1,,,min baTbaT β

= ( ) ( )[ ]1,,,1min baTbaT ⋅+− β

= ( ) ( )[ ]1,,,min baTbaS ⋅+ β

The obtained operator can be understood as being a t-conorm to which we add β times a
t-norm, the result of this addition being limited to 1. For this reason we will call this
operator the augmented t-conorm :

( ) ( ) ( )[ ]1,,,min, baTbaSbaA TS ⋅+=+ β (100)

We remark that this operator is dual of the reduced t-norms by construction. So, it is a
commutative aggregation operator and it has zero as neutral element.  Once more we do
not have necessarily the associativity. If the dual reduced t-norm is associative then the
augmented t-conorm is also associative.

Besides these basic properties we have :

Property 1 : The augmented t-conorm will be continuous, if the underlying t-norm and
t-conorm are continuous.

Proof : In fact, if the t-norm and the t-conorm are continuous, their linear
combination is still continuous. And the truncation by the min gives also a
continuous operator.

Property 2 : One is an absorbent element of the augmented t-conorms, mathematically :

1)1,( =+ aA TS (101)

Proof : We know that because of the truncation with the min, we have
RT-S(a,0) ≤ 1. And using  the monotonicity and the fact that 0 is neutral element,
we have, AS+T

 (a,1) ≥ AS+T
 (0 ,1) = 1, since a ≥ 1.
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Property 2 : The augmented t-conorm can be written using only t-conorms :

( ) ( ) ( )( )[ ]1,,1,min, baSbaSbaA TS −⋅+=+ β (102)

Proof : We used the DeMorgan law to obtain this result.

Property 3 : The augmented t-conorm has also the generalization properties :

•  For β = 0, we obtain for every t-conorm S and any t-norm T :   AS+T = S(a,b).

•  For β → +∞, we obtain for every t-conorm S augmented by a t-norm T without zero
divisors (i.e. that if a≠0 and b≠0 then T(a,b) ≠0 ) : AS+T → Sdrastic , the drastic
t-conorm (see section 2.7.3).

•  For β = 1, for every t-norm and t-conorm pair from the Frank t-norms family [44],
we obtain that AS+T = SLukasiewicz , the Lukasiewicz t-conorm (see section 2.7.3).

Property 4 : The augmented t-conorms and the reduced t-norms are dual by
construction, if the underlying t-norms and t-conorms are dual. More generally, we
have :

( )baRbaA STTS ,1),( 2121 −+ −= (103)

where (T1, S1) and (T2, S2) are dual pairs.

Proof : see the construction of the augmented t-conorm in section 4.3.
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4.4  Augmenting typical t-conorms

Let us now analyze what happens when we augment typical t-conorms :

Maximum : Using the maximum and augmenting it with the associated t-norm
(i.e. minimum), we obtain the following operator (using definition (100)) :

( ) ( )[ ]1,,min,maxmin),( bababaA minmax ⋅+=+ β (104)

We notice that this operator is the dual operator of the reduced minimum. It is not
associative, but generalizes the following t-conorms : the maximum for β = 0 ; the
Lukasiewicz t-conorm for β = 1 and for β → +∞, it tends to the drastic t-conorm

Probabilistic t-conorm : Using the probabilistic t-conorm and augmenting it with the
associated t-norm, we obtain the following operator (using definition (100)) :

( )[ ]1,1min),( abbabaA probaproba ⋅−++=+ β (105)

We notice that this operator is the dual operator of the reduced probabilistic t-norm. It is
associative and in this way it is a t-conorm. We also observe that this operator
generalizes the following t-conorms :

•  for β = 0, we obtain the probabilistic t-conorm

•  for β = 1, we obtain the Lukasiewicz t-conorm.

•  for β → +∞, we tend to the drastic t-conorm.

We observe that this operator generalizes the probabilistic t-conorm and drastic
t-conorm in the same way as the Hamacher t-conorm family [48] does.

We also notice that the augmented probabilistic t-conorm generalizes the same typical
t-conorms in the same way as the Weber-Sugeno t-conorm family [85] does. In fact the
expression (105) is another form of the Weber-Sugeno t-conorm (whereβ = �+1) :

[ ] ),(1,min),( baSabbabaA Weber
probaproba =⋅++=+ λ (106)

This operator is associative and therefore is a t-conorm.

Lukasiewicz t-conorm : Like in the dual case, it is impossible to augment the
Lukasiewicz t-conorm, using the Lukasiewicz t-norm.  This does not mean that it is
impossible to augment the Lukasiewicz t-conorm, but we will need to use another
t-norm than the Lukasiewicz one (i.e. something like the product or the minimum).

Drastic t-norm : Like in the dual case it is possible to show that the drastic t-conorm
cannot be augmented, which is a natural result since drastic t-conorm is the largest
t-conorm.
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4.5  Mixed reductions and augmentations

Here we are interested in doing reduction and augmentation with pairs of t-norm and
t-conorm that are not dual. In other words the reduction of a t-norm will be done using
another t-conorm than the dual one. And we will augment the t-conorm with another
t-norm than the dual one.

This kind of manipulation is particularly interesting in the case of the Lukasiewicz pair.
We saw that it is impossible to reduce the Lukasiewicz t-norm by the Lukasiewicz
t-conorm or to augment the Lukasiewicz t-conorm by the Lukasiewicz t-norm.  Here we
give two examples of reducing the Lukasiewicz t-norm and two of augmenting the
Lukasiewicz t-conorm.

We can reduce the Lukasiewicz t-norm using the minimum (107) or using the
product (108) :

( ) ( )[ ]0,),max(10,1maxmax),(min bababaR Luka −⋅−−+=− β (107)

( ) ( ) ( )[ ]0,110,1maxmax),( bababaR prodLuka −⋅−⋅−−+=− β (108)

We observe that both of these operators have the following properties :

•  for β = 0, we obtain the Lukasiewicz t-norm.

•  for β → +∞, we tend to the drastic t-norm. (since the max and the product have no
zero divisors).

In other words, as expected, we can reduce the Lukasiewicz t-norm by changing β . And
we see that we can go from the Lukasiewicz t-norm until the drastic t-norm.

We have two dual cases that correspond to the augmented Lukasiewicz t-conorm : the
first one by the minimum (109) and the second one by the product (110).

( )[ ]1),,min(1,minmin),(min bababaALuka ⋅++=+ β (109)

( )[ ]1,1,minmin),( bababaA prodLuka ⋅⋅++=+ β (110)

We still have for the limit cases :

•  for β = 0, we obtain the Lukasiewicz t-conorm.

•  for β → +∞, we tend to the drastic t-conorm (because the min and the product have
no zero divisors).

In other words as expected, we can augment the Lukasiewicz t-conorm by augmenting β
until we obtain the drastic t-conorm.
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In the precedent examples we have two associative operators and two non-associative
ones. It seems that knowing the associativity in advance for every operator is not an
easy task. To know more about this kind of problem there is an interesting paper of
Ling [61].

We have that :

•  The Lukasiewicz t-norm reduced by the minimum is not associative. Therefore its
dual operator, the Lukasiewicz t-conorm augmented by the maximum, is not
associative.

In fact, let us use a counterexample for β = 1 :

( )( ) 05.0)85.0,35.0(85.0,8.0,75.0 == −−− minLukaminLukaminLuka RRR

   and

( )( ) 0)5.0,75.0(85.0,8.0,75.0 == −−− minLukaminLukaminLuka RRR

•  The Lukasiewicz t-conorm augmented by the product is associative. Therefore their
dual operator, the Lukasiewicz t-norm reduced by the probabilistic t-conorm, is also
associative.

In fact, augmenting the Lukasiewicz t-conorm by the product gives (110) exactly the
Weber-Sugeno t-norm :

( )1,min),( bababaA prodLuka ⋅⋅++=+ β (111)

In fact, for a + b > 1, we have then  a + b + β ab > 1 since β ≥ 0.

And reducing the Lukasiewicz t-norm by the probabilistic t-conorm gives Weber-
Sugeno t-norm :

( ) ( )[ ]0,111max),( bababaR prodLuka −⋅−⋅−−+=− β (112)

In fact, for a + b - 1 < 0, we have  a + b - 1 - β (1-a)(1-b) < 0 since β ≥ 0.

In conclusion, augmenting the Lukasiewicz t-conorm by the product or reducing the
Lukasiewicz t-norm by the probabilistic t-conorm gives known parameterized t-norm
and t-conorm families.
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4.6  The difficulty of combining t-norms and
t-conorms

In this chapter we studied how to reduce a t-norm by subtracting to it a value given by a
function. Using a commutative, monotone decreasing function that has one as null
factor, we obtain an interesting aggregation operator, which is almost a t-norm besides
the fact that it is not always associative. This very particular side effect shows the
difficulty of reducing t-norms.

If we impose the associativity to the function being subtracted, we discover that it is
actually β times the negation of a t-conorm. Then we study some interesting general
properties and after that, we study some particular cases by reducing some typical
t-norms. We obtained for each typical t-norm an interesting parameterized family. We
compare them to some existing parameterized t-norms.

Then using the DeMorgan law we obtain a dual operator. We find that these kinds of
operators are augmented t-conorms. In fact this operators are built by adding to a
t-conorm, β times a t-norm. This result is very interesting because it suggests that in
order to make more drastic a t-conorm we need to add a t-norm. Here, once again, we
do not obtain always a t-conorm, because the resulting operator is not always
associative. We also study some interesting particular cases by augmenting typical
t-conorms.

We also take a look at the reduction and augmentation of non dual t-norms and
t-conorms. This situation is particularly interesting for the Lukasiewicz case. Since we
showed that the Lukasiewicz t-norm (or t-conorm) cannot be reduced (or augmented) by
its dual operator. Augmenting and reducing Lukasiewicz by the minimum, we obtain an
interesting non-associative aggregation operator. But when augmenting and reducing by
the minimum we obtain a parameterized t-conorm and a parameterized t-norm.
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4.7 The n-ary operators

We have until now studied only the aggregation of two arguments, but since in general
the reduced t-norms and the augmented t-conorms are not associative (as pointed out in
the previous paragraph), we need to specify how to aggregate n arguments.

There are several ways of extending a two arguments operator to n arguments. As for
instance aggregate by packages of two or also aggregate the first argument with the
second one, the result with the third one, and so on. We choose here to explicitly
introduce a n-ary form, which allow us to have a pseudo-associativity.

The n-any reduced t-norm is defined by :

( ) ( ) ]0,,,,,max[),,( 111 nnn
ST xxSxxTxxR ��� ⋅−=− β (113)

It is pseudo-associative in the sense that if we keep in memory the values T(x1,…,xn)
and S(x1,…,xn), we can profit from the advantages of the normal associativity. For
example a nice benefit of having the associativity is that if we observe a new argument
we can with the last result obtain a final aggregation that is equivalent to re-computing
using all the arguments. Mathematically this can be translated by :

),,,()),,,(( 1111 +
−

+
−− = nn

ST
nn

STST xxxRxxxRR �� (114)

We can obtain this by simply keeping the values T(x1,…,xn) and S(x1,…,xn). With them
we first calculated RT-S(x1,…,xn).

Then when we observe xn+1 we can use the associativity of the t-norm and of the
t-conorm to obtain T(x1,…, xn, xn+1)= T(T(x1,…,xn), xn+1)  and S(x1,…, xn, xn+1). Which
will lead to RT-S(x1,…,xn, xn+1).

In the same way, we define the n-any augmented t-conorm :

( ) ( ) ( )[ ]1,,,,,min,, 111 nnn
TS xxTxxSxxA ��� ⋅+=+ β (115)

This operator has also the pseudo-associativity property as long as we keep in memory
the values T(x1,…,xn) and S(x1,…,xn).
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4.8  Fast non-associative "Yager t-norm"-like
aggregation

Here we study a parameterized aggregation operator that was obtained by reducing the
minimum by its dual operator, the maximum. The resulting operator has properties very
similar to the Yager t-norm. This operator is not associative, but we will see that it is
computationally lighter than Yager t-norm. So, we recommend the use of this operator
for the aggregation of a large number of arguments.

Here we will also see that among the common properties, the t-norm and our operator
generalize the most basic t-norm : the Lukasiewicz t-norm, the drastic t-norm and
minimum t-norm. The last one being attempt not as limit case (as for Yager's family), in
other words it is more computational friendly.

The Yager t-norm

The Yager t-norm was introduced in [89] as a general form of a t-norm (see
section 2.7.4),.  The definition of this new operator is based on a parameter that changes
the type of the t-norm. Since this operator is associative there is no ambiguity on its n-
any form. For p > 0 we have :

( ) 















 −−= ∑

=
0,11max),,(

1

1
1

pn

i

p
inYager xxxT � (116)

We saw that this parameterized t-norm generalizes some of the usual t-norms :

•  For p → 0, the Yager t-norm tends to the drastic t-norm.

•  For p = 1, the Yager t-norm is the Lukasiewicz t-norm.

•  For p → +/��
���0�*���
-norm tends to the minimum t-norm

Let us now take a look at the fast non-associative "Yager t-norm"-like operator. In fact
it is what we called the reduced min (see 4.7).

The reduced min

Since this operators is not associative its two arguments definition (92) is limited. Here
we propose a n-ary form based in the definition (113). We define the n-ary reduced min
for β  ≥ 0 by :

( )( ) ( )( )0,,,min1,,maxmax),,( 111
maxmin

nnn xxxxxxR ��� +−⋅=− β (117)
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4.8.1 Comparison with the Yager t-norm
As a result of the previous work, we know that, as the Yager t-norm, the new operator
(117) is commutative, monotone, has the unity as neutral element (i.e. R min-max(a,1)=a)
and zero is an absorbent element (i.e. R min-max(a,0) =0). The two last properties translate
the fact that these two operators are equal on the edges of the unit square (see Figure 2).

Another result from the previous work is that it generalizes the same usual t-norms as
the Yager t-norm. For seek of simplicity we will reason on binary operators, which will
not affect the generality since the particular cases are associative  :

•  For β  = 0 we have the minimum t-norm.

In fact, for β  = 0, the t-norm is reduced to

R min-max(a,b) = max(min(a,b),0) = min(a,b).

•  For β  = 1 we have the Lukasiewicz t-norm.

In fact, for β  = 1, the t-norm is reduced to

R min-max(a,b) = max(max(a,b)+min(a,b)-1,0).

Now max(a,b)+min(a,b) = a + b, therefore R min-max(a,b)= max (a + b-1,0).

•  For β → +/��
���
-norm tends to the drastic t-norm.

In fact, for a ≠1 and  b ≠1, max(a,b)-1 <0.

Therefore ( )( ) ( ) −∞→+−⋅ vuvu ,min1,maxβ , when β → +/#

And so, R min-max(a,b)= 0.

For b=1, we have max (a,b)=1 and min(a,b)=a, and therefore

R min-max(a,b) = max(0+a,0) = a.  Since the t-norm is commutative we have
finished the proof.

Using the methodology presented in chapter 3 we see that the range of action is the
same for the two operators : the smallest operator being the drastic t-norm and the
biggest the minimum t-norm. We also observe that neither of these two operators
generalize the probabilistic t-norm.

Another common property is the fact that both of these operators have zero divisors
(i.e. there exist two numbers a and b both different from zero, so that R min-max(a,b) = 0).
This is true except when the reduced min equals the minimum.

So far, we have seen that the Yager t-norm and the new defined operator have similar
behaviors. Let us now point out some differences.
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Computational Effort

Let us now focus on the computational effort aspects. If we look at the mathematical
definition of the Yager t-norm (116) and at the reduced min (117) we will observe that
these two operators have the form :

( )( )0,,,max 1 nxxR � (118)

For the Yager t-norm, we have

( )
pn

i

p
in xxxR

1

1
1 11),,( 



 −−= ∑

=

�
(119)

For the reduced min, we have

( )( ) ( )nnn xxxxxxR ,,min1,,max),,( 111 ��� +−⋅= β (120)

Now let us compare both equations from an arithmetic point of view :

Yager R(x1,…, xn) New R(x1,…, xn)

1 division  - 1/p 1 product

n-1 additions 1 addition

n+1 subtractions 1 subtraction

n+1 power operations 1 min and 1 max

Table 10. Effort comparison between Yager t-norm and the reduced min.

Looking at Table 10, we notice that the new operator is computationally lighter. In fact,
we observe that Yager t-norm has a division that has the same complexity as a product.

We see that the more arguments we aggregate the more heavy the calculus of the Yager
t-norm is. In fact we increase linearly the number of additions, subtractions and of
power operations. For the new operator when we increase the number of arguments we
increase the difficulty of computing the min and the max. In fact, both can be calculated
with simply n-1 comparisons.

But even in the case n=2, Yager t-norm is more arduous. The two operators have then
same amount of additions, but Yager t-norm has one more subtraction. This does not
make a large difference. The main difference appears when we observe that Yager
t-norm needs 3 power operations, while the new operator only needs one comparison :
the bigger number will be used for the max and the other one for the min.

In other words the new operator is interesting for the calculus of large number of
arguments, but also when aggregation several times just couple of values.
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Other advantages

The fact that the reduced minimum is computationally faster than the Yager t-norm is
interesting, but we may think that the price for this is that we lost the associativity
property. In fact, the reduced minimum is not associative, but it is pseudo-associative in
the sense presented in section 4.7. As we as when introducing the associativity (see
section 1.2.4) the idea of the associativity is to allow the aggregation par packages. So,
if we keep in memory the maximum and minimum of this packages we will witness the
same features as when using the associativity.

From the generalization point of view, we noticed that both of the two families
generalize the most common t-norm : the minimum t-norm. But what we did not say is
that Yager t-norm generalizes the minimum t-norm as a limit case. In other words the
parameter p has to take the value +/�
���	
��
��1��
�)� 
����1&��
���	���$���#�������

know that this is not possible in a computer. If we look at the reduced min, we observe
that the generalization of the most common t-norm is done for the particular case β = 0,
which is not a limit case.

Note : We observe that for the generalization of the drastic t-norm, we have in both
cases a limit case. This is normal since the two parameterized t-norms are families of
continuous operators and the drastic t-norm is non-continuous.

Concluding remarks

The reduced minimum is a particularly interesting operator for efficient practical
applications, where we have to use a t-norm. Its computational lightness combined to its
pseudo-associativity, without forgetting its generalization property make of it a power-
full tool. See chapter 7 for an illustration of its use.
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Chapter 5

Aggregating Truth and Falsity
Values

The problem of aggregating truth values is at the core of the studies in fuzzy logic. But
it is to notice that the purpose of this aggregation is to compute the truth value of a
logical phrase. Here we are interested in the aggregation of different truth values
observed for the same logical phrase.

In the first case, we compute the truth value of a phrase of the type : "the figure is
quadrilateral 'AND' the angle on the left is a right angle".  Here it is clear that if one
statement is true and the other false then the truth value of the whole assertion will be
false, which follows the classical logic.

In the second case, we observe two different truth values for the same statement. For
example we observe once that "the angle on the left is a right angle" is true and then we
observe that it is false. This does not mean that the statement is completely false, we just
can conclude that we do not know if it is true or false. In this chapter we try to give an
answer by proposing operators that compute the degree of truth using the two observed
degrees.

Before the construction of such operators we define a truth scale, on which we work.
Then we propose an axiom set for the aggregation of truth values, which leads to the
characterization of two truth-aggregation families, a prudent and an enthusiastic. The
first one has a cautious attitude choosing between two observed values the one that is
more uncertain. The second one has an enthusiastic behavior and will reinforce the
result if it observes twice the truth or twice the falsity. When observing falsity and truth
the operator gives a compensated value.

We determine that the prudent aggregation is completely determined, while the
construction of an enthusiastic aggregation is more delicate, leading usually to a non
continuous structure. We propose a particular solution that is continuous except for the
full contradiction, which conducts us to study in general the full contradiction and the
normal contradiction of the enthusiastic aggregation. We obtain a complete
characterization of these two situations.

We finish by expounding the use of the truth and falsity aggregation operators and their
relationship with the traditionally used truth-aggregation operators : the t-norms and
t-conorms. Actually the presented operators should be used for the aggregation of
different observed truth values for the same phrase vs. the calculus of the truth of a
logical phrase.
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5.1  Truth fuzzy set and falsity fuzzy set

Here we are going to assume the truth as a fuzzy set,  where 1 is the full truth and 0
represents the zero degree of membership of being true. In the same way we can
imagine a fuzzy set for the falsity, but this time we are going to use the negative scale
and consider -1 the full falsity and 0 the zero degree of membership of being false. In
this way we build a scale of "truth" we can pass progressively from the total falsity to
the total truth. So we work on the scale [-1,1] and we will say that [0,1] is the degree of
truth and [-1,0] the degree of falsity, where -1 is the full falsity.

Figure 8. Scale of truth and falsity

In this construction an interesting point is 0. It is the middle point between the full truth
and the full falsity. It is actually the null membership to the sets of truth and falsity. So
we will consider that it represents the "ignorance", since it is neither true nor false.

We can relate these two fuzzy sets with a negation operator that transforms a truth value
into a falsity one with the same degree : n(x)= -x.  The negation of full truth is full
falsity and vice-versa. We also observe that the fixed point of the negation is 0
corresponding to the total ignorance.

 0-1 1
false true

"Ignorance"
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5.2  Basic properties of the operator

On this scale, how can we aggregate the truth values ? In order to build an operator we
first dictate some very useful conditions for the aggregation (for more details about the
properties see chapter 1). The operator should be :

•  Monotone : The decrease of any of the arguments to be aggregated cannot produce
an increase of the total value. This condition is related to the Pareto optimum.

•  Commutative : This property ensures that the aggregation is symmetric, that is,
indifferent to the order of the arguments to be aggregated.

•  Associative : we consider that the total result should be independent of the grouping
of the arguments. This may be regarded as a criterion of objectivity. This axiom also
enables us to extend the operator from two arguments to more than two.

The associativity and commutativity taken together enable us to avoid some problems
inherent to the nature of the systems :

•  The architecture of the aggregation : if we aggregate the sources at different levels
or steps the associativity and commutativity guarantee that the final result is
independent of these levels or steps.

•  The temporal aspects of obtaining the data : the order and the size of the parcels
received in the time will not have any influence on the total result. We will obtain a
final result equal to the aggregation considering that we disposed of all the
information from the beginning.

•  The computability capacity of the machine executing the aggregation : if the
quantity of information is bigger than the memory of the machine processing the
aggregation then we will need to do partial aggregations before getting the final
result. The associativity and commutativity guarantee that the final result is
independent of the method used to make these partial results.
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5.3  The prudent aggregation

Now that we fixed these axioms relative to the general behavior, let us identify some
attitudes.

For instance by saying that we want to be prudent (cautious) while aggregating, let
Prud(x,y) denote this operator. We translate this condition as a simple constraint :

Let us imagine that we observe first a full truth and then for the same observation
another truth value. What will be the aggregation of these two degrees?  If we are
prudent (cautious) we will consider that the final membership should be equal to the
partial truth degree, since we observe first something completely true and then a doubt
on this value, a prudent attitude is to keep the doubt. Mathematically we translate this
by :

for all x ∈  [0,1]  Prud(1,x)=x (121)

A simple choice like this can have many consequences. For instance :

The aggregation of the total ignorance with any truth value equals the total ignorance.
Mathematically :

Proposition 1 : For all x ∈  [0,1]   Prud(0,x)=0.

Proof. Since the aggregation of two truth values should be a truth value
(Prud(0,x)≥0), and using the monotonicity : 0 ≤ Prud(0,x) ≤ Prud(0,1) = 0

The prudent aggregation of two truth values will always give a smaller (or equal) value
than the smallest of any of the values being aggregated. It is exactly what we expect
from a prudent (cautious) aggregation. Mathematically :

Proposition 2 : For all (x,y)∈ [0,1]2  Prud(x,y) ≤ min(x,y)

Proof. Using the monotonicity we have  Prud(x,y) ≤ Prud(x,1) = x

and by commutativity Prud(x,y) = Prud(y,x) ≤ Prud(y,1) = y

Hence, Prud(x,y) ≤ x and Prud(x,y) ≤ y, that is, Prud(x,y) ≤ min(x,y).

Note : We notice here that the operator actually used on [0,1]2 is a t-norm (see 2.7).

5.3.1  Prudent aggregation of the falsity values
Using the negation we can build the operator to be used for the falsity fuzzy set :

For all x,y ∈  [-1,0]2   Prud(x,y) = n(Prud(n(x),n(y)) (122)

It is easy to show that this transformation keeps the associativity, the monotonicity and
the commutativity.
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Other consequences are :

If we observe something completely false and then a doubt on this falsity, the prudent
aggregation will choose the doubt value. Mathematically :

Proposition 3 : For all x∈ [-1,0]  Prud(-1,x) = x

Proof. Obvious using (122).

The prudent aggregation of "ignorance" and any falsity value will give full "ignorance".

Proposition 4 : For all x∈ [-1,0]  Prud(0,x) = 0.

Proof. Obvious using (122).

The prudent aggregation of falsity values will always give a less or equally false value
than the least false of the values being aggregated.

Proposition 5 : For  (x,y)∈ [-1,0]2 Prud(x,y) ≥ max(x,y).

Proof. Using (122) and proposition 2.

Note : We notice here that the operator actually used on [-1,0]2 is a t-conorm (see
section 2.7) shifted from [0,1]2.

Another way of obtaining the operator to be used on the falsity domain is to assume
proposition 3 as an axiom. But, we choose to use the negation for the construction in
order to impose exactly the same behavior for the falsity and for the truth.
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5.3.2  Prudent aggregation of falsity and truth values
Let us now take a look at what happens if  we aggregate a truth value with a falsity
value. In this case we obtain the ignorance, which corresponds to our prudent attitude.

Mathematically, we have :

Proposition 6 : For (x,y)∈ [-1,0]x[0,1] ∪  [0,1]x[-1,0]   Prud(x,y) =0

Proof. Let us assume that 0 ≤ x and y ≤ 0. Using the monotonicity  we obtain :

0 = Prud(0,y)  ≤ Prud(x,y) ≤ Prud(x,0) = 0

and for x≤0 and 0≤y, we have 0 = Prud(x,0)  ≤ Prud(x,y) ≤ Prud(0,y) = 0

A consequence of the precedent result is that the prudent operator is continuous on
[-1,1]2. (of course if and only if the underlying t-norm is continuous). In fact if the
underlying t-norm is continuous, then the operator is continuous on  [-1,0]2 ∪  [0,1]2.
Proposition 6 shows that the operator on [-1,0]x[0,1] ∪  [0,1]x[-1,0] equals 0 and
using proposition 1 and 4, we have the continuity on [-1,1]2.

This property is interesting since it translates the fact that the variation of the aggregated
value do not jump from a value to another. It gives some stability to the result.

The general behavior : The associativity of the global operator was showed in [11].
We can resume the prudent aggregation on the following figure, where T is a t-norm :

Figure 9. Prudent aggregation

Interpretation : We showed in proposition 1 that when aggregating two truth values
the resulting value will be a truth value smaller than the smallest of the values to be
aggregated.
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When aggregating two falsity values, proposition 2 applies, which means that the result
is always bigger that the maximum of the values. And the aggregation of two falsity
values will be a smaller falsity value than any of the falsity values to aggregate.

As we already said in proposition 6, the aggregation of a truth value with a falsity value
will give the total "ignorance".

Summing up, the general tendency of this operator is to converge to the "ignorance". If
we have two truth values we will compute an aggregated value that is closer to the total
ignorance than any of the two initial values.
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5.3.2  Comparison with known operators
Here we work on the scale [-1,1], but generally the aggregation operators are defined on
[0,1]. So, in order to compare this operator to others, we need to do a scale
transformation.

We notice that the construction of the prudent operator is based on a t-norm and a
negation. So, we can obtain t-norms and t-conorms by simple linear transformation :

For all x,y ∈  [0,1]2   S (x,y) = -Prud(-x,-y) (123)

For all x,y ∈  [0,1]2   T (x,y) = Prud(x,y) (124)

 But maybe the most natural transformation is a linear transformation from [-1,1] to
[0,1]. In this case we obtain a particular nullnorm (see section 2.9.5) :

For all x,y ∈  [0,1]2   )1)2,2((
2

1
),(2/1 −⋅= yxPrudyxN (125)

This nullnorm is particular since the absorbent element a equals 1/2 and the underlying
t-norms and t-conorms are dual. Note that it is easy to conceive a non linear
transformation so that we obtain a nullnorm with any absorbent element a from a
prudent operator.
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5.4  The enthusiastic aggregation

We studied in detail the construction of a prudent operator, let us now take a look at the
enthusiastic aggregation. Let us denote by Enthu(x,y) such an aggregation operator. Of
course we still request the operator to be associative, monotone and commutative. But
this time we will impose that if we observe the total ignorance and a truth or a falsity
value, then enthusiastically we will use this value as the final aggregation.

Mathematically we have

For all x ∈  [-1,1]  Enthu(0,x) = x (126)

The choice of these characteristics for the operator has the following consequences :

The enthusiastic aggregation of the total truth with any other truth value will be the total
truth. Mathematically :

Proposition 7 : For all x∈ [0,1]  Enthu(1,x) = 1.

Proof. Using the monotonicity we have 1 = Enthu(0,1) ≤ Enthu (x ,1) ≤ 1

The enthusiastic aggregation of the total falsity with any other falsity value will be the
total falsity :

Proposition 8 : For all x∈ [-1,0]   Enthu(-1,x) = -1.

Proof. Using the monotonicity we have  -1 ≤ Enthu(-1, x) ≤ Enthu (-1,0) = -1

We have a reinforcement when observing two truth values. That is to say that the
observation of two truth values will be aggregated into a value bigger than the biggest
of the observed values. Mathematically :

Proposition 9 : For all (x,y)∈ [0,1]2  Enthu(x,y) ≥ max(x,y).

Proof. Using the monotonicity we have x = Enthu(x,0) ≤ Enthu (x,y) and by

commutativity Enthu(x,y) = Enthu(y,x) ≥ Enthu(y,0) = y.

Hence, Enthu(x,y) ≥ x and Enthu(x,y) ≥ y, that is, Enthu(x,y) ≥ max(x,y).

The same way, we have a reinforcement when observing two falsity values. We obtain a
bigger falsity result than what was observed. Mathematically :

Proposition 10 : For all (x,y)∈ [-1,0]2 Enthu(x,y)≤ min(x,y)

Proof. Since (x,y)∈ [-1,0]2 and using the monotonicity we have
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Enthu(x,y)≤Enthu(x,0)=x and by commutativity

Enthu(x,y)=Enthu(y,x) ≤ Enthu(y,0) = y

Hence, Enthu(x,y) ≤ x and Enthu(x,y) ≤ y, that is, Enthu(x,y) ≤ min(x,y).

When observing truth and falsity we have a compensatory behavior. In fact the final
value will be closer to the total ignorance than any of the observed values.
Mathematically :

Proposition 11 : For all (x,y)∈ [-1,0]x[0,1] ∪  [0,1]x[-1,0]  min(x,y) ≤ Enthu(x,y) ≤
max(x,y)

Proof. Let assume that  y ≤ 0 ≤ x. Using the monotonicity  we obtain :

min(x,y) = y = Enthu(0,y)  ≤ Enthu (x,y)

and Enthu (x,y) ≤ Enthu (x,0) = x = max (x,y)

Note : We remark that we actually have a t-conorm on [0,1]2 and on [-1,0]2 we observe
a t-norm shifted from [0,1]2.

In order to obtain a similar behavior on the falsity and truth domain, we can request the
operator to be self-involutive with respect to the negation. Mathematically we want :

For all x,y ∈  [-1,1]2 Enthu(x,y)= n(Enthu(n(x),n(y)) (127)

If we reason in terms of t-norms and t-conorms, what we want is that these two
operators with the negation form a DeMorgan triple.
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5.4.1  Enthusiastic aggregation of truth and falsity
At this point we characterized the behavior of our operator on [0,1]2 and on [-1,0]2,
which corresponds to the aggregation of truth with truth or of falsity with falsity. But
how to aggregate falsity and truth, so that the operator keeps its properties on [-1,1]2 ?
An immediate solution is to use a construction similar to the ordinal sum [61]. This
method consists in using a min or a max on [-1,0]x[0,1] ∪  [0,1]x[-1,0]. We obtain, this
way, two operators, a negative enthusiastic and a positive enthusiastic.

The negative enthusiastic will use the min in order to aggregate the truth with the
falsity, and it will always choose the falsity over the truth. Figure 10 represents this kind
of operator, where S is a t-conorm.

The positive enthusiastic will use the max and will always choose the truth over the
falsity.

These two families seem to provide a nice aggregation operator. But if we take a look
closer at the negative and positive enthusiastic operators, we will notice that they have
an annoying characteristic. These operators are not continuous around the total
ignorance.

For instance, a negative enthusiastic aggregation of a very true value with a quasi
ignorance (but true) or with a quasi ignorance (but false), will give a very different
result. In the first case, because of proposition 9 we know that the aggregation will be
bigger that the maximum of the two true values (i.e. a very true value close to 1).

Figure 10. Negative enthusiastic aggregation

In the second case, because of the construction we will use the min, which will give a
quasi ignorance but false, (i.e. a falsity value close to 0). So the result jumps for these
two very close observations from a value close to 1 to a value close to 0.
Mathematically this is translated by a discontinuity on {(x,0) / x∈ ]0,1]} and on
{(0,x) / x∈ ]0,1]}.
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Figure 11. Discontinuity on negative enthusiastic aggregation

Even if this characteristic is not suitable for the aggregation it is clearly the consequence
of the choice of our attitude. We are enthusiastic, so if we observe two truth values we
take the best one, forgetting about the value close to the total ignorance. But if this quasi
ignorance becomes a falsity value then, since we have a negative attitude we will
choose the falsity over the truth.

We may think that the discontinuity is related to negative attitude of the operator. But
unfortunately  we observe the same problem for the positive enthusiastic operators. This
time the aggregation of a total falsity value and two different quasi ignorance values
will give very different results. In fact, we are enthusiastic, so if we observe two falsity
values we take the certain one (i.e. the value close to -1), forgetting about the value
close to the total ignorance (see property 10). But if this quasi ignorance becomes a
truth value, then since we have a positive attitude we will choose the truth over the
falsity.

Mathematically this is translated as a discontinuity on {(x,0) \ x∈ [-1,0[} and on
{(0,x) \ x∈ [-1,0[}.
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5.4.2  Continuous enthusiastic aggregation
Since these discontinuities can be annoying, we can built a continuous operator using a
method inspired by the representation theorem of the continuous Archimedean t-norms
and t-conorms. In concrete terms we will base the construction of the continuous
enthusiastic operator on the use of an additive generator h. Given that on [0,1]2 the
enthusiastic operator equals a t-conorm, our generator h should equal a generator g of a
t-conorm on [0,1].

Mathematically we have that :

For all x∈ [0,1]  h(x) = g(x) (128)

where the function g : [0,1]→[0,+∞] is continuous, strictly increasing, with g(0) = 0 and
g(1) = +∞

In order to obtain a similar behavior on the falsity domain, we use the negation to obtain
the generator on [-1,0] :

For all x∈ [-1,0]  h(x) = n(g(n(x))) = - g(-x) (129)

Figure 12. Enthusiastic aggregation generating function

We obtain a function h : [0,1] → ]-∞,+∞[ , which is a continuous, strictly increasing
bijection, symmetric with respect to the point (0,0) and satisfying h(0) = 0. The
continuous enthusiastic operator being defined by :

Enthu(x,y) = h-1(h(x)+h(y)) (130)

We verify that we have an enthusiastic operator, since it is by construction associative,
commutative and for all   x∈ [-1,1]2 Enthu(0,x) = x (because h(0)=0).
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Automatically we inherit the properties 8, 9 and 10, which translate the reinforcement
behavior when observing twice the truth (or twice the falsity) and compensation when
confronting  truth and falsity.

A particularity of this family is that when observing the total truth and then any other
value (even if it is false), we will enthusiastically take the certain value (the total truth)
as the aggregated value. Mathematically :

Proposition 12 : For all x∈ ]-1,1]   Enthu(x,1) = 1.

Proof. Obvious taking into account that h(1)=g(1)=+∞

The same happens, when we observe the total falsity and any other value, then we
choose the total falsity.

Proposition 13 : For all x∈ [-1,1[   Enthu(x,-1) = -1.

Proof. Obvious taking into account that h(-1) = - g(-(-1)) = - g(1) = - ∞

Representation Theorem : We have shown that our construction gives an operator
with a certain number of remarkable properties, but it is interesting to notice that it has
been shown (based on the results of [1]) in [55] that if we request our operator to be
associative, monotone, commutative, self involutive, with a neutral element and
continuous on [-1,1]2 except on the points (-1,1) and (1,-1), then it can be written under
the form (130).

This result shows in particular that if we want an operator satisfying the basic properties
(see section 5.2), having the same behavior for the truth and for the falsity (i.e. self
involutive) and enthusiastic with respect to the total ignorance, then the only continuous
solution is the one presented here.

Under the light of propositions 12 and 13 a natural question arises : what happens when
confronting the total truth with the total falsity?  Actually formula (130) does not give
any answer. Mathematically we observe that (130) is continuous on [-1,1]2 besides the
limit points (0,1) and (1,0), where the function is undefined. This translates the
impossibility of giving a value when observing a total truth and a total falsity. Let take
us a closer look at this "full contradiction" in the next section.
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5.4.3  The full contradiction
Let us assume that the enthusiastic operator gives a value k as result of a full
contradiction :

k = Enthu(-1,1) (131)

The first thing we may think is that the total contradiction should equal the total
ignorance. But this is impossible.

Proposition 14 : The full contradiction is not the total ignorance ( k ≠ 0 ).

Proof. Let us suppose that k = 0.

Let us now aggregate twice the total truth and a total falsity Enthu(-1, 1, 1).

On the one hand using the associativity and the boundary condition property, we
have Enthu(-1, 1, 1) = Enthu(-1, Enthu(1, 1)) = Enthu(-1, 1) = k.

On the other hand using again the associativity, the neutrality of the total ignorance
in the enthusiastic case and the hypothesis (k = 0), we have

Enthu(-1, 1, 1) = Enthu(Enthu(-1,1),1) = Enthu( k,1) = Enthu( 0, 1) = 1.

So, we obtain k =1, which in contradiction with the hypothesis.

If the full contradiction do not equal the total ignorance, what can then it be? The
answer is presented in the Proposition 15 :

Proposition 15 : The full contradiction equals either the total truth (k = 1) or the total
falsity (k = -1) (Note : or is not defined).

Proof. We still suppose that the full contradiction gives a value k. We do again the
same reasoning as for the previous proposition but this time we know that k ≠ 0.

Let us suppose that the full contradiction is a truth value (k>0) and let us aggregate
twice the total truth and a total falsity :

Using the associativity and the boundary condition property, and the enthusiastic
property described in Proposition 7, we have

k = Enthu(-1, 1) = Enthu(-1, Enthu(1, 1)) = Enthu(Enthu(-1,1),1) = Enthu( k,1) = 1.

If we suppose now that the full contradiction is a false value (k<0) and we
aggregate a total truth and twice the total falsity, we obtain, using the associativity
and the boundary condition property, and the enthusiastic property described in
Proposition 8, we have  :

k =Enthu(1, -1) =Enthu(1, Enthu(-1, -1)) =Enthu(Enthu(1,-1),-1) =Enthu( k,-1) = -1
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5.4.4  Normal contradiction with the total truth or with the total falsity
In the precedent section we study the values of the edges of the unit square for an
enthusiastic aggregation operator (see Figure 13). The thick lines indicate the known
areas. In the following we are going to study the remaining (lines A, B, C and D), which
correspond to a contradiction with the total truth or with the total falsity.

Figure 13. Know points for an enthusiastic aggregation admitting full contradiction

The result shown in Proposition 16 translates the fact that any contradiction with the
total truth gives either the total truth or gives the false value.

Proposition 16 : For all x∈  [-1,1]   Enthu(x,1) =1 or Enthu(x,1) =x.

Proof. Let us call x the result of the aggregation of a truth value z with the total
truth :

Enthu(z,1) = x.  Now, using the associativity we have that,

Enthu(x,1) = Enthu(Enthu(z,1),1) = Enthu(z, Enthu(1,1)) = Enthu(z,1) = x.

Two cases appear :

- x ≥0, then using Proposition 7, we have x = Enthu(x,1) = 1.

- x < 0, then Enthu(x,1) = x.

Note : Proposition 7 fixes the values for the case where there is no contradiction. So,
Proposition 16 is particularly interesting for the contradiction with the total truth.

With this result and using the monotonicity property we can draw Figure 14, where we
show the possible construction for the contradiction with the total truth (p being a
strictly negative value : p∈ [-1,0[ ). It is to notice that we did not assume any hypothesis
about the continuity.
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Figure 14. Enthusiastic aggregation of the total truth.

Now we can do an analogous reasoning in order to obtain the behavior of the
contradiction with the total falsity. We find in this case that any contradiction with the
total falsity gives either the total falsity or the truth value.

Proposition 17 : For all x∈  [-1,1]   Enthu(x,-1) =-1 or Enthu(x,-1) =x.

Proof. Analogous as in Proposition 16, but this time we use Proposition 8 instead
of Proposition 7.

Taking into account Proposition 17 and Proposition 8, we can draw (Figure 15) the
enthusiastic aggregation with the total falsity. This time q is a strictly positive value
(i.e. q ∈ ]0,1]).

Figure 15. Enthusiastic aggregation of the total falsity.
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Taking into account the results of the full contradiction (see previous section 5.4.3) and
Proposition 16 and Proposition 17, we immediately see that there is no continuous
enthusiastic aggregation operator.

Proposition 18 : There is no continuous enthusiastic aggregation operator.

Proof. If the full contradiction is not defined, we cannot even talk about continuity.
And if it is defined, we know (Proposition 15) that it is either the total falsity or the
total truth.

- If the full contradiction k is the total falsity (i.e. k = -1), then the enthusiastic
aggregation with the total truth is not continuous (for any p∈ ]-1,0[).

- If the full contradiction k is the total truth (i.e. k =1), then the enthusiastic
aggregation with the total falsity is not continuous (for any q∈ ]0,1[).

This result points out that the "best" solution for an enthusiastic aggregation operator is
the operator continuous enthusiastic presented in section 5.4.2. But taking into account
Proposition 18, how can we talk about continuous enthusiastic operator ? The answer to
this question is that the discontinuities in this case where pushed to the points (-1,1) and
(1,-1), where the function is not defined. And if we define them, Proposition 18 applies
and we will have discontinuities at the full contradiction points (i.e. (-1,1) and (1,-1)).
But the function is continuous everywhere else. Rigorously we should speak about an
"almost" continuous enthusiastic aggregation operator.  Note that the continuity here is
exactly the same as the continuity of the addition on the extended real line (or the
continuity of the product on [0,+∞].

Another simple result relating the contradictions is that if the full contradiction equals
the total falsity, then the enthusiastic aggregation with the falsity (and in particular the
contradiction) equals the total falsity.

Proposition 19 : If  k = -1 then for all x ∈  [-1,1]   Enthu(x,-1) = -1.

Proof. By definition Enthu(x,-1) ≥ -1. And using the monotonicity

-1 = k = Enthu(1,-1) ≥ Enthu(x,-1). Which concludes the proof.

In the same way if the full contradiction equals the total truth, then the enthusiastic
aggregation with the truth equals the total truth.

Proposition 20 : If  k = 1 then for all x ∈  [-1,1]   Enthu(x,1) = 1.

Proof. By definition Enthu(x,1) ≤ 1. And using the monotonicity

1 = k = Enthu(-1, 1) ≤ Enthu(x,1). Which concludes the proof.
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5.4.5  Normal contradiction
The results of section 5.4.4 allow us almost completely to characterize the enthusiastic
aggregation operators. In fact using the monotonicity it is trivial to show that any
enthusiastic aggregation operator can be represented by Figure 16 or Figure 17, where
p∈ [-1,0] and q∈ [0,1].

Figure 16. Enthusiastic aggregation with a negative approach for the contradiction.

Figure 17. Enthusiastic aggregation with a positive approach for the contradiction.

Figure 17 represents what we called an enthusiastic aggregation with a positive
approach for the contradiction, since if we presence a contradiction with a truth value
strong enough (≥ q), then the action of the operator will be to forget the false value
taking just the truth one. In the same way, Figure 16 stands for a negative approach,
since we just take the falsity value when we observe a contradiction with falsity strong
enough (≤ p).

Note : We recall that if q or p are different from 1, then the operator is not continuous.
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5.4.6  Comparison with known operators
Here again we want to compare the enthusiastic operators  to the existing ones and we
need to do a scale transformation.

The construction of the enthusiastic operator is based on a t-conorm and a negation. So,
by simple linear transformation we can obtain a t-norm or a t-conorm :

For all x,y ∈  [0,1]2   T (x,y) = -Enthu(-x,-y) (132)

For all x,y ∈  [0,1]2   S (x,y) = Enthu(x,y) (133)

But maybe the most natural transformation is a linear transformation from [-1,1] to
[0,1]. In this case we obtain a particular uninorm (see section 2.9) :

For all x,y ∈  [0,1]2   )1)2,2((
2

1
),(2/1 −⋅= yxEnthuyxU (134)

This uninorm is particular since the neutral element e equals 1/2 and the underlying
t-norms and t-conorms are dual. Note that it is easy to conceive a non linear
transformation so that we obtain a uninorm with any neutral element e from an
enthusiastic operator.
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5.5  Applications

At this point we characterized two operators devoted to the aggregation of truth values
(enthusiastic and prudent). But actually, the aggregation of truth values is usually being
done by conjunctive operators (t-norms) or disjunctive operators (t-conorms). So, what
is the difference between these operators and the introduced construction ? The main
difference is that we are not interested in the logical truth value of a logical formula, but
in the aggregation of different values of truth for the same proposition. So, in order to
compute the truth value of a logical formula of the form "a is A (degree of truth x) AND
b is B (degree of truth y)", we use of course a t-norm T :  "(a is A AND b is B) (degree
of truth T(x,y))". But if we observe first "a is A (degree of truth x)" and then we observe
"a is A (degree of truth y)", then we will use a prudent or enthusiastic aggregation to
obtain "a is A (degree of truth Prud(x,y))" or "a is A (degree of truth Enthu(x,y))".

The aggregation presented in this chapter should be used whenever we observe different
truth values for the same proposition. A good example when this occurs is the case of
the expert systems, where several rules point to the same conclusion. In fuzzy systems it
is common to use in this case a t-norm (or a t-conorm), but actually the operator that
should be used is a prudent or enthusiastic operator. Actually, if we examine the
handling of uncertainty in non-fuzzy expert systems, we notice that the heuristics used
to aggregate the truth values are nothing else than operators of the families presented in
this chapter. For instance the medical expert system MYCIN [8] used an almost
continuous enthusiastic operator, based on the following generator :




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=
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xforx

xforx
xh (135)

Giving the global aggregation operator (for two arguments) :
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Note: We would like to recall that this operator was proposed as an ad hoc solution
based on a more or less probabilistic approach. And we obtained this operator as a
particular case in a formal study on aggregation of truth and falsity values. This fact do
not justify the ad hoc nature of  the solution adopted in MYCIN, but presents a general
framework for this kind of aggregation. We are just interested in the combination rule
(i.e. aggregation of the truth values obtained by different rules for the same conclusion)
and not in the deduction process or in the uncertainty propagation, which are sources of
errors (see [33],[34]).



Studying the Operators

108

Obviously, the use of enthusiastic (or prudent) operators is not restricted to the expert
systems. Their use is suitable in other fields as sensor fusion and decision making. More
generally in the case of data fusion, we recommend to use these operators when several
sources (expert, sensors, etc.) give different certainty values for the same fact (object,
statement, etc.).

Figure 18. Multiple Source Aggregation

Another interesting case where the prudent and/or the enthusiastic operators are suitable
is the case of data received in a temporal framework. Then the revision of the already
received data should be performed with the proposed operators. We notice here that the
associativity becomes particularly interesting.

Figure 19. Temporal Data Aggregation

Concluding remarks

This chapter is a first attempt at the formalization of the aggregation of truth values in a
non logical calculus way. With necessary conditions (axioms) we characterized two
truth aggregation families : the prudent and the enthusiastic.

The first one has a cautious attitude choosing between two observed values the one that
is more uncertain. This defines completely the operator, but its behavior seems not to be
very interesting in the case of multiple aggregation. Since the general tendency of the
prudent aggregation is to tend to the uncertainty, so for a lot of aggregations the final
result is going to be probably the uncertainty. For instance if we observe a contradiction
we are going to get stuck in the total ignorance (consequence of Propositions 1, 4
and 6).   

factSource 2

Source 1 Source 3
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The second one has an enthusiastic behavior and will reinforce the result if we observe
twice the truth or twice the falsity. When observing falsity and truth the operator gives a
compensated value. This seems to be a suitable way to do multiple aggregation, but we
should keep in mind the consequences of our choice :

We should not forget that these operators are commutative. In fact we assume that the
sources (sensors or rules) play symmetric roles and have the same importance. The use
of this type of aggregation is suitable if we are in presence of high priority sources as
for instance alarm detectors or exception rules.

We have a reinforcement behavior, so we are aware of the fact that if the information of
one source (sensor or rule) is used several times we will be reinforced. We also are
conscious of the fact that information of specialized sources will be reinforced with
information coming from general sources.

It is clear that in order to use this aggregation the sources need to point to the same
conclusion and have to be working well. In other words this aggregation method do not
support inconsistent and unreliable sources.

All the precedent inconveniences are central issues in the fusion field. Some solution are
presented in section 2.6. We can easily imagine to extend these solutions to our
operators.

Finally we would like to finish by pointing out that in Proposition 18, we showed that
there does not exist a completely continuous enthusiastic operator. This leads to the
conclusion that the "best" operator is the almost continuous one (130). This particular
case is based on an additive generated formula. In the next chapter, we present a
proposal for the study and construction of this kind of operator, not based on axioms
and mathematical formulas, but on a metaphor allowing intuitional interpretation.
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Chapter 6

The Balance Framework

The problem of aggregating fuzzy sets in a meaningful way has been of a central
interest since the late 1970s. In most cases (as we have observed in chapter 2), the
aggregation operators are defined on a pure axiomatic basis, forgetting usually to
give a global intuitive vision of the comportment.

This is why, in this chapter, we present a new way, based on a metaphor, to conceive
new aggregation operators. The use of a metaphor offers the possibility to illustrate
the mathematical and axiomatic choices, providing in this way an intuitive vision of
the behavior of the operator.

The results of the aggregation of truth and falsity values (chapter 5) push us to
particularly focus on additively generated operators. The balance metaphor is
conceived specifically for this type of operators. We also establish that this new
family is not only meaningful, but it is also enough general to include operators of
the most common aggregation families presented in chapter 2.

We start this chapter (section 6.1) by establishing the metaphor between the balance
model and a mathematical model. We proceed to explain how this new operator can
take the form of classical operators (section 6.2). This provides evidence that we
have a general framework, that allows us to compare the different existing operators
and to create new ones.

In order to compare the global behavior of different operators, in section 6.4, we
propose to use the balance framework as a method of visualization. In this way we
avoid the problem due to the axiomatisation. In fact, it is generally not obvious, just
by comparing sets axioms, to know the effect of their interaction on the global
behavior. We first show how to represent the general comportment on the balance
model. Then pushing the metaphor further we discover that we can add more
information to our first scheme, as for instance the visualization of the sensitivity of
the operator, based on the derivative of the constructing functions. And finally we
illustrate on this scheme how we can analyze a particular data aggregation, providing
a data mining tool.
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For the construction matters, in section 6.5 we use the metaphor to guide the
construction of an aggregation operator. This methodology is not only interesting
because it introduces reflection during each step of the construction, but also because
the natural choices conduce to interesting aggregation operators (see section 6.6).
One advantage of using the metaphor for putting together an operator is that we do
not need to identify the family to know the behavioral properties of the operator.
Another advantage is that the operator can be built in a progressive way, where each
step has an immediate intuitive consequence.

We conclude this chapter (section 6.7) by presenting concrete application of the
balance framework. On the one hand we explain what kind of balance corresponds to
the enthusiastic aggregation of truth and falsity. On the other hand we present the use
of the metaphor as a starting point for the construction of original operators.
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6.1  Construction of the metaphor

The construction of our new mathematical aggregation operator, as we said, is based on
the metaphor of a balance. The idea is to establish a strong relationship between a real
world object, on which we have natural intuition, with an abstract mathematical
formula. In order to achieve this project we will proceed as follows : first we will take a
physical model of a real balance. Then with the help of some basic physics and some
mathematics we will obtain a mathematical model of the artifact. We will at this point
remark that the formula that gives us the total weight is a general form of a lot of
aggregation operators.

6.1.1  The physical model
The physical model of a balance we use is shown in the Figure 20, where di is the
distance of the object i to the fulcrum, mi his mass, g the acceleration due to the gravity,
k is the constant of stiffness of the spring, and finally α is the angle between the lever
and the horizon.

Figure 20. The Balance model

We can now, with the help of physics formulas, translate this scheme of a balance into
mathematical equations.
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6.1.2  The physics laws
Newton's Second Law says that the sum of the moments (forces) equals zero :

02211

&

&

&

&

&

& =⋅⋅+×⋅+×⋅ zukdgmdgm α (137)

Executing the vector product, we obtain :

( )( ) ( ) ( ) 0coscos 2211

������
=⋅⋅+⋅⋅⋅⋅+⋅+⋅⋅⋅ zzz ukudgmudgm ααπα (138)

Making the projection on the z-axis, we have :

( ) ( ) ( ) 0coscos 1122 =⋅+⋅⋅⋅−⋅⋅⋅ ααα kdgmdgm
��

(139)

We can suppose without any restriction that α is very small (close to zero). In this case
we can approximate ( ) 1cos

O→
≈

α
α  .Then the equation becomes :

01122 =+− αkdgmdgm
��

(140)

Let e be the position of the fulcrum on the lever and xi the position of the object i. Then
the distance of the object i  to the fulcrum is :

exd ii −=
�

(141)

So we obtain :

01122 =+−⋅−−⋅ αkexgmexgm (142)

We remark that

ex ≥2  and so ( )exex −=− 22
(143)

ex ≤1  and so ( )exex −=−− 21 (144)

Then the formula (142) becomes :

( ) ( ) 01122 =+−⋅+−⋅ αkexgmexgm (145)

We introduce the oriented distance :

( )exd ii −= (146)



 Chapter 6 : The Balance Framework

115

d is called in physics the oriented distance, because it gives the value of the distance
and it is negative when we are on the left of the fulcrum and positive when we are on
the right.

The formula (145) then becomes :

02211 =+⋅+⋅ αkdgmdgm (147)

If we want to read the result of the weight, we only need to know α. So, we solve for
that the equation on α :

( )2211 dmdm
k

g +−=α (148)

We can easily generalize this result to n weights :

∑
=

⋅−=
n

i
iidm

k

g

1

α (149)

Let be ii mgw ⋅= , the weight of the object i, then the equation will be :

∑
=

⋅−=
n

i
iidw

k 1

1α (150)

We obtained here the equation that computes the value of the angle using the weight
and their positions. But what happens if we change the topology of the space ?
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6.1.3  The balance equation with topology transformation
If we look closer to what we called the oriented distance, we will see that it is a linear
function.

Figure 21 : Oriented distance as a function

This function associates to each point x, of the natural scale of the lever, a value of
"distance with sign". As we just said it is a linear function, but we can imagine that we
want to distort the topology of the scale by using a non-linear function  f : x → f (x).

Taking this into account, the equation of the balance (150) becomes :

( )∑
=

⋅⋅−=
n

i
ii xfw

k 1

1α (151)

Let be ( )∑
=

⋅=
n

i
ii xfwy

1

, then the previous equation can be written :

y
k

⋅−= 1α (152)

We observe here, once more, a linear function. This operator associates to each point y,
a value of α. In other words it is the scale drawn on the balance. We can here also
decide that the scale will not be linear. If we call  h : y → h (y), the new non-linear
function, the balance equation (152) becomes :

( )




 ⋅= ∑

=

n

i
ii xfwh

1

α (153)
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We observe in formula that the weight i is automatically associated to the argument i.
(���������
�
�
����
��	������)��
���#������
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������
�
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���
��
��������
�������

weight i to a particular argument i' ����i).  The equation can be expressed  by :

( )




 ⋅= ∑

=

n

i
ii xfwh

1
)(σα (154)

Here α can be understood as the value read on the weight-scale of the balance. In fact it
is the transformation by h of the angle between the lever and the horizon. In other words
it is the function that gives us the weights on the weight scale. We obtained in (154)
the formula that gives us the total weight read on the scale using the single weights as
input. And this is exactly the idea of an aggregation operator. We will call this formula
the balance equation.

The balance equation is a general form of a mathematical operator; let us now show in
the next section that the balance equation is pertinent because it is a general form of
many classical operators, presented in chapter 2.
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6.2  Particular Balances

We obtained a mathematical formula from a physical model of a balance (154). This
formula looked like an interesting aggregation operator, in fact it is the general form of
a lot of classical operators. In this section we will try to describe different particular
cases of the balance formula that correspond to well-known aggregation operators. For
each one of these examples, we recall the usual form of this operator (see chapter 2 for
more details). Then we show why it is a particular case of the balance formula (154).

6.2.1  Quasi-arithmetic means
As we saw in section 2.2, the most common way to aggregate information is to use the
quasi-arithmetic mean  (24), where f is a strictly monotone function :
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),...,,( (155)

We remark that (155) is a particular case of the balance equation (154), where f is a
strictly monotone function, h is the inverse of f  (i.e. f -1), all the weights equal 1/n and
the association of weights is the identity ( �(i) = i  for all i ).

Note : any permutation will also give the same result since all the weights are equal.

Since the balance equation generalizes the quasi-arithmetic mean then it also
generalizes all its particular cases :

Operator Lever
f(x)

Weight
Scale h(x)

Weights
wi

Weight
association

arithmetic mean x x wi = 1/n any �

quadratic mean
2x 2 x wi = 1/n any �

geometric mean log x xe wi = 1/n any �

harmonic mean
x

1

x

1
wi = 1/n any �

weighted mean x x 1
1

=∑
=

n

i
iw any �

Table 11. Balance operator in the means family.

Note :  It is usually claimed that the maximum and minimum are particular cases of the
quasi-arithmetic mean. In reality they are limit cases, which means that we can
approach them as much as we want, but we are never going to obtain the operator.
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6.2.2  t-norms and t-conorms
We already introduced t-norms and t-conorms and worked with them. Please refer to
section 2.7 for definitions and chapters 3 and 4 for detailed studies on these operators.

Here we are particularly interested in the Archimedean t-norms and t-conorms (see
section 2.7.5), because of their representation based on the additive generator. It has
been shown that for every continuous Archimedean t-norm T, there exists a continuous
decreasing function  f such that :

( )




= ∑

=

−
n

i
in xffxxT

1

)1(
1 ),,( � (156)

We remark that this representation  of an Archimedean t-norm is a particular case of the
balance equation (154), where f is a continuous decreasing function ],0[]1,0[: +∞→f
satisfying  f (1)=0.

h being the pseudo inverse (50) of  f (-1) defined by :

( ) ( )
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]),0(] if0

)]0(,0[if1
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fz

fzzf
zf (157)

Or in a more practical form :

( ) ( )( ))0(,min1)1( fzfzf −− = (158)

All the weights equal the unity (i.e. wi =1) and the association of weights is the identity
( �(i) = i for all i ).

For the continuous Archimedean t-conorms, we have an equivalent representation :

( )




= ∑

=

−
n

i
in xggxxS

1

)1(
1 ),,( � (159)

But this time the function f of the balance equation (154) corresponds to a continuous
function ],0[]1,0[: +∞→g  satisfying g (0)=0.

The function h corresponds now to the pseudo-inverse g (-1), defined by :

( ) ( )




+∞∈
∈

=
−

−

]),1(] if1

)]1(,0[if1
)1(

gz

gzzg
zg (160)

Or in a more practical form :

( ) ( )( ))1(,min1)1( gzgzg −− = (161)
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Again all the weights equal the unity (i.e. wi =1) and the association of weights is the
identity ( �(i) = i ).

Note : any permutation � will also give the same result for the t-norms or the t-conorms,
since all the weights are equal.

In the following table we present some examples of continuous Archimedean t-norms
and t-conorms and the different aspects for the construction of a balance.

Operator Lever
f(x)

Weight Scale
h(x)

Weights
wi

Weight
association

Probabilistic
t-norm

-ln(x) xe− wi = 1 any �

Probabilistic
t-conorm

-ln(1-x) xe−−1 wi = 1 any �

Lukasiewicz
t-norm

1-x

1- min(x,1)

=

max (1-x,0)

wi = 1 any �

Lukasiewicz
t-conorm

x min(x, 1) wi = 1 any �

Yager t-norm (1- x) p

p x )1,min(1 −

=

( )0,1max p x−

wi = 1 any �

Yager
t-conorm

x  p

p x )1,min(

=

( )1,min p x

wi = 1 any �

Table 12. Balance operator in the continuous Archimedean t-norm
and t-conorm families.
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6.2.3  Ordered Weighted Averaging Operators (OWA)
In section 2.4, we presented the family of aggregation operators called the Ordered
Weighted Averaging Operators (30) :

∑∑
==

−==
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ii

n

j
jjn xwxwxxxOWA

1
)(

1
)(21 1),,,( σσ� (162)

where 1
1

=∑
=

n

i
iw , and σ is the permutation that orders the elements :

)()2()1( nxxx σσσ ≤≤≤ � .

We remark that the equation of an OWA operator (162) is a particular case of the
balance equation (154), where h and f are identity equations : xxhxf == )()( . The
permutation σ is simply the way we associate the weights to the arguments. Here we
associate the first weight (w1) to the argument placed at first on the lever, looking from
the left to the right (i.e. aσ(1)). The second weight (w1) will be associated to the next
argument on the right of the first one (aσ(2)), and so on.

Since the OWA operator is a particular case of the balance equation, all the following
operators are particular cases of the balance :

Operator Lever
f(x)

Weight
Scale h(x)

Weights wi Weight association

the
minimum

x x  




≠=
=

0 if0

11

iw

w

i

the
maximum

x x  




≠=
=

niw

w

i

n

 if0

1

k-order
statistics

x x




≠=
=

kiw

w

i

k

 if0

1

σ is the permutation that
orders the elements :

)()2()1( nxxx σσσ ≤≤≤ �

Table 13. Balance operator in the OWA operator case
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6.2.4  Symmetric Sum
In section 2.3, we presented an interesting aggregation family characterized by the
property of self-duality (26). We recall this property :

)1,,1,1(1),,,( 2121 nn xxxSxxxS −−−−= �� (163)

Equation (163) is translated in the balance framework by the fact that we would like the
operator to act the same way if we invert the scales. A sufficient condition for this is
first to have the same scale on the left and on the right of the lever. And second to have
the same scale on the lower and higher part of the weight scale.

Since in the case of symmetric sums we are interested in aggregation in [0,1], the
fulcrum should be placed at 1/2 (for symmetry reasons). And then the first condition is
translated mathematically by :
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The second condition, corresponding to the symmetry of the weight scale, should
translate the symmetry (based on the angles) of the scale, with respect to α =0. This is
translated by :

( ) ( ) 1=−+ αα hh (165)

These two conditions are sufficient to obtain a symmetric sum with a balance.

In fact, 1-h( f (1-x)+ f (1-y))  = 1-h( f (1/2+(1/2-x))+ f (1/2+(1/2-y)))

= 1-h( - f (1/2-(1/2-x)) - f (1/2-(1/2-y)))

= 1-h( -(f (x))+ f (y)))

= 1- (1 - h( f (x))+ f (x)))

=  h( f (x))+ f (x))

Note : conditions (164) and (165) are more general than condition (29) presented by
Silvert in [78] in a quasi-arithmetic mean context.
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6.2.5  Generated Uninorms
Very interesting operators are the uniform aggregation operators (uninorms) (see
section 2.9). But as already remarked, they are in general non continuous. In [43] Fodor,
Yager and Rybalov proposed an almost continuous solution : the generated uninorms
(see section 2.9.4) :
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It is clear that equation (166) is a particular case of the balance equation (154), where
the lever function  f  is a strictly increasing continuous function f = g : [0,1]→[-∞,+∞],
so that g(0)= -∞, g(1)= +∞ . The weight scale function h is the inverse function of g
(i.e. h=g -1). The weights are all equal to one, and so any weight association � gives the
same result.

We remark that generated uninorm operators were already introduced as an interesting
class of aggregation operators by Klement, Mesiar and Pap in [54], and were called the
associative compensatory operator (see (55) in section 2.8). The authors based the
construction of the function g on two additive generators, one of a continuous
Archimedean t-norm (function t) and one of a continuous Archimedean t-conorm
(function s). Then the lever function becomes (e being placed at the fulcrum) :
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We recall that t is a strictly decreasing continuous function satisfying t(1)=0. And s is a
strictly increasing continuous function satisfying s(0)=0.

We can compute the inverse function in order to obtain the weight scale function h :
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In the balance framework we can interpret equations (167) and (168), by saying that the
idea is to build a t-norm for the elements put on the left side of the lever (with respect to
the fulcrum e). If we actually put some elements there, the balance is going to point to
the upper part of the weight scale (α ≥0). Since we want a t-norm, we need in this part
the corresponding operator (i.e. the inverse function for the t-norm). The division and
multiplication by e are introduced in order to obtain a full t-norm on [0,e]. The same
reasoning can be made for the right side of the lever and for the lower side of the weight
scale.
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6.2.6  Monotonic Identity Commutative Aggregator
In the previous sections we presented well known families. Here we would like to
describe an interesting operator introduced by Yager and Kelman in [53]. This
aggregation operator was introduced after a long study in order to obtain the best
operator for a real operational problem and as an illustration of what the authors called
Monotonic Identity Commutative Aggregator. It was defined by :
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It is noticed by the authors that if k =0, we obtain the Lukasiewicz t-conorm and if k =1,
we obtain the Lukasiewicz t-norm. Note that this operator was also introduce by Mesiar
in [68] as combination of Lukasiewicz t-norm and t-conorm.

This time the relationship with the balance operator is not so obvious, but if we consider
the functions :

•  f (x) = x- k.

•  h(x) = max(0,min(1,x+k))

We obtain :
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And now it is obvious that it is a particular case of the balance equation (154), where all
the weights equal the unity (i.e. wi =1).

In the balance framework we can see that the lever function f is nothing else than a
normal linear scale (recall (150)). And the weight scale h is also a linear scale that
blocks on 1 for total weights higher than 1 and for total weights smaller than 0 (see
Figure 22). It is also to notice that the weight scale is built so that the empty balance
shows the weight k (the neutral element).

Figure 22. Weight scale h for Kelman's operator.
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6.2.7 Other operators
Precedent sections have shown that the balance equation (154) covers a wide range of
aggregation operators, where we find operators going from the t-norm family to
operators like the quasi-arithmetic means, going through the OWA operators or even
some uninorms. But we do not pretend here that we generalize every single family. In
particular the presented balance model do not include the most important group of the
fuzzy discrete integrals, the aggregators that take into account interaction. In fact, in the
balance model, we clearly associate a weight to each argument, while in the fuzzy
integrals we associate weights to the groups of arguments. However, we can imagine
that an extended balance model will describe the association of weights to several
arguments. This will lead to include most likely the Choquet integrals, since they are in
an additive form. But certainly the Sugeno integrals are too different to be included
under this model. We may just think about the weighted means.

It is to notice that a lot of work is currently being done on particular mathematical
aspects relative to operators of the form (154) or some particular cases (mostly where
h = f -1 ) see [60]. For instance on conditions on the function so that the operator is
associative (see [10]).

In the next section 6.3, we show that the balance equation can easily be put under a
product form and so be used for all product based aggregation operators.
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6.3  The balance equation in a product form

All the operators presented in the previous sections of this chapter are written in an
additive form (154). Here, we show that the balance can also be put in a product form
(171) :
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In order to make the proof simpler, we start by showing the relation for n=2 and all
weights equal to1.

Let Aggreg be an aggregation operator of the form :

( ) ( ))()(, yxyxAggreg ϕϕχ ⋅= (172)

And let us define now the function f  by :

( ) ( )( )xxf ϕlog−= (173)

So, we have :

( ) ( ))(exp xfx −=ϕ (174)

Let define the function h by :

( ) ( )xxh −= (expχ (175)

If we take now equation (172) and we replace the function ϕ  by a trivial form :

( ) ( )( ))log(exp xx ϕϕ = (176)

Equation (172) becomes :

( ) ( )( ) ( )( )( ))log(exp )log(exp, yxyxAggreg ϕϕχ ⋅= (177)

Equation (172) becomes :

( ) ( ) ( )( )( ))log()log(exp, yxyxAggreg ϕϕχ += (178)

If we use now the definition (173)of the function  f, equation (172) becomes :
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If we now use the definition of h (175), equation (172) becomes :

( ) ( ))()(, yfxfhyxAggreg += (180)

We obtained the classical formulation of the balance equation, in the particular case of
two elements (n=2) and all the weights equal to 1. The aggregation operator Aggreg is
associative, so the generalization of this demonstration to n elements is trivial. The
problem with the weights can be solved doing once again the demonstration, but this
time with weights, and using the property of the logarithm :

)log()log( abab ⋅= (181)

We have in this way shown that all the functions of the form (171) take the form of the
balance equation (154) with the lever function f defined by (173) and the weights scale
function h defined by (175).

In other words we have shown that not only all operators defined on an additive form
can exploit the metaphor, but also all the operators defined on a product basis.
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6.4 The visualization of Aggregation

Aggregation operators are usually defined by mathematical and axiomatic choices. This
method of construction and study allows irrefutable reasoning, but very often we forget
that axioms are on the basis of the construction and that their influence (of each one or
their combination) on the final operator is not always obvious.

This is why we propose to use the balance framework as a method of visualization that
allows us to draw on a scheme the global behavior of an operator. With this global
vision, we will automatically obtain an intuitional understanding of the operator and its
global comportment.

In this section we show how we build the scheme of the general comportment. Then we
see that we can add more information to our scheme, as for instance the visualization of
the sensitivity of the operator. And finally we illustrate how the construction of the
scheme can be used to visualize a particular data aggregation.

6.4.1  The visualization of the general comportment
As we insisted before, the visualization is fundamental for the good understanding of
the global behavior of an operator. If we want to visualize (with our metaphor) a
particular aggregator, at first we have to show that we can put it on the balance equation
form.

While establishing the analogy between the physical balance model and the balance
equation (154) we introduce the notion of a topology transformation (see section 6.1.3).
This concept emerges with the apparition of the functions f and h. Let us analyze first
the function f.

The topology transformation by f
As we already said, the function f associates to each position x, of the natural scale of
the lever, a new value, in other words a new position. In order to visualize the action of
this functions, we can draw the transformation of a linear scale done by the function f.
So we project, using f, a constant step from the x-axis to the y-axis. This way, we obtain
the new-scaled lever on the y-axis. (See Figure 23)
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Figure 23. Scale transformation induced by f

What we actually do is the topological transformation of a linear scale by f. We can now
translate this action in mathematical terms and we will obtain a direct procedure to draw
the topological transformation. In order to visualize the action of the topology
transformation f on the interval [a,b], on a n point scale, we need only to draw on an
oriented axis the points :
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In order to actually draw a balance, we need to re-scale the points to the size of the
drawn lever. For a lever of length L⋅2  and where the fulcrum is placed at the zero point
of the axis, we re-scale the points by using :
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where fm is the lowest value attempted by the function on the n points and fM is the
highest one. In the case when f is monotone,  fm = f(a) and fM = f(b) for the increasing
case and fm= f(b) and fM = f(a) for the decreasing one.
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When the scale is already constructed, we suggest to show the value x on its new
position (i.e. f(x)). In this way it is clear where each value is located (see Figure 24).

Figure 24. A balance with a topological transformed lever

The topology transformation by h
If we look now at the function h, we will observe that it transforms the angle between
the lever and the horizon into the value read on the weight-scale of the balance. Once
more h transforms the natural linear scale onto a new one. That is the reason why we
talk about topology transformation.

However here the construction of the new scale is a bit different. The scale we built
with f was constructed in order to illustrate the new positioning of arguments separated
by a constant step. Here the new weight scale has to be built in order to show the right
total aggregation with the natural functioning of the lever. This last condition is
fundamental if we want to preserve our intuition on the balance model. To be more
precise, we want that, when the lever makes an angle α with the horizon, the weight
shown is h(α). We also expect that the numerical variation of the points appearing on
the weight scale remains linear.  In other words we want to deform a linear scale of h(α)
and put it on the α -space. To do so, we use a similar method as for f, but this time we
will project a regular step from the y-axis onto the x-axis, and then distort the obtained
scale into a part of a circumference (see Figure 25).

-0,25-1 -0,75 -0,5 0,250

x value on the
new f(x) position

the fulcrum on  f (0)
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Figure 25. Scale transformation induced by h

What we actually do is the projection of a linear scale by the inverse function of h
(i.e. h-1). We remark that very often the aggregation operators require h = f -1, which
makes the calculus trivial because we already know f. For the remaining cases, we have
almost always a continuous strictly monotone function h, so the inverse function can be
determined. And if it is not the case, the projection can generally be done by doing a
piecewise treatment.

The mathematical way to obtain the action of the topology transformation h on the
interval [a,b] with a n points scale, is to draw the n points on an arc of circumference of
rayon R :
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In other to draw the scheme we need to place these n points on a circumference of rayon
L, corresponding to the size of the lever. We place the n points by characterizing their
(x,y) coordinates. Let hm be the lowest value attempted by the function on the n points
and  hM  be the highest one. And let be ( ) ( )( )mMmM hhsignhhH ,max,max ×= .

Then we use the formula :

h(x)
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When the scale is already constructed, we suggest to put the value ( )
n

i
aba −+  next to

its new hi -position, in order to show the total aggregation value that will be computed
for this position of the lever. (See Figure 26)

Figure 26. A balance with a topological transformed weight scale

We have presented here the mathematical formulas that allow us to construct a balance
model with its topologically transformed scales. This visualization is fundamental for
the good understanding of an operator. Nevertheless another useful tool is the
visualization of the sensitivity.
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6.4.2  Visualization of the Sensitivity
In order to understand the notion of stability we will first focus our attention on Figure
23 : Scale transformation induced by f. The function f associates to each position x, a
new position f(x). If we analyze more precisely the form of the function, we remark that
the steeper the function f, the less serried the lever scale. This means that, for example, a
small variation of x in a region where f is steep will produce an enormous variation in
the aggregation. A simple way to quantify this "steepness" and so the sensitivity, is to
use the derivative of f.  In Figure 27, we have drawn on the same x-axis the function f
and his derivative function. We see that where f is steep the derivative function
(sensitivity) is high.

Figure 27. Derivative of f shows the sensitivity

Now, we can directly study the sensitivity of the aggregation operator using the
derivative functions : where the value of the derivative is high, the sensitivity is high.

Let us now show the way of building the visualization of the lever scale f and of the
weight scale h.

Sensitivity of the lever scale.
The derivative of f quantifies the sensitivity of the lever for a small variation of the
value of an argument (xi), in other words the intensity of the translation applied to a
weight on the lever by the topology transformation because of this variation.

The simplest way to visualize the sensitivity of f on the interval [a,b] is to draw the
derivative on this interval. But we do not have then any reference to the position of the
fulcrum and to the lever. So we propose to draw the derivative f ′ on the deformed lever.
To do this we draw the parametric function (variable t ) :

X

Sensitivity

f(x)
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We can then place the derivative on the balance model. (See Figure 28)

Figure 28. A balance with the sensitivity of his lever

We obtained then a deformed lever and its derived function. The transformed scale
shows the new position for each point and the derivative shows for each point the
sensitivity with regard to a variation of this value. We have to keep in mind that the
translation of a weight on the deformed lever is a variation of  f (x) and not of x.

Sensitivity of the weight scale
The derivative of h quantifies the sensitivity for a small variation of the total
aggregation. The simplest way to visualize the sensitivity of h on the total aggregation
interval [a,b] is to draw the derivative on the interval h-1([a,b]). We propose to draw the
derivative h′  on a vertical rectilinear transformed scale next to the balance weight scale.
To do so, we draw the parametric function (variable t ) :
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The translation ( )

 +

0h

R
 has been introduced to position at the right place the rectilinear

scale.

We will obtain then, a re-scaled weight scale and next to it the derived function. The
transformed scale shows the total aggregation values for each position of the lever and
the derivative shows for each point the sensitivity of a variation on this area. (See
Figure 29).

Sensitivity of f
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Figure 29. A balance with the sensitivity of the lever and of the weight-scale

Figure 29 sums up the visualization aspects presented in the previous sections, by
showing in one figure the general comportment and the sensitivity. Now, we propose to
take a look at the visualization of a particular aggregation.
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6.4.3  The visualization of a particular aggregation
We talk of a particular aggregation, when we have a specific set of values to be
aggregated, and also their weights, the aggregation formula and therefore the aggregated
value. We assume that the aggregation operator can be put in the balance equation form
(154) or (171), so that we can construct a balance model, as we indicated before. What
we want to prove here is that the positioning of the specific values on the model can be
useful in the understanding of the aggregation. The idea is to place the weights on the
balance and to analyze the resulting physical situation.

Again if we want to actually draw a scheme, we need first to compute the inclination of
the lever caused by the placement of the weights (i.e. the angle α). In order to compute
this angle we use the balance equation without the topology transformation h (i.e. the
function that gives us what we read on the scale). And we normalize the angle so that in

the extreme case we obtain an angle of 
4

µ± . Using the notations introduced before, the

normalized angle will be :
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With this angle the lever will point at the total aggregation value on the transformed
weight scale. The balance has now the right position, but it does not have any object on.
The weights can be represented by a rectilinear line of a length proportional to the
weight associated to the argument. This object will be placed with the help of the
function f, in the same way as explained before. Taking into account the rotation of the
lever, the position of the object ( )ii xw ,)(σ  will be :
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Using formula (189), we can draw all the weights that have been used for the particular
aggregation, and look at their distribution. We obtain a graph like the one shown on
Figure 30.
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Figure 30. A balance with the sensitivity of the lever and of the weight-scale

On this particular example we observe that there is only one argument that is on the left
of the fulcrum and all others on the right. We note that the weight of this argument is so
important that the lever balanced onto the left. We understand that there is  a strong
argument against a lot of small arguments. Subsequently, it may be interesting to take a
closer look at this "big" argument, because it can be for example an error.

We can also look at the sensitivity of the place where it is located, and in this way we
will know if a small variation of this value will change a lot (or not) his position. We
can also take a look at the sensitivity of the area of the total weight, this time we will
know if a small variation of any of the arguments will change a lot the total aggregation.



Studying the Operators

138

6.5  Building an Aggregation Operator with a
Balance

We started the chapter by establishing the metaphor between a balance and a
mathematical aggregation operator (154). We showed that not only this new family is
meaningful, but also it is enough general to include operators of the most common
aggregation families and their specific comportment. Then we took advantage of the
metaphor to study the operators of this form, by developing some visualization
methods.

In this section, we present a methodology, based on the metaphor, to conceive new
aggregation operators. The use of a metaphor offers the possibility to illustrate the
mathematical and axiomatic choices, providing an intuitive methodology for the
construction of an aggregation operator.

Figure 31. Steps to build a balance

The idea of the methodology is to follow the natural way of building a balance (see
Figure 31). We will first place the fulcrum, which corresponds in some situations to the
neutral element. Then we will put the lever and its scale by fixing the function f. The
construction of the total-weight will be done by the choices of the h function. We will
finish by discussing how to associate the weights to the different arguments.

1. Placing
the fulcrum

3. Building the
weight scale

2. Building
the lever

4. Weight
association
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6.5.1  Placing the fulcrum : the neuter element.
The first thing to do is to place the neuter element e, which corresponds in our metaphor
to place of the fulcrum. The neuter element is a value associated to an argument that
should not have any influence in the aggregation.  Once the neuter element is fixed, we
remark that if we have two arguments on the same side (both on the left of e or on the
right) we have a reinforcement comportment.  But if they are disposed on both sides we
will have a counterbalance behavior. So the position of the neuter element not only
implies the neuter value but also the distribution of negative and positive reinforcement
areas. Once the value of e is fixed, then the next step is to choose the function f.

6.5.2  Constructing the lever : the function  f.
Fixing the image of the neuter element : The first thing that we have to do is to take
into account our previous choice (the neuter element). Then, taking into account our
notation, the function f we choose has to equal zero for the neuter element e :

0)( =ef (190)

The form of the function : Now that we fixed one point, we have to choose the form of
the function f. We know that f performs a topological transformation on the scale of the
lever. We can interpret the action of this function, saying that it positions the arguments
on the balance. In other words, the form of this function will change the placement of
the weights. To illustrate this, let us consider for example that f  is constant on an
interval, then all arguments on this interval will be placed at the same position. Another
important aspect related to the form is that the farther the elements are placed from the
neuter element the more influence they will have. An element is placed far if the value
of the function f at this point is high.

The steepness : If we analyze more precisely the form of the function, we will remark
that the less the function f is steep in a region, the more the elements in this region will
be placed in a serried way. This means that, for example, a small variation of x in a
region where f is steep will produce an enormous variation in the aggregation. A simple
way to quantify this "steepness" and so the sensitivity, is to use the derivative of f. For
more details about this particular aspect, see section 6.4.2. In mathematical terms, when
the derivative of f is high then the sensitivity is high. To illustrate this, let us consider
the limit case, when the value of the derivative is zero. This implies that the function f is
constant. We have seen that in this case all arguments are placed at the same position.

The monotonicity : Taking into account the fact that f is a topological transformation
of a scale, a natural choice is to consider that the function f is monotone. This means
that you will have a gradual comportment : the more you move away (or approach) an
argument from the neuter element, the more (or the less) it will have an influence on the
result. This characteristic seems for some authors as compulsory for the aggregation
operators [58] and appears in their definitions (axioms). But after all, we may decide
that we do not need this property. This may be interesting if, for example, we want that
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after a certain threshold the influence of the arguments decrease, because for instance
the arguments are too extreme. We can perform this behavior by changing at this point
the tendency of the monotonicity.

The continuity : Another natural choice is to use a continuous function. This means
that you will have a regular positioning on the lever. Indeed the continuity translates the
fact that if you change a little an argument, its position will change just a little, without
jumping. Again we may decide that, after a threshold, the arguments have to be placed
at another location on the lever. This can be performed by a discontinuity at the
threshold. An example of such type of functions is a step function. In this case groups of
arguments are placed on precise positions.

6.5.3  The weight scale : the function  h.

We can interpret the action of the function h, saying that it associates to the angle
between the lever and the horizon the value read on the weight-scale of the balance.

Weight of an empty balance : Taking into account that we fixed the neuter element,
we should now choose the value we would like to obtain if the aggregation is performed
with only neuter elements. This can be interpreted as choosing the value that will be
showed by an empty balance. Mathematically this is translated by the choice of the
value of h(0).

The form of the function : After we fix this point we must decide the form of h. This
function performs a topological transformation on the total-weight scale, in the same
way as f does on the scale of the lever. So, we can now apply all the remarks for f to h,
taking into account that this time the function h acts on the aggregated value of all
weights and not on the individual weights as f does. For instance, if h is constant on an
interval, this will mean that the total weight on this interval will not change. More
generally, if we now consider the sensitivity we observe that, on a point where the value
of the derivative of h is high, a small variation of any of the weights will produce a
significant variation of the total-weight.

The monotonicity : Here again it is natural to choose a monotone function. But if we
do not, we will observe some strange behaviors : for example if we keep increasing the
weight of one of arguments then the total weight may change its tendency (from
increasing to decreasing or vice-versa). This may be interpreted by saying that we
consider that after a threshold the total-weight is considered extreme and we decrease its
value.

Note that if we use non monotone functions we may obtain non monotone aggregation
operators. Even if this maybe need in particular case, this does not fit anymore with our
set of axiom for an aggregation operator (see section 1.1)

The continuity : Another natural choice is the continuity. But a discontinuity can be
interpreted as a jump on the total weight scale. For example a step function implies that
the balance round off the final weight.
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The global behavior : Since the function h arrives at the end of the construction we
may have some global behavior. For instance we may be interested in the aggregation of
a single element a (or its equivalent : the aggregation of an element with a neuter
element). It seems natural to expect then to have a total weight equal to a. For some
authors [58] this seems so fundamental that it is included in their definition of an
aggregation operator. But this constraint has strong consequences. Mathematically we
have :

( )( ) aafha =∀ (191)

It implies that on the domain where the aggregation is performed, the function h is the
inverse function of  f :

1−= fh  on the aggregation domain (192)

This constraint reduces considerably the liberty regarding the construction of the
aggregation operator. But if we do not respect this restriction, how could we interpret
the loss of property (191)? The first thing to remark is that if the aggregation is done on
a great number of elements it may not be shocking that the aggregation of an element a
lost among a large set of neuter elements do not give a as a final result. An interesting
way to relax (191) is to reduce the domain of the constraint from all a to the only neuter
element and the boundaries.
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6.5.4  Association of Weight : the function �
Now when the construction of the balance is completely defined, we can examine the
method to associate the weights to the elements. We should not confuse the association
method with the weight calculation procedure. These two questions are closely related
and may easily be merged. Here we assume that we know already the values of the
weights and we study the association method. We distinguish 3 different types :

Object association : This method of association consists in assigning a weight to each
argument. This is the most often used procedure. On the balance equation (154) it
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we usually assume that the weights have the same index as their corresponding
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���#�#���i) = i). Figure 32 illustrates this by associating the weight number 1 to
the argument (position) number 1, the weight 2 to the position 2, and so on. A good
example where object association is used is the case of the weighted means.

Figure 32. Object association of weights

Ordinal association : This method consists in ordering (by some method) the
arguments and then to associate the first weight to the first argument, the second to the
second one and so on. On the balance equation (154) it corresponds to using a
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associating function being then �-1. A good example of aggregation operators where this
is used are the  OWA operators. From a mathematical point of view this method
corresponds to the symmetrization of the first case. Figure 33 illustrates this method and
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Figure 33. Ordinal association of weights

Cardinal association : This method consists in placing the elements on a scale and
associating the weights according to their position. This new way of associating weights
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anymore on i, as written in the balance equation (154), but on x (i.e. �(x)). Figure 34
illustrates this method and we see that for example arguments 3 and 5 are obtaining the
same weight 1, while argument 4 is associated to weight number 2.

Figure 34. Example of Cardinal association of weights
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Other associations : The metaphor allows the introduction of other kinds of association
as for instance to associate the lightest weight to the smallest argument, the second
lightest to the second smallest, and so on (see Figure 35). This will give an operator that
insists on the "best" (i.e. highest) arguments. The symmetric operator is also an
interesting operator. We can also imagine more sophisticated associations as for
instance associating the lightest weight to the closest argument to the fulcrum, the
second to the second and so on. This time the operator insists on the arguments far from
the neuter element.

Figure 35. Example of other type of weight association

The study of the association of weights is clearly an important issue. The balance model
clarifies and opens new perspectives in this area. However it is important to notice that
in the balance model we associate one weight per argument and there are no
"interaction-weights" attributed to sets of arguments, as it is the case for instance for the
Choquet integral.
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6.6  Why is the construction interesting ?

The first reason of why the balance is interesting is of course the fact that using a
physical model for the metaphor we obtain an intuitive representation of the operator.
This induces that we may simply understand the behavior without using mathematics. It
also may inspire (intuit) new interesting properties and constructions.

6.6.1  Behavioral properties
Now, if we forget about the metaphor and think about our model as just an aggregation
operator, we will notice the interesting properties (see chapter 1) :

Weights of parameters : the weights are introduced in a natural way and do not perturb
the commutativity. In fact, equation (154) without weights is clearly commutative.
Since we consider an association function for the weights, this means that we can put
the arguments wherever we want and the function will manage to associate the right
weight to the right argument.

Reinforcement and Counterbalance : These properties seem to be interesting [90] in
fuzzy modeling and decision making. And they appear naturally on the balance. We
intuitively know that arguments put on the same side of the balance will create
reinforcement and arguments put on both sides (with the fulcrum in the middle) will
create counterbalancement.

Interpretability of the parameters : Since we use a metaphor, the parameters have a
real physical meaning. In the previous sections we show the analogy between fulcrum
and neuter element, lever and function f, weight scale and h, etc.

Neuter element : It represents the value associated to an argument that has no influence
in the aggregation. This again seems to be an interesting property in fuzzy modeling and
decision making.

6.6.2  Mathematical properties
Let us now take a more mathematical point of view. Since usually we aggregate finite
real numbers, we will restrict this discussion to operators acting on the unit interval (i.e.
[0,1]). It has been shown [29] that if we require the aggregation operator satisfies some
reasonable properties (see below), then all these operators can be written in the form :

( ) ( )( )21
1 xfxff += −α (193)

where f(x) is continuous and strictly increasing. And the reasonable properties are the
following :

•  Continuity on the unit square except on the point (0,1) and (1,0).

•  Requirements related to the Pareto optimum (monotonicity).

•  Associativity.

•  Self-duality with respect to a strong negation.
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Another reasonable property set leading to the same result was proposed in [55]. The
authors required the cancellation law on the open unit square (i.e. ]0,1[2), instead of the
self-duality.

6.6.3  The natural choices
We observe that (193) is a natural construction of the balance equation (154) where all
the weights equal the unity. By "natural" we mean the fact of using h = f -1, even if it is
not a constraint. In fact if we take into account the constraint (191), then we have
automatically this property.

Another natural choice usually performed while constructing a balance is to place the
neuter element somewhere within the unit interval. This property combined with the
previous choice (see (192)) seems to give interesting operators. In fact from a
theoretical point of view, several authors have proposed this operator under different
names : associative compensatory operators [55], aggregative operator [29], or
generated uninorms [43].

Several authors [55],[29] have shown under several forms that if we take the following
natural choices for the f function :

•  [ ] [ ]∞∞−→ ,1,0:f

•  ( ) { }+∞∞−∈
+→

,0,lim
0

xf
x

•  ( ) { }+∞∞−∈
−→

,0,lim
1

xf
x

•  f is continuous

•  f is strictly monotone

•  h = f -1

Then the balance operator will be :

•  associative

•  continuous, it may not be the case for  the only points (0,1) and (1,0)

•  strictly monotone increasing on the open unit square

•  h(0) is a neutral element

•  commutative (if we consider that the weights are associated to the arguments
and not to their position in the mathematical formula).

This result seems very encouraging for the use of this model, since its natural choices
seem to give interesting operators. But these natural choices are just preferences and
not constraints, in fact the balance model tolerates very strange constructions.
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6.7 Applications

Aggregating Truth and Falsity

The aggregation operators obtained with the balance can belong to known families. But
we are particularly interested in the almost continuous enthusiastic aggregation
operators (see section 5.4.2) since it seems to be the suitable way to aggregate truth and
falsity values in a non logical-phrase calculus way.

We observe that an almost continuous enthusiastic aggregation (130), corresponds to
the very nice balance that has the fulcrum at zero point, the lever scale is symmetric
with respect to the fulcrum and is not bounded. The weight scale is built so that the total
weight of a single argument equals its value, which leads to h = f -1.

Using the balance framework we identify a particularly interesting operator, because of
its mathematical simplicity. This almost continuous enthusiastic operator is generated
with the function f : [-1,1]→ [-∞,+∞] :
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The inverse function being :
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Using this generator, we obtain a very simple (mathematically and computationally)
formula. We have for n arguments :

∏∏

∏∏

==

==

−++

−−+
=

n

i
i

n

i
i

n

i
i

n

i
i

nf

xx

xx

xxEnthu

11

11
1

)1()1(

)1()1(
),,( � (196)

Because of the associativity  formula  (196) can be used under a two-arguments form :

yx

yx
yxEnthu f ⋅+
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),( (197)

In section 5.5, we indicated the particular operator used in a famous expert system
(MYCIN) and we proposed a generator. Here using the step by step construction
methodology presented in section 6.5, we were able to build a parameterized almost
continuous enthusiastic operator. The parameter controlling the sensitivity, that
corresponds to intensity of the reinforcement in the aggregation of truth and falsity
values.
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The operator presented in section 5.5 is based on the function "-ln(1-x)". Using a
balance visualization and some tries-out, we arrive to the conclusion that one way to
control the sensitivity is to introduce a power function. We obtain like this the
generator h: [-1,1]→ [-∞,+∞]  (with parameter r >0) :
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And we obtain for two arguments the following almost continuous enthusiastic
operator :
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Even if (199) looks particularly complex, we would like to emphasize the fact that this
operator is not only continuous on [-1,1]2 (besides the extreme points (-1,1) and (1,-1)).
But also, as an enthusiastic operator, it is associative, commutative and monotone.

The parameter r translates the "intensity of the reinforcement property". So, we have
that :

•  When  r → 0, then we tend to "no reinforcement". We obtain at the limit case
an operator that for the aggregation of two truth values, will just choose the
most truth one. (i.e. there is no reinforcing that will give a greater value than
the most truth one). Mathematically, we have that for x,y ≥0, when r → 0,
then  Enthuh(x,y) → max(x,y).

•  For r =1, we have that Enthuh is nothing else than the operator used in
MYCIN.

•  When  r → +∞, we tend to the drastic reinforcement. The limit being an
operator that for two truth values (≠0) gives the total truth and for two falsity
values (≠0) gives the total false.

We use this particular operator in an application related to video querying. For more
information on this, refer to chapter 8. Here, the metaphor helped us to identify and to
establish interesting truth and falsity aggregation operator, but it also provides a rich
support for interpretation and introduction of new ideas.
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The introduction of new operators and new problems

In this chapter we presented an analogy between a general aggregation operator and the
physical model of a balance. The faculty of the balance operator to take the form of
most operators of the classical families allows us not only to have the behavior of each
family, but also to compare it on the same general framework. But without taking into
account the generalization ability, the balance operator can be considered as a good
operator, because the parameters are interpretable, we can use weights, we can control
the behavior, it presents a neuter element and it has other interesting mathematical
properties as reinforcement, counterbalancement and commutativity. Also several
mathematical results (see section 6.6.3) point out that when doing the natural choices
we obtain very interesting operators. These choices are not compulsory constraints,
leaving a particular freedom to new construction and/or problems.

We can also obtain new operators. We understand by "new", operators that have not
been precisely studied. This is obvious since all of the operators obtained in this
framework will have the known mathematical form (154). Examples of this new
operators which will lead us to further works are operators where the constraint (191)
will be relaxed to only some points, as for instance to the only neutral element e :

( )( ) eefh = (200)

Even if this relaxation may look like strange in section 6.2.6, we presented an operator
(used in a real problem) that only satisfies (200) and not (191).

We can also study operators having a cardinal method for the weight association :
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A particular attention should be given to the association of weights, where we have a
mine of ideas and problems available. We can also take a look at any other construction
using crossing methods from well-known families, as for instance making ordinal
association to operators other than the weighted mean. As for instance t-norms leading
to ordered weighted t-norms.
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We should not forget either the possibility of constructing strange operators, where we
use non-monotone or non-continuous functions. As for example the function that rounds
numbers to one decimal.
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Clearly the balance model can be seen not only as a study framework or a construction
method. It is a mine of ideas, it is a rich metaphor that we should exploit.





Third Part

The Video Querying
The information revolution we are participating in, is making of the video a main
actor, because of its richness,. But the problem of finding the information we want is
complex issue. Here we are not dealing with text where we can easily extract the
more frequent keywords, here we are dealing with imprecise, uncertain and
incomplete information.

In this third part we present how the theoretical results, shown in the second part, can
be implemented in order to solve the problem of the aggregation of imprecise,
uncertain and incomplete information in the multimedia case. Our multi-media being
the video channel. We divided this section into two chapters :

In chapter 7, we present a model that allows to browse a video using imperfect
temporal queries. We propose a fuzzy query system based on fuzzy continuous
annotations. This model follows the spirit of Zadeh's idea "Computing with words".
We introduced a dictionary with the basic concepts and the way to construct new
ones. All the aggregations being done in a logical way, we use t-norms and
t-conorms. But the choice of the operator is not an easy task, so we use results of
chapter 3 to help us. We also notice that in the case of the video the number of
aggregation can easily explode, so we propose to use the fast operator proposed as
result of chapter 4.

Although, when aggregating different sources indicating the same result, we should
use another kind of aggregation than t-norms and t-conorms, as explained in chapter
5. In Chapter 8, we illustrate this and we present a Java based in-video search
engine that uses a continuous enthusiastic operator (see section 5.4.2) to aggregate
the matching query criteria. The operator was studied and tuned using the balance
framework, presented in chapter 6.
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Chapter 7

Browsing with Words

In this chapter, we focus on how to navigate in an annotated video by making
temporal queries. The annotations may be in a database with other information. We
assume that the annotations are precisely time-indexed, but their attached
information may be uncertain. In other words, we know precisely at what time of the
video something happens, but we are not completely sure about everything
associated with the event. We note that this information may come from automatic or
manual indexing. In order to handle this unavoidable uncertainty we propose to use
fuzzy methods. We work here on scale the traditionally used scale (i.e. [0,1]) and all
the aggregations are of the logical type (i.e. t-norms and t-conorms).

We introduce, following the spirit of Zadeh's idea [99] of "Computing with words", a
dictionary with the basic concepts and methods for constructing new ones. Since in
this approach we just have logical Computing with words allows us to have a human
friendly interface. With this vocabulary and the logic tools introduced, the user will
be able to realize human type queries. We focus on the time related queries
[84],[13],[88]. We remark that our dictionary contains notions such as time
positioning, time descriptors and time relationships. We show how to combine them
in a uniform way in order to construct the queries. However the choice of the
operators being a difficult task, we use the results of chapter 3 to make a choice.

We also notice that the stream of information in the video channel is so high that for
the simplest calculi we have to do a untold set of aggregations. Results of chapter 4
help us to face this problem, by using a non associative approximation of Yager
t-norm.

Let us start by explaining the most common way information is attached to a video,
the annotations. And what we exactly understand by a fuzzy continuous annotation.
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7.1  Fuzzy continuous annotations

7.1.1  Definition and examples
The actual works (see [50],[64],[49],[79],[88]) on query systems for video are based on
the use of annotations. These annotations can be considered as information contained in
a database associated to the video and indexed by the time. These annotations can be
extracted from the video manually or automatically.  With the automatic way it is clear
that a lot of uncertainty arises. Just to give an example, the automatic face recognition is
not, at this time, a hundred percent process.

But even the manual indexing, which can be considered as the most reliable way of
obtaining the annotations, contains uncertainty. Not because of human errors, but
because of the complexity of the world.  For example when annotating night and day
scenes, we can have a smooth passage from the day to the night. So we propose here to
use fuzzy annotation to enrich the descriptions.

We call fuzzy annotation a classical annotation accompanied by a degree of certainty of
the information (and not of the time indexing this annotation). This degree is usually a
value between 0 and 1 (zero for completely uncertain and one for completely certain).
So, for example an annotation can be : "At minute 6 the actor on the scene is Robert
with a degree of certainty 0.75".  Which means that we think that the actor is Robert but
we are not totally sure. We notice here that we assume the indexing time (6 minutes) to
be certain.

We speak about continuous annotations because we consider that we have the
information for every time. Now, we can represent this information on a graph, where
the x-axis is the indexing time of the film and the y-axis is the degree of certainty. Note
that the actor appears for a period of time so that we have a curve and not a point.

Figure 36. Fuzzy Annotation : "Robert appears".

In an analogous way we can represent on the indexing time axis an annotation like :
"Between the minutes 10 and 11, we are sure that there is a dialog, but the beginning
and the end of the dialog are not precise".

Indexing time of the video

"Robert appears"
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Figure 37. Fuzzy Annotation of a dialog

We remark that fuzzy annotations are a generalization of classical ones. We can obtain
classical annotations by using only the degrees 0 and 1 of certainty.  Now that we have
these annotations (fuzzy or not), we want to use them in order to extract information. So
in the following we propose a fuzzy time related query system. We introduce first what
we call the fuzzy vocabulary.

Minutes indexing the video

"Dialog between
minute 10 and 11"1

0
10 11 158
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7.1.2  Placing the video player
Placing the video player at the starting time is not a trivial issue. Since we have fuzzy
annotations, we do not know exactly when the event starts. If we use just certain
information, the video player will always be placed after the real start of the event we
are looking for. This will force the user to rewind in order to see the beginning, and it is
not something we want. Taking this into account, we may think that a good solution is
to start at the point where the membership function starts (i.e. not null). This time the
video player will be placed too far in advance and the user will have to wait until the
event happens. This is clearly not a good solution either.

The action of indicating an exact start time, can be seen as a defuzzification process. We
use an approach, based on the alpha-cuts. The idea is to work by alpha-cuts. Here, we
propose to simply take as starting time(s) the minimum(s) of the (intervals) of the 1/2
cut . This gives us a point(s) where we are more or less sure that it starts. We pre-select
this alpha-cut, but we leave the possibility to the user to change its attitude for the
defuzzification. For more details on this kind of defuzzification method refer to our
paper [18].

However, we leave to the user the possibility of increasing and decreasing the alpha
value. In Figure 38, we see that the user can choose the alpha value with a scroll bar and
observe directly the consequence of its choice.

In the previous lines we used the parenthesis to point out that they may be several
moments in the movie answering to the question.

Figure 38. Choosing alpha for the defuzzification



Chapter 7 : Browsing with words

157

7.2  Fuzzy time vocabulary

In the spirit of Zadeh's idea of computing with words [99] and Yager's work in [88], we
propose to construct a fuzzy time related dictionary. This thesaurus will allow us to
handle imprecise time querying.  Using this we will be able to use time positioning
definitions such as beginning, end and middle, to use imprecise time duration such as
about five minutes, long and short time and to use time relationship like after, before
and close. We will also see how to modify and combine them.

7.2.1  Time positioning
One of the things, which we may want to express, is a fuzzy positioning (of an event) in
the time. This concept gives us an imprecise location in the time, to which we refer.
Examples of this kind of concept are beginning, middle and end.

Figure 39. Beginning, Middle and End.

We remark here that the fuzzy beginning, middle and end are defined in relationship to
the total reference time. We note that these notions are personal and so the user should
personalize his translations, but always on a reference scale.

Time indexing the video

"Middle"
1

0

"End""Beginning"

3T/10 9T/10T/10 7T/10 T

(total time)
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7.2.2  Duration descriptors
We may also want to describe the duration of some event. Here notions like long time
and short time appear. Once more, even if it is not explicit, we assume that there is a
reference. It is not the same "long time" in a 5 minute video and in a two hours film. We
can then define this notion in a time scale having the total reference time.

Figure 40. Long and Short time

We can also define on the time reference scale the notion "about X minutes". Here, once
again we think that this notion is relative. We believe that the uncertainty grows with
the value X.  So, for example if we consider that the precision on "about five minutes" is
a single minute, then the precision on "about 60 minutes" is at least 5 minutes (certainly
more that 1 minute). We propose to translate "about X minutes" into "between (X
minutes less 20 %) and (X minutes plus 20 %)" with the certainty of 1 for X minutes and
a linear decreasing certainty between the extremes and the X minutes (see Figure 41).

Figure 41. About X minutes

Reference time

1

0

"Long time ""Short time"

T/4T/10 T/2 T

(total time)

Reference time

1

0
XX-X/5 X+ X/5

"About X minutes"
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7.2.3  Time relationship
We may also want to define relationships between time events, like for example after
and before. In this spirit Yager introduced in [88] a general framework : the relative
temporal relationship (RTR). In this framework we have for example that the definition
of "after" will be : If X-Y <0 then the degree of satisfaction of the concept "X after Y "
is 0 and if X-Y ≥0 the degree will be 1. In a symmetric way we can define the notion
"before". We propose here to use the time descriptors introduced before to generate new
notions as for instance : "About 10 minutes after" or "About 10 minutes before".

Figure 42. About 10 minutes after (or before)

Interval time
X - Y

1

0

10

"After about 10
minutes"

-12 -10 -8 8 12

"Before about
10 minutes"



 Application : Video Querying

160

7.3  Combining the fuzzy time vocabulary

7.3.1  Using time relationship
Now, that we have defined the basic relationships we may want to use them to indicate
a particular moment in the video. So we may point to : "About 10 minutes after the
crash".

Let Crash(y) be the membership degree of the event "the crash" at the time y. Then the
membership function of "About 10 minutes after the crash" indexed by the time x will
be obtained by following formula, where T is a t-norm :

( )[ ])(),(10__max)(__10_ yCrashyxmaboutafterTxCrashaftermAbout y −= (204)

This function allows to calculate simply the degree of membership at the time x of
"About 10 minutes after the crash".

Let us generalize this result and let R be the membership function of a time relationship
and E the membership function of an event, then we can point to a new moment of the
video by using the general formula :

( )[ ])(),(max)( yEyxRTxER y −=� (205)

We remark that the event E can also be a time positioning, like beginning, middle or end
of the video.

7.3.2  Choosing the t-norm
As we just said, formula (204) allows to calculate simply the degree of membership at
the time x of "About 10 minutes after the crash". However the simplicity is on the
computing part, but the choice of the t-norm T is not clear. Here we propose to use the
methodology and the results of chapter 3.

Looking at equation (204) we notice that we are trying to obtain the "best answer" for
the logical conjunction of  "after about 10 minutes" AND the "crash" event. We may
immediately think about what should be the result for this conjunction, when we are not
really at a point about 10 minutes after another point that is more or less a crash. This
question translates the aggregation of the most fuzzy situation (i.e. T(1/2,1/2)).

The answer to this question translates the tolerance to the uncertainty and has several
consequences. If we choose for the most fuzzy situation to attribute the value 0, this
means that we are not tolerant to the uncertainty. We are going to obtain then a reduced
area for the conclusion. In the opposite way, if we choose the largest value (i.e. 1/2), we
will consider the largest area for the pointed event (see Figure 43).

In this figure we point out "about 5 minutes after an event that happened more or less
between 3 and 5 minutes". Here "about 5 minutes" is a triangular fuzzy number being
tolerant for more or less one minute. We notice here that clearly, when choosing the
product (where T(1/2 ;1/2)=1/4), we obtain a considerable reduction, with respect to the
minimum (where T(1/2 ;1/2)=1/2), for the uncertainty area.
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Figure 43. Pointing to "about 5 minutes after an event that happened
more or less between 3 and 5 minutes".

It is to notice that we are differentiating the t-norms by their attitude when aggregating
the uncertainty, since we showed (see Figure 2) that all the t-norms have the same
behavior when aggregating a certain value (i.e.1). This induces here that no matter what
t-norm we use, we will always obtain the same certain interval (i.e. the same core).

We can conclude that if we do not care about the uncertainty (i.e. everything that is not
the core), then we can use any t-norm. This may happen if we just want to point the
certain areas. However, we are convinced that this approach is deficient, since it is too
strict. With just this information the video-player will be placed far after the beginning
of the event, forcing the user to rewind.

In order to take into account the uncertainty, we propose to place the video-player at the
beginning of the 1/2 cut, leaving always the possibility to the user to change the
value 1/2.

In conclusion, the attitude with respect to the "full" uncertainty is the central notion. So,
the results from chapter 2 help us to identify the t-norm. If we choose a parameterized
because of the variety of attitudes it offers, again the results of chapter 2 will help us to
select and interpret the influence of the parameter. Using the inverse function we can
even leave the choice of the attitude to the user.
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7.3.3  Using fast operators
It is clear that an interesting solution for the previous choice of the t-norm is to pick out
a parameterized t-norm with a large T(1/2, 1/2) image space. Like this we have always
the possibility of choosing (in a large spectrum) the attitude with respect to the full
uncertainty. So, we may select the Yager t-norm.

However, looking at (205) we notice that we have to compute for every time x of the
video, the aggregation (by the t-norm) of every time y in order to take the maximum.
Taking into account that at least we have 25 frames per second, we have very quickly a
great number of calculi. For instance just for one hour video, and for one time
relationship we will have to compute 8.100.000.000 times the t-norm.

Looking again at equation (205) we observe that we never use the associativity property
of the t-norms. In fact each time we just aggregate two values. Here the fast "Yager
t-norm-like" operator (see section 4.7) may be interesting. In fact, this operator is
computationally lighter than the Yager t-norm. We recall here its definition (117) :

( )( ) ( )( )0,,min1,maxmax),(maxmin vuvuvuR +−⋅=− β (206)

In order to be coherent with the results of chapter 2, we compute here the image of the
"most fuzzy point" :
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So, if we inject the inverse function into (206), we obtain equation (208), where the
parameter t is the value expected for the most fuzzy aggregation :

( )( ) ( )( )0,,min1,max)21(max),(maxmin vuvutvuR +−⋅−=− (208)

We impose to t the range [0,1/2], which reduces a bit the generalization capacity of the
equation but we gain in intelligibility, without losing t-norms having all the possible
attitudes with respect to the aggregation of the full fuzziness. Note that we lose just
some very strong t-norms (stronger than the Lukasiewicz one).

Now, if we choose that the attitude with respect to the "total fuzziness" should be
relaxed (i.e. t =1/2) then the operator (208) becomes the minimum (the largest t-norm).
And for the strictest attitude (i.e. t =0), (208) becomes the Lukasiewicz t-norm.
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7.3.4  Constructing more complex notions
We may also want to use the richness of the logic operators to create more precise
notions. It is important to note that  we can only combine notions having the same time
scale. We can in this way combine two different relations, two different time
descriptors, two different events, two different time positioning, but also an event and a
time positioning.

In order to built these new notions we use of course the fuzzy logic operators. We use
the t-norms to translate the logic 'AND' and the t-conorms to translate the logic 'OR'.
Since we propose to use for the negation the function xxnotx −=→ 1)( , we advise to
use dual t-norms and t-conorms.

Here again the question of the choice of the t-norms and t-norms arises. And again
result of chapter 2 gives us an answer. The main question is : what is the attitude we
want for the aggregation of the "most fuzzy" values ? And once more if we know the
answer to this question, chapter 2 will guide us to choose the right couple of operators.
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Chapter 8

Simple Constrained Queries
over Fuzzy Shot-annotations

The amount of information stored in computers is growing, not only because of the
richness of the video channel, but also because this richness is making of it the
favorite media. In this context a main question arises : "How to get the information
you want?"  We propose here a new tool leading the user to make the right question
in order to retrieve the information he wants inside the video.

Useful information may be automatically extracted from the multimedia streams. For
instance, cuts and camera motion can be detected from the video, while cues such as
applause, silence and speaker identity can be found from the audio. However at the
actual state of the art, these indications are not rich enough, so we still use human
annotation.

We notice that it is not always easy to aggregate the confidence scores coming from
automatic programs and the human ones. Here we point out this problem and suggest
some solutions. In particular we use the scale [-1,1] and the result presented in
chapter 5.

Here we do not work anymore on continuous annotations since the humans annotate
by shot. A shot corresponds to the segment of video captured by a continuous camera
recording and is classically used in all the annotation systems. This can be explained
by the fact that shots are "sense units", provide some structure to the video, similarly
to paragraphs in text document and are easy to extract automatically [52], [100], [5],
[97], [78], [3], [73]. Actually, the excellent result in this field make that most of the
systems being developed now use this granulation. The annotation by shot will
reduce the complexity and the size of the search domain, but will introduce more
uncertainty and imprecision due to extraction methods.

We finish this chapter by describing the technology we use to create our query
prototype. We also present the structure of our annotations written in XML, which is
becoming a standard in video applications and more generally in multimedia and
web technology.
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8.1  Fuzzy Annotations per Shot

The present works on query systems for video is based on the use of shot annotations
[64][49],[79],[88]. These annotations can be considered as information contained in a
database associated to the video and indexed by the identification number of the shot.
These annotations can be extracted from the video manually or automatically.

The automatically derived information can be generally described as a time-dependent
value that is synchronous with the source media. For instance, annotations might come
from output of a face-recognition or speaker identification algorithm. In this case it is
clear that a lot of uncertainty arises, due to algorithmic imperfections. But, we would
like to stress again (see section 7.1.1) on the fact that even the manual indexing, which
we can be considered as the most reliable way of obtaining the annotations, presents
some uncertainty, not because of human errors, but because of the complexity of the
world and the subjectivity of the annotator.

Here we propose to use again fuzzy annotations (see section 7.1) to enrich the
descriptions. But this time the annotations are going to be indexed by shot (and not of
the time indexing this annotation).

We assume that for each shot we have the start time and the end time. This information
could also be considered as fuzzy annotations since they are usually coming out from an
automatic system. Here we do not take into account the uncertainty attached to these
values. We consider that the given times are the best we can obtain. Further research
can be done taking into account these uncertainties.

We also do not use the classical [0,1] range of degree of certainty, but a more natural
scale [-1,1], where –1 is the complete falsity, 0 the total ignorance and 1 the complete
truth (see chapter 5). This scale allows us to point out a classical mistake in aggregation
of annotation information. Automatic detection programs are positively oriented, which
means that they are confident in their good results, but not in their bad results. A degree
0 in a detection program means “we do not know” and not “certainly the object is not
there”. So for automatic indexing we use the [0,1] range. But, since human annotation is
more reliable, when the user does not annotate we assume that the object is not present
(and this observation being sure).

The manual annotations are instinctively done per shot, but the automatic ones are
continuous (see section 7.1). So, we need to aggregate the information obtained during
the shot into a unique value. Because of the positive attitude of the automatic algorithms
we aggregate their confidence degrees per shot by taking the best obtained value. For
example, if we are recognizing a particular actor, then we will say that the actor is
present in the shot (with the degree of confidence c) if the best recognition provided by
the algorithm for this shot is c. Our aggregation formula is then simply :

shot-annotation(#n) = max t∈ shot(#n) (automatic-annotation(t))   (209)
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We can illustrate this in the following figure :

Figure 44. Aggregation per shot continuous annotation

8.1.1  Extraction
Useful information may be automatically derived from multimedia streams. For
example, we detect cuts and camera motion from video. The cuts are typically found by
computing an image based distance between consecutive frames of the video. Over a
certain threshold we consider that there is a cut. The distance between frames can be
based on statistical properties of pixels [52], histogram difference [100], compression
algorithms [5], edge differences [97] or motion detection [78]. We use an automatic
shot boundary detection developed in our laboratory [3],[73]. And we automatically
annotate the camera motion.

Using the resulting video segmentation, we annotate each shot with keywords and a
degree of certainty. We use an annotation program developed in our laboratory [81] that
uses our specific XML DTD (described in the next section) to guide the manual
annotation process.
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8.1.2  Storage and transfer of the fuzzy annotations (XML)
In order to store and to transfer the annotations we attach to the video file an XML file.

XML (Extensible Markup Language) is a flexible way to create common information
formats and share both the format and the data on the World Wide Web, intranets, and
elsewhere. For example, video producers might agree on a standard or common way to
describe the information about the videos (length of the video, copyrights, and so forth)
and then describe the product information format with XML. Such a standard way of
describing data enables the user to use the same program for all the video independently
of the video producers. For instance, an intelligent agent sent to any video producer web
site, may query the database and then make a valid comparison of the results. XML can
be used by any individual or group of individuals or companies that wants to share
information in a consistent way.

XML is similar to the language of today's Web pages, HTML. Both XML and HTML
contain markup symbols to describe the contents of a page or file (as for instance a
video file). HTML, however, describes the content of a Web page (mainly text and
graphic images) only in terms of how it is to be displayed and interacted with. As with
HTML, identification of data is done with tags (identifiers enclosed in angle brackets).
For example, a <P> starts a new paragraph. XML describes the content in terms of what
data is being described. For example, a <VTITLE> could indicate that the data that
followed is the video title. This means that an XML file can be processed as data by a
program or it can be stored with similar data on another computer or, like an HTML
file, it can be displayed. For example, depending on how the application in the receiving
computer wants to handle the video title, it could be stored, displayed, or translated.

In our case we store for each <annotation> the shot number, the start time and the end
time. Inside each annotation we can put information as for instance a <personage> with
its name, the actor interpreting it and the degree of confidence on this information. We
may also have object descriptions <object> and automatically detected camera
motions <cameramotion>.

Here we have an example of an annotation in XML form, describing shot 16 :

( … )

<annotation shot='16' startTimeCode='00 :01 :22 :75'
endTimeCode='00 :01 :27 :73'>

<personage name='Falbala' actor='Laëtitia Casta' value='0.95'>
</ personage >

<personage personnage='Obélix' actor='Gérard Depardieu' value='1.0'>
</ personage >

<object description='Horse' value='1.0'>
</object>

<cameramotion description='zoom in' value='0.75'>
</cameramotion>

</annotation>

( … )

Table 14. Fuzzy Annotations per Shot in XML
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XML is "extensible" because, unlike HTML, the markup symbols are unlimited and
self-defining. This is what allowed us to define the new tags describing the annotations.
Since it is self defining we could leave this file like this, but since it has to work with
our application we need to be sure that some particular rules were respected (our
standard). To achieve this  we use a Document Type Definition. A DTD defines a class
of valid XML documents, i.e. it defines which tags, attributes and elements are valid.
Our DTD is the following :

 <Doctype -

<!ELEMENT annotation (personage * | object  *) >

<!ATTLIST annotation

plan CDATA #REQUIRED
startTimeCode CDATA #REQUIRED
endTimeCode CDATA #REQUIRED

>

<!ELEMENT personage EMPTY >

<!ATTLIST personage

personage CDATA # IMPLIED
actor CDATA # IMPLIED
value  CDATA # REQUIRED

>

<!ELEMENT object EMPTY >

<!ATTLIST object

description CDATA # REQUIRED
value  CDATA # REQUIRED

>

<!ELEMENT cameramotion EMPTY >

<!ATTLIST cameramotion

description CDATA # REQUIRED
value  CDATA # REQUIRED

>

 >

Table 15. DTD for our fuzzy annotations.

As we just saw it is clear that some world standards are needed. Currently the World
Wide Web Consortium (W3C) is the organization that coordinates the standard creation
and provides some recommendations. Some examples of the existing formats are the
Microsoft's Channel Definition Format (CDF), which describes a web channel. Or also
the ChartWare, which uses XML as a way to describe medical charts so that they can be
shared by doctors. Applications related to banking, e-commerce ordering, personal
preference profiles, purchase orders, litigation documents, part lists, and many others
are anticipated. In particular the standardization of the information attached to the video
is known under the name MPEG7.

For more information on XML see the web site www.w3c.org/XML. And for more
details on MPEG7 see the www.cselt.it/mpeg/standarts/mpeg7/mpeg7.htm site.
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8.2  Querying

Because of the richness of the video media, the set of possible queries is incredibly
large. In this situation, we consider that some restriction should be set. For instance for
the same video the user may want to see the shot that uses this or that technique, while
another user may look for an actor and a third one may want to find where the actor
says : "Hasta la vista baby".

Our approach consists in parsing the XML-annotation file in order to extract its content
and then guide the user to query the available annotations. Our program detects
automatically the annotations corresponding to our DTD even if they are structured and
inserted between other annotations such as for instance copyright, video format, etc.

The idea is to extract the available annotation tags and present them some how to the
user so that he queries on the offered information. Our approach is to guide the user
during the construction of the query. We are interested here on simple queries. And we
understand by a simple query a set of keywords that will identify the shot.

Figure 45. Constructing the query with a combo box.

The construction of the query is incremental. The user has to choose (with a combo
box) one after the other the keywords he is going to use for the query. This kind of
querying prevents the user to request any not available information, since the combo
box is built with the information extracted from the annotation file.

Then pressing the query button we launch the search and the ranking processes.
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8.3  Ranking the results

After we have constructed the query we launch the research process. We select the
matching attributes and we aggregate their certainty values in order to obtain global
certainty value.

We rank then the shots from the most positive certain to the last one. Consequently, the
quality of the result depends directly on the aggregation operator. The theoretical
research done in chapter 5 suggested that we should use a continuous enthusiastic
operator. In the next section we supply some explanation about this choice.

8.3.1  The aggregation of the certainty values
We work with truth and falsity values. The automatic-obtained values being all degrees
of truth (i.e. in [0,1] while values provided by human beings use the whole truth
scale (i.e. [-1,1]).

We also notice that we are not trying to compute the logical truth value of the
conjunctive phrase built from the keywords of the query. In fact this kind of aggregation
would lead to problems as for instance the complete elimination of the shots having just
one false matching argument.

Instead we are performing an aggregation of the type described in chapter 5. We saw
there that for this kind of aggregation there are two operators doing the work : the
prudent and the enthusiastic. We saw that the prudent leads to an extreme augmentation
of the uncertainty, so we propose to use an enthusiastic operator.

Besides that, being aware of the fact that we are aggregating truth and falsity values, we
will not do the mistake of using the same scale for aggregating the automatic obtained
values and the manual ones.

In addition to the rational arguments announced before, we will try here to show on two
examples why this operator is more suitable than others classically used : the means
[59], and the t-norms [66],[59]. In order to compare these operators we should work on
the same scale. We use a linear transformation to transform our degrees (range [-1,1])
into the [0,1] range.

Let us first compare the enthusiastic aggregation operator with a t-norm. Let us imagine
that we have the following description for the shot number 11 :
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Shot 11

Actor 1 Actor 2
Camera Motion

Type 2

Main

background Color

= Black

Our scale [-1,1] 0.8 0.9 0.7 - 0.5

Equivalence on  [0,1] 0.9 0.95 0.85 0.25

Figure 46. Description of  Shot Number 11

Using a t-norm will discard this shot from the results, since the low degree for the
background color 0,25 imposes to the aggregated value to be smaller than 0,25 (on the
[0,1] scale (see property (46)). For this case the enthusiastic operator will compensate
this negative matching (-0,5) with the other positive matching. The compensation
property of the enthusiastic operator is the one used here.

Let us now compare the enthusiastic operator to a mean type operator : every time we
do not know we annotate with the value 0 (i.e. the total ignorance). It is clear that when
using the mean all these zeros will have an influence on the final score, while for the
enthusiastic operator we will not influence the result, since 0 is the neutral element.

The neutral element also solves the problem of the missing values, because if there is a
value missing then we replace it by the neutral element, which has no influence on total
value.  People using the mean may imagine that the problem of missing values (or even
of total ignorance) can be solved by aggregating just the available values. This is a
solution but it is equivalent to replacing the missing value by the mean-value (of the
non-missing values). In other words you will give a high score to a missing attribute
value if the other attributes have high scores. We do not think that this is the right
approach.

8.3.2  Presenting the results
After obtaining the global scores we rank the shots from the most positive certain to the
last one. We present the results showing keyframes (i.e. still images extracted from the
video) of the best shots. Since the user based on just this image has difficulties to find
his way about, because for instance the keyframes may be very similar. We choose to
present the 4 best shots keeping the video time order. This means that on the left we
have the first shot appearing in the video independently of it is the best matching result
or not. However, we indicate over the keyframes the score for that particular shot. In the
same way the second one is the second one appearing in the video and so on.
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8.4  ExploriX Interface.

We have prototyped a query program that uses the above ideas, towards the application
of browsing and finding musical video clips. All the video clips are low quality (TV
quality), MPEG-encoded and made available via network. Our program is being
developed in Java language and is able to read any of the current video and sound
formats. ExploriX is a first step towards intelligent retrieval and use of fuzzy
annotations, which demonstrates the feasibility of the proposition.

Figure 47 shows the user interface of our browser prototype. To the top left is a classical
video playback window (with controls), that listens to the other windows. To the top
right there is the "constructing" query window. The user builds his query there, using
the combo box. Between these two windows we see a control panel, where we can read
all the messages transiting between the objects (these need not be visible for the user).
To the middle of the screen we see the result window. This window contains 4
keyframes of the 4 best shots. They are ordered on the time scale, respecting the order
of appearance in the video.

Figure 47. Screen shot of ExploriX

ExploriX was developed in the multimedia indexing group at LIP6 (University Paris 6).
The group is partially funded by the AGIR project.
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Conclusion and Perspectives

The explosion of the information technologies is bringing massive amounts of
knowledge that are hidden in numerical data. In this context it is clear that the
mathematical aggregation should play a main role in the reduction of this information
into meaningful and representative subsets.

In this concluding section we would like to summarize the main results obtained around
the mathematical aggregation. We present both theoretical and applied investigation on
these operators. We will discuss the main achievements and the possible perspectives
chapter by chapter.

The first part : The Mathematical Aggregation Operators
We start this manuscript by offering a global overview of the existing state of art. Here
we try to brighten and to put some order in the existing definitions and properties of the
mathematical aggregation operators.

In chapter 1, we propose, a minimal set of mathematical conditions that define an
aggregation operator. We proceed by presenting other possible mathematical properties
and we suggested interpretations for the mathematical characteristic.

In chapter 2, we present a catalogue of the existing operators. We portray their
characteristics and advantages, but we try to be objective by giving also their
disadvantages, which is rarely done.

Second part : Studying the Aggregation of the Uncertain
In the second part of this document, we present the new developments we propose for
the aggregation of the uncertain. We start in chapter 3 by studying how the different
t-norms and t-conorms aggregate the uncertain. The idea is to focus our analysis on just
one point, the "most fuzzy" one. This approach gives as a first result a classification
method and as a second one, an interesting way of normalization of the parameters of
the parameterized t-norms and t-conorms families. This new parameterization gives not
only a meaning to the parameters, but also a common scale of work on which we can
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compare them. In particular we notice that the range of attitude with respect to the
uncertainty is not usually completely fulfilled, in particular there are not many relaxed
t-norms.

Based on this observation, we propose in chapter 4 a way of creating new operators by
reducing t-norms and augmenting t-conorms. Unfortunately we notice that the resulting
operators are generally not t-norms (or t-conorms), because they are not associative.
However, we find a particularly interesting operator, which seems to be a
non-associative approximation of the parameterized Yager t-norm, with a special
computational efficiency.

The prior studies focus on the t-norms and t-conorms that compute the truth value of a
logical phrase. In chapter 5 we are interested in the aggregation of different truth values
observed for the same logical phrase. We propose an axiom set for the aggregation of
truth values, which leads to the  characterization of two truth-aggregation families, a
prudent and an enthusiastic. The first one has a cautious attitude choosing between two
observed values the one that is more uncertain. We show that this family is completely
characterized, but its attitude tends to the total uncertainty, which is not very interesting
for assisting human decisions. The second one has an enthusiastic behavior and
reinforces the results if it observes twice the truth or twice the falsity and when
observing a falsity and truth the operator gives a compensated value. Unfortunately
these operators are usually not continuous. We propose an additive generated solution
that provides an almost continuous solution, although it is not defined for the full
contradiction.  We proceed by characterizing for the enthusiastic case the full and the
normal contradiction (notice the prudent case is completely defined).

After working on an axiomatic basis, in chapter 6 we present a new perspective for the
additive generated operators. This new point of view is based on the metaphor of a
balance. A metaphor allows intuitive interpretation of the operators. And we show how
to use it in order to visualize the global behavior of an operator. Pushing further the
established analogy we discover the notion of sensitivity and the use of the derived
function. We also use the metaphor to guide the construction of aggregation operators.
The balance model allows to make the right choices while conceiving an aggregation
operator. It is remarkable that the balance not only generalizes most of the aggregation
operators presented in chapter 2 and it is particularly adapted for the operator highlight
in the aggregation of truth and falsity values, but it also offers a larger framework that
allows the interpretation of not mathematical friendly properties, as for instance a non
continuous or non monotone additive generator. The balance framework also opens new
perspectives for further research, in particular on new kind of weight association.

Third part : The Video Querying
The third part illustrates how the theoretical results can be implemented in order to
solve practical problems of aggregation in the case of the video query systems. In
chapter 7, we present a model that allows to browse a video using imperfect temporal
queries. We describe a query system based on fuzzy continuous annotations. Since we
are "computing with words", we establish a dictionary with the basic concepts and the
way to construct new ones. Since all the aggregations are done on a logical background,
we use the t-norms and the t-conorms. But the choice of the particular cases to be used
is not clear, however the results of chapter 3 provide some answers. We also notice that
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in the case of videos the number of aggregation can easily go off, so we propose to use
the fast operator proposed as result of chapter 4.

Nevertheless, when aggregating different sources indicating the same result, we should,
as explained in chapter 5, use another kind of aggregation than t-norms and t-conorms.
In Chapter 8, we illustrate this result with some examples. We also prove the
feasibility of the method by presenting a Java based in-video search engine that uses a
continuous enthusiastic operator studied and tuned using the balance framework,
presented in chapter 6.

This work lead to several published results, which are not all described in this
manuscript, since we opt to focus just on the mathematical aggregation aspects. We
invite the reader to refer to [19] and [28] for aspects related to t-norms and t-conorms, to
[21] for aggregation of truth values in non-logical way, to [22] and [24] for studies on
additive generated operators, to [23], [20] and [76] for video aspects, to [18] and [96]
for ranking methods, to [27] and [25] for defuzzification techniques and to [26] for a
fuzzy comparison study.

We would like to conclude by stressing on the fact that the theoretical results obtained
here are not particular to the multimedia problematic, they can be applied to any field
that need an meaningful aggregation (as we did for the video querying). We also claim
that this work may certainly be a starting point of further research on the aggregation of
logical degrees in a non phrase calculus way and on new aggregation forms, in
particular the ones based on additive generators.
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