
Thèse de Doctorat de l'Université Paris VI

Spécialité Informatique

Présentée par Fabricio Alves Barbosa da Silva

Pour obtenir le grade de

Docteur de l'Université Paris VI

Modélisation et analyse d'une

classe d'algorithmes

d'ordonnancement pour Machines

Parallèles

Soutenue le 1 Decembre 2000,

devant le jury composé de

M. Isaac SCHERSON Examinateur

M. Jean-Marc GEIB Rapporteur

M. Denis TRYSTRAM Rapporteur

M. Alain GREINER Examinateur

M. Jean-Louis PAZAT Examinateur

M. Claude GIRAULT Examinateur

2

A mes parents

A Rodrigo, Lisiane, Luiza et Beatrice

Avant-Propos

Je souhaite remercier vivement M. Isaac D. Scherson., Professeur à l'U-

niversité de Californie à Irvine, qui m'a encadré pendant cette thèse. Ses

conseils, encouragements et amitié m'ont été indispensables dans la prépara-

tion de ce travail.

J'adresse mes remerciements à M. Alain Greiner, Directeur du départe-

ment Architecture du Laboratoire d'informatique de Paris VI, pour m'avoir

accueilli au sein de son laboratoire.

Je remercie sincèrementM. Denis Trystram, Professeur à l'INPG à Greno-

ble, et M. Jean-Marc Geib, Professeur au Laboratoire de Informatique Fon-

damentale de Lille, qui m'ont fait l'honneur d'être rapporteurs dans cette

thèse. Je tiens également à remercier M. Jean-Louis Pazat, Maître de con-

férences de l'IRISA à Rennes, et M. Claude Girault, Professeur à l'Université

Paris VI, qui ont accepté de juger mon travail en participant à mon jury de

thèse.

Je pro�te de cette occasion pour adresser mes remerciements à tous les

membres du département Architecture du Laboratoire LIP6. Je voudrais

aussi remercier les collègues Celio Albuquerque, Marcio Dias et Walfredo

Cirne pour leur amitié et leurs encouragements pendant mes séjours aux

Etats-Unis. J'adresse une pensée spéciale à Luis Miguel Campos pour son

aide pendant la durée de ce travail et son amitié. Je remercie aussi Andrea

Costa, pour son soutien et son encouragement constants.

A tous ceux et celles qui m'ont aidé de près ou de loin, à un moment

ou à un autre, dans la préparation de cette thèse, je tiens à adresser mes

remerciements les plus sincères.

Résumé

L'ordonnancement parallèle est un problème important dont la solution

peut mener à améliorer sensiblement l'utilisation des ordinateurs parallèles

modernes. Il est dé�ni comme : " Etant donné un ensemble de tâches appar-

tenant à plusieurs applications parallèles dans une machine parallèle, trouver

une allocation spatiale et temporelle pour exécuter toutes les tâches e�-

cacement ". Une application parallèle constituée de plusieurs tâches peut

apparaître à un instant donné, attendre que les ressources demandées soient

disponibles, puis être exécutée. Les temps associés à la phase d'attente ainsi

qu'a phase d'exécution sont dépendantes de l'algorithme d'ordonnancement

et de la charge de travail.

Dans la majeure partie de cette thèse, nous nous concentrons sur les al-

gorithmes d'ordonnancement basés sur le "Gang scheduling", à savoir, un

paradigme où toutes les tâches d'une même application parallèle sont re-

groupées et ordonnancées de manière concurrente sur des processeurs dis-

tincts. Les raisons de considérer l'ordonnancement Gang sont le partage e�-

cace des ressources et la facilité de programmation. L'utilisation du partage

de temps parmi les processeurs permet une dégradation graduelle de la per-

formance à mesure que la charge de travail augmente. Les performances des

applications parallèles très synchronisées sont fortement améliorées par rap-

port à un ordonnancement non coordonné.

Cette thèse est divisée en deux parties distinctes : dans la première partie,

on présente l'algorithme d'ordonnancementGang, en identi�ant ses avantages

et ses faiblesses, puis on e�ectue une analyse théorique de l'algorithme Gang

et des stratégies d'empaquetage. La deuxième partie présente des nouvelles

méthodes d'ordonnancement dans une machine parallèle, s'appuyant sur des

mesures dynamiques e�ectuées au moment de l'exécution. Dans cette partie,

nous proposons un nouvel algorithme d'ordonnancement parallèle nommé

"Concurrent Gang", qui utilise des informations dynamiques obtenues sur

les tâches au moment de l'exécution, en vue d'améliorer la performance de

l'ordonnanceur parallèle.

Mots-clés

Ordonnancement Parallèle, Ordonnancement Gang, Parallélisme,

Coscheduling, Système d'exploitation

Abstract

Parallel job scheduling is an important problem whose solution may lead

to better utilization of modern parallel computers. It is de�ned as : �Given

the aggregate of all tasks of multiple jobs in a parallel system, �nd a spatial

and temporal allocation to execute all tasks e�ciently�. For the purposes

of scheduling, we view a computer as a queueing system. An arriving job

may wait for some time, receive the required service, and depart. The time

associated with the waiting and service phases is a function of the scheduling

algorithm and the workload. Some scheduling algorithms may require that

a job wait in a queue until all of its required resources become available (as

in variable partitioning), while in others, like time slicing, the arriving job

receives service immediately through a processor sharing discipline.

In most of this thesis, we focus on scheduling based on Gang service,

namely, a paradigm where all tasks of a job in the service stage are grouped

into a Gang and concurrently scheduled in distinct processors. Reasons to

consider Gang service are responsiveness, e�cient sharing of resources and

ease of programming. In Gang service the tasks of a job are supplied with

an environment that is very similar to a dedicated machine. It is useful to

any model of computation and any programming style. The use of time slic-

ing allows performance to degrade gradually as load increases. Applications

with �ne-grain interactions bene�t of large performance improvements over

uncoordinated scheduling.

This thesis is divided into two distinct parts : in the �rst part, we present

the algorithm Gang scheduling, we identify its advantages and weaknesses,

and we carry out a theoretical analysis of the Gang scheduling algorithm.

The second part presents new methods to improve scheduling in a parallel

machine based on runtime measurements at execution time. In this second

part we propose a new parallel job scheduling algorithm named Concurrent

Gang which uses the runtime information obtained on tasks at execution

time in order to improve the performance of the parallel scheduler.

Keywords

Parallel Job Scheduling, Gang Scheduling, Parallel Computation,

Coscheduling, Operating Systems

6

Table des matières

1 Introduction 15

1.1 Serveurs Parallèles et la loi de Moore 16

1.2 Plan de la thèse . 17

1.2.1 Partie I . 18

1.2.2 Partie II . 21

I Gang Scheduling 25

2 Introduction 27

2.1 Dimensions of the Parallel Job Scheduling Problem 28

2.1.1 Multidimensional Resource Sharing 29

2.2 Summary of the Thesis and Contributions 29

3 Previous Work on Gang Scheduling 31

3.1 Classi�cations Related to the Parallel Job Scheduling Problem 32

3.1.1 Static vs. Dynamic . 32

3.1.2 Preemptive vs. Non-preemptive 32

3.1.3 Periodic vs. Non-periodic 32

3.1.4 Clairvoyant vs. Non-Clairvoyant 32

3.1.5 Single Level vs. Two-Level 33

3.2 Resource Sharing on Parallel Job Scheduling 34

3.2.1 Space Slicing . 34

3.2.2 Time Slicing . 35

3.2.3 Combining Space and Time Slicing 35

3.3 De�nition of Gang Scheduling 35

3.4 Implementing Gang Scheduling 39

3.4.1 Implementing Multi Context switch 40

7

8 TABLE DES MATIÈRES

3.4.2 Saving Job state . 40

3.4.3 Memory and swap considerations 42

3.4.4 Partitioning in Gang Scheduling 42

3.5 Variations of Gang Scheduling 46

3.5.1 Coscheduling . 46

3.5.2 Family Scheduling . 46

3.6 Conclusion . 47

4 Bounds on Gang Scheduling 49

4.1 Introduction . 49

4.2 Previous work on Theoretical Results on Preemptive Scheduling 51

4.3 Executing Tasks Under Gang scheduling 52

4.3.1 Area Conservation . 54

4.3.2 Partitioning in Gang Scheduling 55

4.4 Algorithm description . 56

4.5 Competitive Analysis . 56

4.6 Conclusion and Future Work 61

5 Resource Management in Gang Scheduling 63

5.1 Introduction . 63

5.2 Periodicity in Gang Scheduling 64

5.3 Resource Sharing in Parallel Job Scheduling : One Dimen-

sional case . 65

5.3.1 Packing in Gang Scheduling 66

5.3.2 Dynamic Competitive Ratio 67

5.3.3 Workload Model . 69

5.3.4 CRd applied to First Fit and Best Fit 70

5.4 Resource Sharing in Parallel Job Scheduling : Multi-dimensional

case . 72

5.4.1 Memory Fit algorithm 74

5.4.2 CRd applied to Memory �t 75

5.5 Conclusion . 77

II Concurrent Gang 79

6 Concurrent Gang 81

6.1 Introduction . 81

TABLE DES MATIÈRES 9

6.2 Task Classi�cation . 82

6.2.1 Fuzzy subsets as points 83

6.2.2 Example of task classi�cation using number of statements 84

6.3 Concurrent Gang . 85

6.3.1 De�nition of Concurrent Gang 85

6.4 Experimental Results . 88

6.4.1 Simulation Methodology 88

6.4.2 Simulation Results . 92

6.5 Discussion and Conclusion . 94

7 Concurrent Gang Analysis 101

7.1 Introduction . 101

7.2 Comparison Between Concurrent Gang and oblivious schedulers102

7.3 Performance of Concurrent Gang in the presence of Irregular

Jobs . 104

7.3.1 Y-irregularity and Concurrent Gang 106

7.3.2 X-irregularity and Concurrent Gang 107

7.3.3 Handling completely irregular programs 108

7.4 Conclusion . 108

8 Runtime measurements in parallel job scheduling 109

8.1 Introduction . 109

8.2 Previous Work . 110

8.3 Task Classi�cation using Bayesian Estimators 110

8.3.1 Overhead Analysis of Task Classi�cation Computation 112

8.4 Using task classi�cation in Parallel Job Scheduling 113

8.4.1 Scheduling Using Runtime measurements 113

8.4.2 Adjusting Spinning Time depending on the workload . 114

8.4.3 Distributed Hierarchical Control with alternative schedul-

ing . 116

8.5 Experimental Results . 118

8.5.1 Simulation Methodology 118

8.5.2 Simulation Results . 121

8.5.3 Simulations using the DHC Algorithm 129

8.6 Conclusion . 130

9 Conclusion 131

9.1 List of Current Publications Related to this Thesis 132

10 TABLE DES MATIÈRES

III Conclusions et Discussion Finale 135

10 Conclusions 137

10.1 Chapitre 4 . 137

10.2 Chapitre 5 . 137

10.3 Chapitre 6 . 138

10.4 Chapitre 7 . 138

10.5 Chapitre 8 . 139

10.6 Nouvelles Directions de Recherche 139

A Simulator Veri�cation 141

A.1 Fundamental Concepts . 141

A.2 Block Diagram . 142

A.3 Event-Driven Simulation . 144

A.4 Simulator Veri�cation . 146

Table des �gures

1.1 Trace diagram . 19

2.1 A trace diagram . 28

3.1 Scheduling policies followed in current commercial and re-

search systems (Adapted from [34]) 36

3.2 De�nition of slice, slot, period and cycle. J1 stands for job 1,

J2 for job 2, etc. Job 2 is composed by 4 tasks 38

3.3 Distributed Hierarchical Control scheme 45

4.1 Trace diagram. The �gure illustrates a gang scheduling pe-

riod of 4 slices containing 6 tasks. In this �gure the tasks are

identi�ed as J1 through J6. 53

4.2 Area Conservation. In the �gure two parallel tasks are sched-

uled. The overall makespan is equal to the sum of ttotal and

tspace . 55

5.1 Sequence 1 - no migration . 70

5.2 Sequence 2 - no migration . 71

5.3 Sequence 1 - with migration 72

5.4 Sequence 2 - with migration 73

5.5 Dynamic competitive ratio applied to memory �t 75

5.6 Throughput of both best �t and memory �t 76

6.1 Sets as points. The fuzzy subset A is a point in the unit 2-cube

with coordinates of �t values (1/3,2/3). The �rst element x1
�ts or belongs to A to degree 1/3, the element x2 to degree

2/3. The cube consists of all possible fuzzy sets of two elements

x1; x2 . 84

6.2 Modeling Concurrent Gang class algorithm 88

11

12 TABLE DES FIGURES

6.3 One I/O working set . 91

6.4 16 Processors, I/O bound workload : Throughput 94

6.5 16 Processors, I/O bound workload : idle time 95

6.6 16 Processors, Computation intensive workload : Throughput . 95

6.7 16 Processors, Computation intensive workload : idle time . . 96

6.8 16 Processors, Synchronization intensive workload : Throughput 96

6.9 Execution of a synchronization intensive workload by a Con-

current Gang scheduler without priorities. Observe that the

scheduling of an isolated that belonging to a synchronization

intensive job causes the blocking of the other tasks of the same

job on its assigned slice . 97

6.10 16 Processors, Synchronization intensive workload : idle time . 97

6.11 16 Processors, Communication intensive workload : Throughput 98

6.12 16 Processors, Communication intensive workload : idle time . 98

7.1 X and Y irregularities . 105

8.1 Controller in the Distributed Hierarchical Control scheme . . . 116

8.2 I/O bound job with one I/O working set 120

8.3 I/O bound workload with one I/O working set 123

8.4 IO/Msg workload . 124

8.5 IO/Msg/Emb workload . 125

8.6 IO/BSP workload . 126

8.7 IO/BSP/Emb workload . 126

8.8 Evaluation of the spin control mechanism - IO/BSP workload 126

8.9 Evaluation of the spin control mechanism - IO/Msg Workload 127

8.10 Emb/Msg workload . 128

8.11 Emb/BSP workload . 128

8.12 Results for the computing intensive (embarrassingly parallel)

workload . 129

8.13 Results for the I/O bound workload 130

A.1 The Logical Structure of the Simulation Environment 143

Liste des tableaux

8.1 Experimental results - I/O intensive workload - 8 Processors . 123

8.2 Experimental results - I/O intensive workload - 16 Processors 123

8.3 Experimental results - IO/Msg workload - 8 Processors 124

8.4 Experimental results - IO/Msg workload - 16 Processors . . . 124

8.5 Experimental results - I0/Msg/Emb workload - 8 Processors . 125

8.6 Experimental results - IO/Msg/Emb workload - 16 Processors 125

13

14 LISTE DES TABLEAUX

Chapitre 1

Introduction

Dans les monoprocesseurs, l'ordonnancement est l'activité consistant à

décider quelle tâche va être exécutée sur l'unité centrale de traitement à un

moment donné. Dans les machines parallèles, l'ordonnancement a une autre

dimension : il faut décider non seulement quand une tâche sera exécutée,

mais également où elle sera exécutée, c'est à dire sur quel processeur. Ainsi les

systèmes parallèles nécessitent une allocation bidimensionnelle des ressources

aux applications parallèles, à la fois dans le temps et dans l'espace.

L'ordonnancement parallèle est un problème important dont la solution

peut mener à améliorer sensiblement l'utilisation des ordinateurs parallèles

modernes. Il est dé�ni comme : " Etant donné un ensemble de tâches appar-

tenant à plusieurs applications parallèles dans une machine parallèle, trouver

une allocation spatiale et temporelle pour exécuter toutes les tâches e�-

cacement ". Une application parallèle constituée de plusieurs tâches peut

apparaître à un instant donné, attendre une période de temps, recevoir le

service exigé, et se terminer. Les temps associés à l'attente et aux phases de

service sont dépendants de l'algorithme d'ordonnancement et de la charge

de travail. Quelques algorithmes d'ordonnancement exigent une attente dans

une �le d'attente jusqu'à ce que toutes les ressources nécessaires deviennent

disponibles (comme dans l'algorithme "variable partitioning" [34]), alors que

dans d'autres, comme les algorithmes basés sur le partage dans le temps,

l'application parallèle reçoit le service immédiatement.

Dans la majeure partie de cette thèse, nous nous concentrons sur les al-

gorithmes d'ordonnancement basés sur le "Gang scheduling", à savoir, un

paradigme où toutes les tâches d'une même application parallèle sont re-

groupées et concurremment ordonnancés sur des processeurs distincts. Les

15

16 CHAPITRE 1. INTRODUCTION

raisons de considérer l'ordonnancement Gang sont le partage e�cace des

ressources et la facilité de programmation [35]. Il supporte n'importe quel

modèle de programmation. L'utilisation du partage de temps parmi les pro-

cesseurs permet une dégradation graduelle de la performance à mesure que la

charge de travail augmente [34]. Les performances des applications parallèles

très synchronisées sont fortement améliorées par rapport à un ordonnance-

ment non coordonné [37].

Pour ces caractéristiques, l'ordonnancement Gang a été implementé par

quelques-uns des plus grand fabricants de machines parallèles (IBM [41],

SGI [5], Tera MTA [26], Cray [57]) et est utilisé comme stratégie d'ordon-

nancement par d'importants centres de calcul scienti�que, comme le Lawrence

Livermore National Laboratory(LLNL) [35], dans son Cray T3E.

Un problème majeur de l'approche Gang scheduling est la performance

des programmes parallèles qui font beaucoup d'entrées/sorties, puisqu'une

tâche qui e�ectue une entrée/sortie est bloquée, et le processeur correspon-

dant est inutilisé. En e�et, les ordonnanceurs Gang typiques savent seulement

ordonnancer des gangs de tâches et non des tâches individuelles. Dans cette

thèse nous utilisons l'ordonnancement Gang comme point de départ pour

proposer une nouvelle classe de politique d'ordonnancement qui s'appuie sur

des mesures dynamiques e�ectuées au moment de l'exécution pour améliorer

l'utilisation des ressources et le débit de traitement dans l'ordonnancement

parallèle en général et l'ordonnancement Gang en particulier.

1.1 Serveurs Parallèles et la loi de Moore

Bien que la recherche dans l'ordonnancement parallèle aujourd'hui soit

d'avantage orientée vers les processeurs massivement parallèles (MPP) et

les serveurs de calcul tels que des serveurs SMP, le parallélisme peut être

utilisé même au niveau des stations de travail. L'intégration de processeurs

multiples dans une même carte mère, et dans un futur proche, dans une

même puce, ramène le calcul parallèle plus près du niveau des ordinateurs de

bureau. L'importance croissante du traitement parallèle est mise en valeur

par le fait que l'industrie fait face à une période de changement fondamental.

Pendant plus de vingt années, les concepteurs d'ordinateurs ont compté sur

la loi de Moore pour augmenter la puissance de calcul. La loi de Moore rend

compte du doublement de la densité d'intégration (en nombre de transistors

par puce) tous les 24 mois et elle est baptisée du nom du chercheur qui a

1.2. PLAN DE LA THÈSE 17

identi�é pour la première fois cette tendance, Gordon Moore. Des transistors

plus petits ont comme conséquence des puces plus rapides qui se traduisent

en ordinateurs plus rapides. Mais il y a un accord général des experts pour

prévoir un ralentissement vers 2005, et probablement plus tôt [61].

Une autre façon d'augmenter la performance sans augmentation de la

fréquence de base des processeurs est évidemment le traitement parallèle. Les

ordinateurs géants d'aujourd'hui contiennent des centaines ou même des mil-

liers de microprocesseurs. Grâce à la baisse du prix des microprocesseurs, le

parallélisme s'est déjà introduit sur le marché des stations de travail. Actuelle-

ment, il est possible de trouver des serveurs avec huit processeurs intégrés sur

la carte mère. Cette tendance est à la base de l'annonce d'IBM en décembre

1999 d'un plan quinquennal pour construire l'ordinateur Blue Gene, qui sera

capable d'exécuter 1 million de milliards d'opérations en virgule �ottante par

second [75]. Le but est la simulation du pepliement des protéines. Chaque

processeur du Blue Gene aura une puissance de calcul de 1 giga�ops, soit une

puissance comparable à celle des ordinateurs géants d'il y a une décennie. 32

processeurs seront intégrés dans une puce avec 16 méga-octets de mémoire.

Soixante quatre de ces puces seront placés sur chaque carte. Ceci correspond

à 2 tera�ops de puissance de calcul, ce qui est presque autant que les ordina-

teurs géants les plus puissants d'aujourd'hui, dans un volume plus petit que

celui d'un ordinateur de bureau. Huit des ces cartes seront placés dans une

tour, et 64 tours seront interconnectées pour créer le Blue Gene.

Une telle utilisation intensive du parallèlisme met en valeur l'impor-

tance des ordonnanceurs parallèles pour un usage e�cace des ressources

disponibles. Cette thèse de donne quelques réponses à des problèmes actuels

en ordonnancement parallèle, qui peuvent être aussi bien appliquées aux sta-

tions de travail parallèles qu'aux systèmes massivement parallèles.

1.2 Plan de la thèse

Cette thèse est divisée en deux parties distinctes : Dans une première par-

tie, on présente l'algorithme d'ordonnancement Gang, on identi�e ses avan-

tages et ses faiblesses, et on e�ectue une analyse théorique de l'algorithme

Gang et des stratégies d'empaquetage. La deuxième partie présente des nou-

vellesméthodes pour faire l'ordonnancement dans une machine parallèle s'ap-

puyant sur des mesures dynamiques e�ectuées au moment de l'exécution.

18 CHAPITRE 1. INTRODUCTION

1.2.1 Partie I

La première partie est composée de quatre chapitres. Le chapitre 2 est une

introduction générale. Le chapitre 3 pose le problème de l'ordonnancement

parallèle, et décrit l'algorithme Gang. Le chapitre 4 présente une analyse

de compétitivité des algorithmes d'ordonnancement basés sur Gang. Le 5

chapitre propose une analyse du cas moyen pour le problème de partage de

ressources dans l'ordonnancement Gang, en analysant les cas uni et multidi-

mensionnel.

Chapitre 3

Dans ce chapitre nous examinons les travaux existants au sujet de l'or-

donnancement parallèle, en soulignant l'importance des stratégies d'ordon-

nancement dérivées de l'ordonnancement Gang. L'espace des solutions de ce

problème a deux dimensions : une temporelle, en raison de l'existence d'appli-

cations parallèles multiples qui partagent les ressources dans le temps, et une

autre spatiale, étant donné qu'une machine parallèle est composée de mul-

tiples processeurs et que plusieurs applications parallèles peuvent s'exécuter

simultanément.

Dans le partage dans l'espace, également connu sous le nom de parti-

tionnement, un sous-ensemble de processeurs de la machine est dédié à une

application parallèle jusqu'à son accomplissement.

Dans le partage dans le temps, tous les processeurs de la machine sont

consacrés seulement à une application parallèle, et des tranches de temps sont

allouées à chaque application. L'avantage de cette classe d'algorithmes est que

le temps d'attente est réduit pour les applications parallèles nouvellement

arrivées : Toutes les applications parallèles seront ordonnancées s'il y a assez

de mémoire disponible. Cependant, la perte due à la fragmentation peut

être signi�cative, puisque tous les processeurs sont consacrés à l'une seule

application à la fois, alors que la plupart des applications n'exigent pas un

nombre de processeurs égal au nombre de processeurs de la machine.

En combinant le partage dans le temps et dans l'espace, il est possible

de combiner les avantages des deux stratégies, c'est à dire la réduction de

temps d'attente avec une utilisation e�cace des ressources de la machine.

C'est l'approche utilisée, par exemple, dans l'ordonnanceur Gang combiné

avec le partitionement. Dans cette stratégie, plusieurs applications peuvent

être lancées simultanément, s'il y a les ressources su�santes disponibles. La

1.2. PLAN DE LA THÈSE 19

P
ro

c
e
s
s
e
u
rs

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������

�
�
�
�

�
�
�
�

�� ��

�
�
�
�

�
�
�
�

P0

P1

P2

P3

P4

n-1P

Temps

�
�
�
�

Fig. 1.1: Trace diagram

combinaison du partage dans l'espace et dans le temps par l'ordonnanceur

Gang est analysée en détail dans ce chapitre.

L'utilisation des ressources dans le temps et dans l'espace peut être vi-

sualisée à l'aide d'un diagramme bi-dimensionnel appellé diagramme de trace.

Une dimension représente les processeurs tandis que l'autre dimension représente

le temps. Une représentation semblable a été déjà utilisée, par exemple, par

Ousterhout dans [72]. Un tel diagramme est illustré dans la �gure 1.1.

Chapitre 4

Le chapitre 4 présente une analyse de compétitivité de l'ordonnancement

Gang.

Les implications théoriques de l'ordonnancementGang ont été peu étudiées.

Subramanian et Scherson [92, 79] ont fait une analyse de compétitivité de

l'ordonnancement Gang en utilisant une métrique nommée �Happiness�. Ils

ont montré qu'une variante de l'ordonnancement Gang dénommée Intruction

Balanced Time Slice est le meilleur algorithme sous cette nouvelle métrique

pour une charge de travail composée de programmes parallèles de type VRAM

(Vector Random Acces Machine) [7]. Ici nous proposons une analyse indépen-

dante du modèle de programmation, en utilisant comme métrique le temps

d'exécution de la charge de travail.

Soit une charge de travail �xe W. Nous dé�nissons TOPT (W) la durée

d'exécution de la charge de travail W pour un ordonnancement optimal. Cet

20 CHAPITRE 1. INTRODUCTION

ordonnancement optimal est supposé obtenu de façon " statique " grace à

la connaissance complète des caractéristiques et durées de toutes les tâches

composant l'application. TA(W) est dé�ni comme le temps d'accomplisse-

ment sous un algorithme d'ordonnancement A. L'algorithme A est dit r-

competitive si pour toutes les charges de travail W, TA(W) < r � TOPT (W).
Le taux de compétitivité de l'algorithme A est r. Cette technique permettant

d'évaluer un algorithme d'ordonnancement dynamique (en ligne) en com-

parant son exécution à l'algorithme optimal (hors ligne) s'appelle l'analyse

de compétitivité. L'analyse de compétitivité permet d'évaluer les algorithmes

qui sont limités d'une manière quelconque (par exemple, information limitée,

puissance de calcul limitée, nombre de préemptions limité). Cette mesure a

été présentée pour la première fois dans l'étude d'un problème de gestion

de mémoire. L'algorithme hors-ligne optimal est référencé également en tant

qu'adversaire.

Le premier résultat de ce chapitre détermine une borne inférieur pour le

taux de compétitivité de l'ordonnancementGang. En suite nous prouvons que

la borne inférieur est en e�et la valeur du taux de compétitivité de l'ordon-

nancement Gang quand celui-ci fait usage de certaines classes d'algorithmes

de partage de ressources (dans notre cas les processeurs) qui supportent la

migration de tâches.

Deux théorèmes sont prouvés dans le chapitre :

Theorem 1 La borne inférieur du taux de compétitivité des algorithmes

bases sur l'ordonnancement Gang est égal à 4.

Theorem 2 Le taux de compétitivité est égal a 4 pour les algorithmes d'or-

donnancement Gang avec le partitionnement " �rst �t decreasing "

Chapitre 5

Le chapitre 5 fait une analyse des algorithmes de partage de ressources

qui peuvent être utilisés dans l'ordonnancement Gang. Une des contributions

de ce chapitre est la proposition d'une nouvelle méthode pour l'analyse du

cas moyen des algorithmes dynamiques, qu'on a nommé taux de compétitiv-

ité dynamique. Le taux de compétitivité dynamique est utilisé pour faire une

analyse du cas moyen des algorithmes de partage de ressources unidimen-

sionnels et multidimensionnels.

Dans le problème de partage unidimensionnel, les applications sont représen-

tées par seulement un paramètre : le nombres de tâches qui composent l'appli-

1.2. PLAN DE LA THÈSE 21

cation. La machine est caractérisée par le nombre de processeurs. Nous sup-

posons que d'autres ressources, telles que la mémoire, sont illimitées. Nous

analysons dans ce cas la variation dynamique du problème d'ordonnance-

ment, où les temps d'arrivée peuvent être di�érents de zéro. Ce problème est

semblable à un problème d'empaquetage dynamique (on-line bin-packing).

Dans le cas multidimensionnel les ressources disponibles dans une ma-

chine sont représentées par un vecteur m-dimensionnel R = (R1; R2:::rm)
et les ressources exigées par un travail J sont représentées par un vecteur

k-dimensionnel J = (J1; J2:::jk).
Les résultats de ce chapitre ont été publiés dans les anales du �1999 In-

ternational Simposium of Parallel Architectures, Algorithms and Networks�.

Une version etendue de cet article a été soumis comme article invité dans le

�International Journal of Foundations of Computer Science�.

1.2.2 Partie II

La deuxième partie de la thèse présente des méthodes pour mesurer les

caractéristiques des tâches lors de l'exécution et propose un nouvel algorithme

d'ordonnancement parallèle nommé Concurrent Gang utilisant les informa-

tions dynamiques obtenues sur les tâches au moment de l'exécution pour

améliorer la performance de l'ordonnanceur parallèle.

Chapitre 6

Le chapitre 6 décrit un nouvel algorithme d'ordonnancement basé sur

l'ordonnancement Gang , qui utilise des mesures faites au moment de l'exé-

cution pour résoudre le problème du blocage des tâches. Ceci a été fait en

utilisant un algorithme de classi�cation dynamique des tâches lors de l'exé-

cution. On utilise la théorie des ensembles �ous, pour calculer le degré de

similitude de chaque tâche par rapport a un ensemble de classes pré-dé�nies.

Des exemples de classes possibles sont : calcul intensif, communication inten-

sive et Entrée/Sortie intensive. Avec cette classi�cation, une priorité locale

à un processeur est calculée pour chaque tâche, et cette priorité est util-

isée pour décider quelle tâche sera activée en cas de blocage. Le modèle

architectural que nous considérons dans ce chapitre est un multi-processeur

avec mémoire distribuée composé de quatre composants principaux : 1) Pro-

cesseur/mémoire, 2) un réseau d'interconnexion point à point, 3) le synchro-

niseur qui envoi un signal de synchronisation (horloge) à tous les processeurs

22 CHAPITRE 1. INTRODUCTION

à intervalles réguliers et 4) un Front End. Cette architecture est semblable à

celle dé�nie dans le modèle BSP [94].

Les di�érences principales par rapport à l'ordonnanceur Gang standard

sont la dé�nition explicite d'un synchroniseur global et la présence de l'or-

donnanceur local qui décide quoi faire si une tâche de l'application exécutée

en tant que Gang est bloquée.

L'approche Concurrent Gang est plus avantageuse pour les charges de

travail qui font des E/S intensives, comme cela est démontré dans la sec-

tion des résultats expérimentaux de ce chapitre. Pour des charges de travail

qui exigent un ordonnancement coordonné, l'algorithme Concurrent Gang

devient équivalent à l'algorithme Gang standard.

L'utilisation des ressources par l'algorithmeConcurrent Gang est améliorée

parce que, en cas de processeur inactif ou de tâche bloquée, l'algorithme Con-

current Gang essaye toujours de programmer les tâches qui n'exigent pas, à

ce moment, l'ordonnancement coordonné avec d'autres tâches de la même

application.

Un résultat important de ce chapitre est la comparaison entre le calcul de

priorité réalisé par Concurrent Gang et une politique simple de "round-robin"

pour choisir quelle tâche doit être activée en cas de blocage. On montre que la

dé�nition d'une priorité " intelligente " dépendant du comportement observé

de chaque tâche permet d'obtenir de meilleure résultats pour di�érentes types

de charges de travail.

Les résultats présentés dans ce chapitre ont été publiés dans les anales

de la conférence "IEEE International Parallel and Distributed Processing

Symposium 2000", Cancun, Mexico et aussi dans la conférence "IASTED

Conference on Parallel and Distributed Computing Systems 1999", Boston,

USA.

Chapitre 7

Dans ce chapitre nous comparons les algorithmes qui se servent des mesures

obtenues au moment de l'exécution comme par example Concurrent Gang,

avec d'autres algorithmes qui ne se servent pas d'une telle information, comme

les ordonnanceurs Gang et les ordonnanceurs locaux inconscients. La conclu-

sion est qu'un ordonnanceur Concurrent Gang sera toujours au moins aussi

bon qu'un ordonnanceur Gang utilisant la même stratégie d'empaquetage.

Cela est valable aussi pour un ordonnanceur local inconscient, comme cela

est démontré dans le théorème suivant :

1.2. PLAN DE LA THÈSE 23

Theorem 3 Les ordonnanceurs inconscients, tels que l'ordonnanceur Gang

et les ordonnanceurs locaux inconscients, ne peuvent pas être meilleur que

l'ordonnanceur Concurrent Gang pour la même stratégie de distribution de

tâche, si on utilise le temps d'exécution de la charge de travail comme métrique

Le chapitre 7 présente aussi une analyse de l'algorithme Concurrent Gang

soumis à une charge de travail composée de travaux parallèles irréguliers.

Les programmes parallèles peuvent être classi�és réguliers ou irréguliers.

Dans les programmes réguliers le degré de parallélisme demeure constant

pendant l'exécution. A l'inverse, dans les programmes irréguliers le nombre

de tâches change ou la quantité de calcul par tâche peuvent changer au cours

de l'exécution. L'irrégularité d'un programme peut être exprimée en :

� la variation du nombre de tâches pendant l'exécution. Nous nommerons

cette variation comme Y-irrégularité.

� la variation de la quantité de calcul exécutée par une tâche pendant

l'exécution. Nous dé�nirons cette variation comme X-irrégularité.

Un programme qui présente des irrégularités de X et de Y est un pro-

gramme complètement irrégulier.

Par rapport à la Y-irregularité, nous proposons une variante de Concur-

rent Gang liée à un algorithme d'équilibrage de charge qui utilise les infor-

mations recueillies au moment de l'exécution, quand le nombre de tâches

varie. Par rapport a X-irrégularité, nous montrons que l'ordonnanceur local

de Concurrent Gang est capable d'augmenter l'utilisation de la machine de

façon e�cace en présence des irrégularités de quantité de calcul.

Chapitre 8

Dans ce chapitre, nous analysons et systématisons l'utilisation d'informa-

tions recueillies sur les tâches au moment de l'exécution. Notre objectif est

d'utiliser des informations tel que le nombre d'appels d'E/S, la durée des

appels d'E/S, le nombre de messages reçus, le nombre de messages envoyés,

le nombre de barrières et d'autres informations disponibles en fonction de

l'architecture de la machine a�n d'associer une tâche à une classe prédé�nie

en utilisant les ensembles �ous et les estimateurs Bayésiens.

Le principal objectif de ce chapitre est de présenter un mécanisme de

classi�cation de tâches plus robuste que celui décrit dans le chapitre 6 grâce

à l'utilisation de théorie bayésienne de la décision. La théorie bayésienne de la

décision est une méthode mathématique qui guide un décideur en choisissant

24 CHAPITRE 1. INTRODUCTION

une ligne de conduite face à l'incertitude au concernant les conséquences de ce

choix [49]. En particulier nous allons dé�nir dans ce chapitre un classi�cateur

de tâche à l'aide d'un estimateur bayésien adapté à la théorie des ensembles

�ous.

La classi�cation d'une tâche peut changer avec le temps, puisque nous

considérons que les caractéristiques des programmes parallèles peuvent changer

pendant l'exécution. Quelques utilisations possibles pour ce mécanisme de

classi�cation de tâches sont, par exemple, de décider quoi faire dans le cas

d'un processeur inactif, ou dé�nir le temps d'attente d'une réception blo-

quante dans un mécanisme du type �spin-lock� en fonction de la charge de

travail sur un processeur. Une utilisation possible est de fournir un meilleur

service aux programmes qui font des E/S intensives dans ordonnancement

Gang, en identi�ant les tâches qui font beaucoup d'E/S a�n de les remettre

à plus tard dans les périodes d'inactivité du processeur. Cette approche est

di�érente de celle proposée par Lee et al. [58] puisqu'elle n'interrompt pas

les applications parallèles en cours d'exécution.

Des résultats de simulation sont présentés, et concernent des charges de

travail mixtes. Un résultat important de ce chapitre est l'amélioration ef-

fective du service fourni aux applications parallèles qui font beaucoup d'en-

trées/sorties grâce à la mesure des temps d'attente lors de l'exécution.

Les résultats concernant ce chapitre ont été publiés dans le volume "Job

Scheduling Strategies for Parallel Processing", Lecture Notes on Computer

Science, 2000. Une version preliminaire a été publiée et acceptée pour présen-

tation dans le "6th workshop of Job Scheduling Strategies for Parallel Pro-

cessing", Cancun, Mexico, Mai 2000.

Première partie

Gang Scheduling

25

Chapitre 2

Introduction

In uniprocessors, scheduling is the activity of deciding which task gets

to run on the CPU. In multiprocessors and multicomputers, scheduling has

another dimension : not only deciding when a task will run, but also where it

will run, i.e. on which Processing Element (PE). Thus parallel systems allow

a two-dimensional division of resources among competing jobs, both in time

and in space, through parallel job scheduling.

Parallel job scheduling is an important problem whose solution may lead

to better utilization of modern multiprocessors parallel computers. It is de-

�ned as : �Given the aggregate of all tasks of multiple jobs in a parallel system,

�nd a spatial and temporal allocation to execute all tasks e�ciently�. For the

purposes of scheduling, we view a computer as a queueing system. An ar-

riving job may wait for some time, receive the required service, and depart

[40]. The time associated with the waiting and service phases is a function

of the scheduling algorithm and the workload. Some scheduling algorithms

may require that a job wait in a queue until all of its required resources

become available (as in variable partitioning), while in others, like time slic-

ing, the arriving job receives service immediately through a processor sharing

discipline.

In most of this thesis, we focus on scheduling based on Gang service,

namely, a paradigm where all tasks of a job in the service stage are grouped

into a Gang and concurrently scheduled in distinct processors. Reasons to

consider Gang service are responsiveness [35], e�cient sharing of resources [48]

and ease of programming. In Gang service the tasks of a job are supplied with

an environment that is very similar to a dedicated machine [48]. It is useful

to any model of computation and any programming style. The use of time

27

28 CHAPITRE 2. INTRODUCTION

P
ro

c
e
s
s
o
rs

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

P0

P1

P2

P3

P4

n-1P

Time

��
��
��
��

Fig. 2.1: A trace diagram

slicing allows performance to degrade gradually as load increases. Applica-

tions with �ne-grain interactions bene�t of large performance improvements

over uncoordinated scheduling [37]. One main problem related with Gang

service is the performance of I/O bound and interactive jobs [58] and the

fact that typical Gang schedulers only know how to schedule gangs of tasks.

In this thesis we use Gang scheduling as a starting point for proposing a

new class of scheduling policies that uses runtime measurements to improve

utilization and throughput in parallel job scheduling in general and Gang

scheduling in particular.

2.1 Dimensions of the Parallel Job Scheduling

Problem

Consider the scheduling of a set of parallel jobs. A useful tool to help

visualize the time utilization in parallel machines is a bidimensional diagram

dubbed trace diagram. The trace diagram is also known in the literature as

Ousterhout matrix [72]. Referring to �gure 2.1, one dimension represents

processors while the other dimension represents time. Through the trace

diagram it is possible to visualize the time utilization of the set of processors

given a scheduling algorithm.

Regarding the trace diagram, the parallel job scheduling becomes hence

equivalent to computing the trace diagram for a given workload (a set of

jobs). Gang Scheduling in particular can hence be de�ned with respect to

2.2. SUMMARY OF THE THESIS AND CONTRIBUTIONS 29

the trace diagram as the concurrent scheduling of the set of tasks of a job in

a time slice. The trace diagram is �rst computed at power up and updated

at each workload change (task arrival, completion, etc).

Up to now, the machine was characterized only by its number of pro-

cessors. In parallel job scheduling, not only the number of processors is im-

portant, but also other resources of the machine such as amount of main

memory, required disk space, etc. Scheduling under multiple constraints is

associated with multidimensional resource sharing analysis, which is stated

in the next subsection.

2.1.1 Multidimensional Resource Sharing

In the multi-dimensional case the resources available in a machine are rep-

resented by a m-dimensional vector R = (R1; R2; :::Rm) and the resources re-

quired by a job J are represented by a k-dimensional vector J = (J1; J2; :::Jk); k �
m. Observe that the number of dimensions in the trace diagram increases

accordingly to the number of di�erent resources considered by the schedul-

ing algorithm. Of particular interest for Gang scheduling algorithms is the

amount of memory required for each job, since most of the parallel machines

available today do not have support for virtual memory, and the limited

amount memory available determine the number of jobs that can share a

machine at any given time.

In the case of a distributed memorymachine, the machine itself is modeled

as a P-dimensional vector R(t) = (R1; R2; :::RP) where RI represents the

amount of memory available at time t in node I. The job is represented as a

f-dimensional vector J(t) = (J1; J2; :::Jf), where f is the maximum number

of tasks of a job and JI is the amount of memory required for task I at time

t.

2.2 Summary of the Thesis and Contributions

In the �rst part of thesis we begin by making a survey on Gang schedul-

ing. Then a competitive analysis of Gang scheduling is make, which uncover

some caveats related to this algorithm. An analysis of resource sharing in

Gang scheduling follows. In this analysis we study both the one-dimensional

and multidimensional resource sharing problems. We also propose a new

30 CHAPITRE 2. INTRODUCTION

methodology for comparing dynamic algorithms named Dynamic Competi-

tive Ratio.

As a consequence of the analysis made in the �rst part of the thesis,

in the second part we propose a new scheduling policy, dubbed Concurrent

Gang, that improves utilization and throughput in Gang scheduling. This

is true in particular for I/O bound jobs, as we shall see. A comparison be-

tween Concurrent Gang, Gang scheduling and oblivious local schedulers is

made, and then the runtime measurements scheme �rst used for Concurrent

Gang is systematized for used in di�erent ways and with di�erent scheduling

algorithms through the use of Bayesian estimators. Finally we present our

conclusions and future directions of research.

Chapitre 3

Previous Work on Gang

Scheduling

In this chapter we survey the work in the literature about parallel job

scheduling, giving emphasis to Gang scheduling-based strategies. The parallel

job scheduling problem consists in how to run a set of parallel jobs in a parallel

machine. We de�ne a workload as being composed by a set of parallel jobs.

The parallel job itself is composed by a set of tasks. The parallel machine is

composed by a set of processing elements (PEs).

The space of solutions of this problem has two dimensions : a temporal

one, due to the existence of multiple parallel jobs that shares computing

resources, and a spatial dimension, due to the fact that a parallel machine

is composed of multiple processors and more than one parallel job may be

running in the machine in a given moment of time.

Given a job composed of N tasks, in Gang scheduling these N tasks com-

pose a process working set, as de�ned originally by Ousterhout [72], and

all tasks belonging to this process working set are scheduled simultaneously

in di�erent processors, i.e., Gang scheduling algorithms is the class of al-

gorithms that schedule on the basis of whole process working sets. Gang

scheduling allows both the time sharing as well as the space sharing of the

machine. In the following we �rst present a classi�cation of the job scheduling

problem. Then we discuss the two dimensions of parallel job scheduling and

we make a detailed presentation of Gang scheduling, describing some actual

implementations of Gang scheduling in parallel systems.

31

32 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

3.1 Classi�cations Related to the Parallel Job

Scheduling Problem

In this section we present some classi�cations for the parallel job schedul-

ing problem. The classi�cations/de�nitions presented in this section will be

used in the following chapters of the thesis.

3.1.1 Static vs. Dynamic

A static scheduling is the one which all the release times are zero, i.e.,

all the jobs are available for execution at the start of the schedule. Given a

workload W = fJ1; J2; :::; Jng, in this case we have job arrival times ai = 0,
for all 1 < i < n. A dynamic scheduling problem allows arbitrary non-

negative arrival epochs, i.e. ai � 0 where a1 < a2 < ::::: < an for a workload

W = fJ1; J2; :::; Jng. By de�nition a1 = 0.

3.1.2 Preemptive vs. Non-preemptive

In preemptive parallel scheduling the execution of any parallel task can

be suspended at any time and resumed later from the point of preemption.

A Non-preemptive parallel scheduling do not allows preemption. In this

case a job runs until completion in the same set of processors that it was

originally scheduled.

3.1.3 Periodic vs. Non-periodic

Consider a workload W and a period of time T where there is no changes

in W . A periodic schedule repeats itself at regular �nite intervals in the time

dimension for workload W during time T . If the interval tends to in�nite the

schedule is non-periodic.

3.1.4 Clairvoyant vs. Non-Clairvoyant

In clairvoyant parallel scheduling the characteristics of a job (in par-

ticular, its execution time, release time and dependence on other jobs) are

known a priori, and the scheduler may use this information to assign pro-

cessors/intervals of time to jobs. In non-clairvoyant parallel scheduling, the

3.1. CLASSIFICATIONSRELATED TO THE PARALLEL JOB SCHEDULINGPROBLEM33

scheduler has no knowledge of jobs' characteristics [69], unless the initial

processor/memory requirements of a job.

In the parallel job scheduling problem, a clairvoyant scheduler must ob-

tain the characteristic of the job to be schedule by some means. It has been

suggested that coarse estimates of job parameters may be obtainable by a

static analysis of the code and the input [78], but these techniques often

fail outside toy examples. Some papers suggest that the users themselves

provides some estimates of job parameters [66, 54]. However, we have to

contend with the problem that users will abuse the system by quoting fake

values for the parameters. More recent work [90] proposed the prediction of

run times from the run times of �similar� applications that have executed in

the past. Even with the use of genetic algorithms to determine the �similari-

ty� among applications and templates, the error in the best case still varies

between 40 and 59 percent of mean application run times. Beyond that, pre-

diction of running times is only one aspect of clairvoyance. We also have, for

instance, the internal characteristics of each job and the corresponding arrival

epochs. In function of these observations we will concentrate ourselves in non

clairvoyant schedulers, as it seems to us more realistic than its clairvoyant

counterpart, although a large part of the research in scheduling theory has

been concentrated with clairvoyant scheduling.

3.1.5 Single Level vs. Two-Level

In single level scheduling the act of allocating a processing resource is

combined with the act of deciding which task will use this resource. In single

level scheduling, the operating system's kernel is the main agent in decisions

related to scheduling, with no support for scheduling embedded into the

application. An example of a single level scheduler is the scheduling of a

SPMD workload by a Gang scheduler.

In two-level scheduling, the resource allocation and the decision about

resource utilization are decoupled. The �rst level deals with resource allo-

cation, and the second with its use. In two level scheduling, the operating

system just allocates the computing resources, with the application itself (or

the runtime system) being responsible for the actual �ne-grain scheduling

of tasks on the allocated PEs, in a way that satis�es the synchronization

constraints. An example of application level scheduler is loop scheduling in

shared memory systems [95, 68]. The problem with two-level scheduling is

that it is less convenient for distributed memory architectures, especially if

34 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

programs are written using the data-parallel programming model [34].

3.2 Resource Sharing on Parallel Job Schedul-

ing

The sharing of a parallel machine, according to how the parallel job

scheduling problem was de�ned, has both a spatial and a temporal dimen-

sion : The scheduler is not only responsible for deciding when a task will run,

but also where it will run, i.e. in which processing element.That gives another

dimension to scheduling in multiprocessors if compared with uniprocessors

[34]. The temporal sharing of a machine is also known as time slicing or pre-

emption ; and the space sharing as space slicing or partitioning. These two

classi�cations are orthogonal, and may lead to a taxonomy based on the pos-

sible options. Table 3.1 shows the scheduling policies adopted by commercial

and research systems, and was based on [34].

3.2.1 Space Slicing

In space slicing, also known as partitioning, a subset of processors of

the machine is dedicated one job until completion. More than one job can

be scheduled in the machine, provided that there is a su�cient number of

processors available. If it is not the case, the arriving job should wait until the

requested resources are available. A example such of algorithm is the variable

partitioning algorithm [34]. This class of algorithms are specially important,

since it is used by many MPP computers [48]. In this algorithm, each job

Ji requires a number Pi of processors to execute. The scheduling algorithm

is responsible to verify if a partition with Pi processors is available ; if yes,

the partition is allocated to the job and it starts running immediately in the

reserved partition until completion. If not, the job waits until a number of Pi
processors becomes available. This wait time can be signi�cant, delaying new

arriving jobs. This delay can be bounded by above when the user is forced to

de�ne a maximumprocessing time for the job. However, this is a information

that in most cases is not available at submission time, and killing a job before

its completion is not an acceptable condition in most cases. This may lead

the user to overestimate the required processing time, which makes the upper

bound required not e�ective.

3.3. DEFINITION OF GANG SCHEDULING 35

3.2.2 Time Slicing

In a time slicing only machine, all processors of the machine are dedicated

to only one job. The advantage of this class of algorithms is that wait time

is reduced for arriving jobs. Eventually all jobs will be scheduled if there is

su�cient memory available. However, the waste due to fragmentation can be

signi�cant, since all processors of the machines will be dedicated to one job

at a time, and in most cases the job will not require a number of processors

equal to the number of processors of the machine. A Gang scheduling with

no partitioning is an example of a time slicing only algorithm.

3.2.3 Combining Space and Time Slicing

By combining both time and space slicing it is possible to combine the

advantages of both strategies, that is, the reduction of job wait time with an

e�ective share of machine resources. This is the approach used, for instance, in

Gang scheduling combined with partitioning. In this strategy, more than one

job can be Gang scheduled at a time, if there is su�cient resources available.

Due to its combined advantages, the combination of space and time slicing

through Gang scheduling will be analyzed in more detail for the rest of this

chapter.

3.3 De�nition of Gang Scheduling

Gang scheduling is a scheduling strategy �rst proposed by John Ouster-

hout [72] that combines the following characteristics [34] :

� All tasks of a job are grouped into a Gang. Following Ousterhout orig-

inal de�nition, all tasks belonging to a Gang are part of a process

working set [72].

� The tasks in each Gang execute simultaneously on distinct PEs, using a

one-to-one mapping. There are two variations here. In the �rst case each

task is assigned to a processor and do not move.This version is currently

the most popular one. In the second case migratable preemption is

possible, where a group of tasks are preempted on a set of processors

and resume on another, which may improve processor utilization and

reduce fragmentation. An example of such scheme is described on [73].

36 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

global queue local queue

Mach

Paragon/service
Meiko/timeshare
KSR/interactive
transputers
Tera/streams
Chrysalis

NX/2 on iPSC/2
nCUBE

CM-5
Cedar
DHC on SP2
DQT on RWC-1

Star OS
Psyche
Elxsi
AP1000

MasPar MP2
Alliant FX/8
Chagori on K2

IRIX on SGI
NYU Ultra
Dynix
2-level/top
Hydra/C.mmp

Medusa

Cray T3E
Meiko/gang
Paragon/gang
SGI/gang
Tera/PB
MAXI/gang

Butterfly@LLNL
IBM SP2, Victor
Meiko/batch
Paragon/slice
KSR/bath
2-level/bottom
TRAC, MICROS
Amoeba

Cray T3D
CM-2
PASM
hypercubes

Illiac IV
MPP
GF11
Warp

independent PEs gang scheduling
no

yes

time slicing

sp
ac

e
sl

ic
in

g
ye

s
no

st
ru

ct
ur

ed
fl

ex
ib

le

JMS on MPCTheHive (Beowulf)

Fig. 3.1: Scheduling policies followed in current commercial and research

systems (Adapted from [34])

3.3. DEFINITION OF GANG SCHEDULING 37

� Time slicing is used, with all the tasks in a Gang being preempted

and rescheduled at the same time. Observe that space slicing can also

been used along with time slicing through either prede�ned or dynamic

partitioning.

In most cases, all the tasks in the job are considered to be a single Gang.

Thus the number of tasks in the job conveys the PE requirements of the job.

In parallel job scheduling in general and gang scheduling in particular, as

the number of processors is larger than one, the time utilization as well as the

spatial utilization can be better visualized with the help of a bidimensional

diagram dubbed trace diagram. The trace diagram was �rst introduced at

chapter 2. One dimension represents processors while the other dimension

represents time. Through the trace diagram it is possible to visualize the

time utilization of the set of processors given a scheduling algorithm. One

such diagram is illustrated in �gure 3.2.

With the aid of the trace diagram, we should state some important def-

initions that will be useful in the following chapters of this thesis. Gang

scheduling algorithms are preemptive algorithms. We will be particularly in-

terested in gang scheduling algorithms which are periodic and preemptive.

Related to periodic preemptive algorithms are the de�nitions of cycle, slice,

period and slot. A Workload change occurs at the arrival of a new job, the

termination of an existing one, or through the variation of the number of

eligible tasks of a job to be scheduled. We de�ne cycle as the time between

workload changes. The period is the minimum interval of time where all jobs

are scheduled at least once. A cycle/period is composed of slices ; a slice

corresponds to a time slice in a partition that includes all processors of the

machine. A slot is the processors' view of a slice. A Slice is composed of N

slots, for a machine with N processors. If a processor has no assigned task

during its slot in a slice, then we have an idle slot. The number of idle slots

in a period divided by the total number of slots in that period de�nes the

Idling Ratio.

Gang scheduling has several desirable properties. The most important

ones are :

� Gang scheduling supports the abstraction of a dedicated machine for

each job [48, 34].

� does not impose any restrictions on the programming model [48].

� Gang scheduling promotes e�cient �ne-grain interactions among the

tasks in a Gang, based on the fact that they are executing simulta-

38 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

�
�
�
�

�
�
�
�

��

�
�
�
�

J1

J1

J1

J1

Period

Workload Change Workload Change

Cycle

Period Period Period

Slot

J2

J2

J2

J2

J3

J4

J4

J4

J4

J4

J6

J6J1

J1

J3

P0

P1

P2

P3

P4

J5

J5

Slice

Idle Slots

Time

n-1P

Fig. 3.2: De�nition of slice, slot, period and cycle. J1 stands for job 1, J2 for

job 2, etc. Job 2 is composed by 4 tasks

neously. Thus it is possible to use busy waiting for synchronization,

without fear of waiting for a task that is not running [72, 37].

� hardware communication devices can be accessed directly in user mode

without need for protection mechanisms [20].

� a one-to-one mapping also allows tasks to be associated with data struc-

tures in local memory [32].

� Gang scheduling provides better response times for short jobs, by virtue

of using preemption [35]. Just as in uniprocessor systems, periodic

preemption prevents long jobs frommonopolizing system resources, and

guarantees that every job in the system will execute within a relatively

short time.

� Performance is reduced gradually as load increases [35].

� Gang scheduling allows guarantees about the performance to be made [34].

This is so because applications execute in an environment that is es-

sentially the same as a dedicated machine, except for some additional

overheads. This characteristic will be exploited in the next chapter,

where we make a competitive analysis of Gang scheduling.

Several studies that compared Gang scheduling with other scheduling

schemes have concluded that Gang scheduling is a relatively good policy

[64, 62, 44, 29, 32]. This is re�ected by the fact that Gang scheduling is im-

plemented in a number of commercial platforms, such as Connection Machine

CM-5 [22], Intel Paragon [14], Cray T3E [57], Silicon Graphics multipro-

cessor workstations [5] and other platforms as shown on table 3.1.

3.4. IMPLEMENTING GANG SCHEDULING 39

However, Gang scheduling has also disadvantages, which are listed below :

� Overhead due to job/machine preemption [20]. It may also have an im-

pact on cache performance. To compensate the overhead of job/machine-

wide preemption, typical gang schedulers implement large time slices,

in the order of hundreds of milliseconds [20, 45].

� Performance of I/O bound and interactive jobs. In [58] Lee et al.

showed that I/O bound jobs su�er under Gang scheduling due to CPU

fragmentation. Interactive jobs are also a concern due to the I/O char-

acteristics of these jobs and also because of the long time slices that

are normally used on Gang scheduling.

� The preemption in all processors at the same time or in a large subset

of them may raise scalability concerns [31]. This speci�c problem may

be solved by using a Distributed Hierarchical Control scheme [36] for

scheduling Gangs.

3.4 Implementing Gang Scheduling

There is a number of questions that should be considered when imple-

menting Gangs scheduling on actual machines. The main points are [34] :

� Multi context switch implementation Multi context switch implementa-

tion is fundamental for Gang scheduling since the preemption of a job

as a whole relies on an e�cient implementation of the multi context

switch mechanism.

� Saving Job state during global context switches For some networks, a

network preemption may also be necessary together with a job preemp-

tion/task in order to avoid the situation where messages are delivered

to wrong tasks.

� Memory and swap considerations The main limitation for allocation a

large number of jobs at the same time in parallel machines is mem-

ory. Scienti�c applications normally require a large amount of memory,

which in most cases limits the number of jobs allocated in memory at

the same time.

� Partitioning One fundamental point is to have a machine partition

policy that maximizes the utilization of the machine. Partition can be

static or dynamic, that is, there are implementations that impose �xed

40 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

partitions and others where the partitions used depend on the size of

jobs.

3.4.1 Implementing Multi Context switch

The synchronization of the context-switch operation is typically handled

by a central controller. The controller may be explicitly de�ned as in [83, 85],

but this is not mandatory : a �oating controller can be used, where any

PE that notices a certain condition (e.g. all tasks are blocked) induces the

next multicontext-switch [37, 76]. A variant of this is used in IRIX on SGI

multiprocessor workstations : the PE that selects the �rst member of a Gang

from the global queue interrupts other PEs that are running low-priority

processes so that they will schedule the other Gang members [5].

The controller coordinates the context switching by causing an operating

system trap on all the relevant processors. The requirement on this trap is

that the variability in the exact time that it occurs on the di�erent PEs

be small relative to the scheduling time quantum. Possible implementations

are [34] :

� The use special hardware, as in the K2 architecture [91]. K2 is a dis-

tributed memory parallel processor interconnected by a bidimensional

torus. One interesting characteristic of the K2 is the support for dis-

tributed virtual memory. The K2 implements a global interrupt driven

synchronization mechanism called torus synchronization unit, that is

used to perform torus wide context switches.

� The use a software broadcast interrupt [37].

� By using synchronized clocks, that all cause interrupts on their re-

spective PEs at the same time [41, 83, 85]. Once the processors are

interrupted, they perform their local context switch. A number of Unix-

based implementations are described in the literature, which use signals

[20] or change the priorities of the tasks concerned [57].

3.4.2 Saving Job state

Saving the program state on a single PE typically involves no more than

saving the CPU register values. In a parallel machine, this has to be done on

all the PEs. However, the program might have additional state that is neither

in memory nor in the registers, but in transit from one place to another. In

3.4. IMPLEMENTING GANG SCHEDULING 41

many cases, for systems supporting multi-context switch it is necessary to

save such communication state together with the computation state [63].

The following discussion uses message-passing terminology, because such ar-

chitectures are more susceptible to this problem. The problem with messages

in transit during a context switch occurs when they arrive at the destination

node. There are three main approaches to this problem :

� The �rst approach is to simply drop such messages, and re-send them

the next time that the application is scheduled to run ; it is used in the

SHARE scheduler for the SP2 [41]. This approach has the advantage

of not requiring any hardware support, so it can be implemented on

any machine.

� The second approach is to tag messages with a job ID. When an arriving

message does not belong to the currently running job, it is handled

anyway. This approach is used on the Meiko CS-2 [4] and the Intel

Paragon [74].

� The third approach is to drain the network as part of the context switch

operation [20], that is, to do a network preemption along with a job

preemption. While this increases the overhead for context switching, it

provides each job with exclusive access to a clean network. This facili-

tates the implementation of e�cient user level communication. Security

is provided by mapping the communication devices into user space, and

using existing hardware protection mechanisms. This approach is used

in the the K2 [91], the Connection Machine CM-5 [22], and the RWC-1

[19].

Besides these three solutions, two more solutions are possible when con-

sidering di�erent network technologies :

� The �rst one is when the network support remote write primitives, with

each packet being associated with a physical memory address in the

remote node, such as in the MPC machine [18]. In this case the packets

are written in a non-swappable physical memory address range which

is associated with the virtual address space of some prede�ned process.

Therefore there is no risk of a wrong process receiving a message due

to coordinated context switch, which is a important advantage when

implementing Gang scheduling based strategies.

� The second one is to maintain multiple virtual circuits between PEs,

and use a separate one for each job. In this case, the messages can be

42 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

left in the network until the job is rescheduled and receives them. This

approach is taken in the starT-NG [23] and starT-voyager [1] machines

from MIT.

3.4.3 Memory and swap considerations

As large scale parallel applications often require large amounts of memory,

it is sometimes not possible to have multiple jobs memory resident. In such

cases, switching among jobs implies swapping them to secondary storage

[35]. This can be classi�ed as Gang scheduling because either all the tasks

execute or none do. However, the additional overhead of swapping implies

that this cannot be done on an interactive time scale. The use of swapping

and checkpointing together leads to the concept of "migratable preemption"

[73]. By using both checkpointing and swapping it is possible to restart the

job on a di�erent set of PEs than the one used originally, which can reduce

fragmentation [57, 80].

Observe that in some cases is possible to have both �ne-grain Gang

scheduling among the memory-resident jobs, and coarse grain Gang schedul-

ing by means of swapping. A variant of this approach is used on the Tera

Multi-Threaded Architecture, where threads are loaded into separate hard-

ware contexts that are switched on each cycle [26].

3.4.4 Partitioning in Gang Scheduling

As already stated, at a given moment of time more than one job may

be sharing the machine, which leads to the concept of partitioning. In Gang

scheduling there is two di�erent ways of doing the partition of the machine.

The �rst is to use prede�ned partitions independent of job size. The second

is to use dynamic partitioning, which the slicing of the machine may vary in

functions of the sizes of jobs scheduled at a given time. Both strategies are

described in following paragraphs.

Gang Scheduling within Prede�ned Partitions

The simple approach is to �rst partition the machine into one or more

�xed sets of disjoint PEs, and then perform Gang scheduling within each

partition independently of the others. Actually, partitioning is not strictly

necessary, as it is possible to simply schedule all the PEs as one unit. This

3.4. IMPLEMENTING GANG SCHEDULING 43

approach may lead to severe resource underutilization in massively parallel

processors. Therefore it may not be suitable for large systems. A Gang sched-

uler with prede�ned partitions was implemented in the connection machine

CM-5 [22].

Gang Scheduling with Dynamic Repartitioning

Using �xed partitions runs the risk of signi�cant underutilization of re-

sources due to fragmentation. If all Gangs are not of the same size, it is

therefore desirable to change the partitioning at each multi-context-switch.

This implies that context switching must be coordinated across groups of

PEs, and not only within groups. The problem with this approach is the

di�culty of doing the partitioning on the �y. The solution is to look for a

suitable partitioning only when the load changes, not at each context switch.

When a new application arrives or an old one terminates, applications are

matched together so as to utilize as many PEs as possible. Then at each

context switch the next set of matching applications is scheduled. Two pos-

sibilities are the use of a global synchronizer and subsets of processors that

switch context independly.

Synchronous switching across the whole machine The most common

approach to the implementation of dynamic repartitioning is to perform the

context switching synchronously across the whole machine. This is done re-

gardless of how the partitioning is supposed to change during the context

switching operation. PEs in all the di�erent groups always switch simulta-

neously, so moving a PE from one group to another during a switch is no

problem.

The scheduling algorithms developed by Ousterhout fall into this cate-

gory [72]. The simplest is the matrix algorithm, which uses a diagram similar

to the trace diagram de�ned previously in this section. The matrix algorithm

was implemented in the Medusa operating system on CM� [71], in the Meiko

CS-2 operating system, in the Gang-scheduler used for the BBN Butter�y

at Lawrence Livermore National Lab [42]. In the matrix algorithm, a bidi-

mensional matrix represents the occupation of multiple processors over time.

It is used to de�ne when and on which processors a job will run. The time

axis is divided in slices, and at the end of each slice a context switching is

performed across the whole machine.

44 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

Subsets switch independently A global synchronizer is necessary to syn-

chronize the context switching in di�erent groups of PEs if PEs need to move

from one group to the other as part of the context switch. But this is required

only if one of the groups must grow. There is no need to synchronize if the

groups only split into smaller groups. This observation is used in the design

of the "Distributed Hierarchical Control" (DHC) scheme [36, 39].

The Distributed Hierarchical Control algorithm partitions the PEs using

a buddy system arrangement by successively dividing them into halves. A

separate (logical) controller is associated with each partition (see �gure 3.3).

The size of each partition is a power of 2, and the union of two partitions half

the size. This also de�nes the hierarchy. A controller at level i coordinates

activities involving more than half of the 2i PEs spanned by its subtree.

Controllers in low levels of hierarchy provide for local control while those in

higher levels are responsible for global coordination. There are also lateral

connections among controllers that are used for load balancing.

It is worth noting that the hierarchy describes the logical control struc-

ture used by the operating system, and only suggests but does not imply

a hardware hierarchy. This hierarchy is used to map tasks to processors as

follows : a request to map a new Gang of size S originates from a task ex-

ecuting on some processor. The request ascends the tree of controllers until

it reaches the appropriate level for its size, and then moves across to some

controller that will balance the overall load.

The scheduling proceeds in waves that propagate down the tree of con-

trollers. The scheduling is carried out in cycles. Each cycle starts with the

highest level controller, which includes all PEs, and it will executes all Gang

that require more than half of the PEs. After all such Gangs have been

scheduled, the PEs are splited into two groups, each group associated with a

separated controller. These controllers do not need to synchronize with each

other, and context switches in the two groups of PEs are independent. The

splitting continues as smaller Gangs are scheduled by lower level controllers,

and at the end of the cycle all processors are reunited again on only one

partition and the next cycle starts from the top controller.

An important optimization in DHC algorithm is selective disabling : if a

given controller does not use all available processors, some subordinate con-

trollers are left active and may use the leftover processors to schedule smaller

Gangs. Another possible optimization is used when the Gang is smaller than

the full group, and consists of splitting the Gang in two and completely uti-

lize one half, leaving a large unused group in the other half that can be used

3.4. IMPLEMENTING GANG SCHEDULING 45

ControllerController

ControllerController Controller Controller

PE PE PE PE PEPEPEPE

Controller

Fig. 3.3: Distributed Hierarchical Control scheme

to schedule another jobs via alternative scheduling. It was shown in [33]

that these strategies combined provides better packing, which implies better

processor utilization, than other on-line algorithms such as best �t and �rst

�t.

The importance of removing extra synchronization, as is proposed in the

DHC algorithm, is that it decouples groups of PEs with di�erent loads. This

allows the time slices to be set di�erently on di�erent groups of PEs, so as to

optimize the execution of di�erent Gangs. It also improves the scalability of

the system, by removing any components that require full knowledge about

the system state. With the Distributed Hierarchical Control scheme, each

controller only needs knowledge about the largest Gangs mapped to its group

of PEs.

Gang scheduling systems based on the ideas of DHC were implemented

for the IBM SP2 [41] and the RWC-1 [19].

Lazy Gang scheduling Taking the idea of independent switching to the

extreme leads to the notion of lazy Gang scheduling. In this algorithm, each

job has a maximal wait time associated with it, based on its class : interactive

and debug jobs have short wait times, while batch jobs may wait a very long

time. Each time a job's wait time is exceeded, its priority rises, and the lowest

priority jobs in the system are preempted to make space for it. The scheduled

job then runs for a certain time, which is proportional to its memory usage.

After this period, it itself becomes a candidate for preemption if another high-

46 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

priority job is waiting. This style of Gang scheduling is used on the Cray T3D

at LLNL [35]. A variant based on feedback has also been proposed [80].

3.5 Variations of Gang Scheduling

Two strategies that are similar to Gang scheduling are coscheduling and

family scheduling [34]. These variations will be used by us in following chap-

ters in order to improve the performance of standard Gang scheduling. Coschedul-

ing and family scheduling are detailed below :

3.5.1 Coscheduling

Coscheduling was also originally de�ned by Ousterhout to describe sys-

tems where the operating system attempts to schedule a set of tasks simulta-

neously on distinct PEs, as in Gang scheduling, but if it is not possible only

a subset of the tasks are scheduled [72].

Coscheduling is a more �exible scheme than Gang scheduling, since it al-

lows the scheduling of subsets of tasks from the rest of the Gang. Coschedul-

ing can be highly bene�cial if the job's tasks are highly independent, as in

embarrassingly parallel jobs and I/O bound jobs. Task belonging to these

jobs can make progress even if the whole Gang is not scheduled. However, if

tasks synchronize with each other at �ne granularity, there no advantage on

scheduling only a subset of the Gang [58, 29]. So the performance advantages

of coscheduling are related with the characteristics of a job.

However it is possible based on runtime observation of the running tasks

to detect which tasks interact at �ne �ne granularity and then should be

scheduled together. Examples of this strategy are found on [38, 31].

3.5.2 Family Scheduling

Family scheduling is a variant of Gang scheduling where the number of

tasks is allowed to be larger than the number of PEs. Thus, the operating

system is involved in two levels of time slicing : �rst, there is the coordinated

scheduling of the job as a whole across a set of PEs, and then there is the in-

ternal scheduling of the job's tasks on these PEs [8]. This can be done using

a global queue or using local queues. The di�erence from two-level scheduling

3.6. CONCLUSION 47

schemes is that the whole job may be preempted (two-level scheduling typi-

cally employs non-preemptive partitioning at the job level), and both levels

are done by the operating system rather than leaving the second one for the

application runtime system.

Family scheduling can be used, for instance, to handle jobs that present

irregularities in the number of active tasks during execution. We will develop

this approach further in the following chapters.

3.6 Conclusion

In this chapter, a classi�cation of the job scheduling problem was made

along with a detailed analysis of Gang scheduling, its variations, advantages

and disadvantages. As a consequence of that analysis , we do believe that

Gang scheduling is a good scheduling strategy, serving as a starting point for

more sophisticated scheduling strategies that are presented in the following

chapters.

48 CHAPITRE 3. PREVIOUS WORK ON GANG SCHEDULING

Chapitre 4

Bounds on Gang Scheduling

4.1 Introduction

We present in this chapter a competitive analysis of a class of gang

scheduling algorithms. Gang scheduling are preemptive algorithms where a

parallel task is scheduled and preempted in a set of processors in a regu-

lar basis. Gang scheduling was �rst proposed by Ousterhout [72]. Reasons to

consider gang scheduling are responsiveness [35], e�cient sharing of resources

[48] and ease of programming. In gang scheduling the threads of a task are

supplied with an environment that is very similar to a dedicated machine

[48]. It is useful to any model of computation and any programming style.

The use of time slicing allows performance to degrade gradually as load in-

creases. Applications with �ne-grain interactions bene�t of large performance

improvements over uncoordinated scheduling[37].

Consider a set of m parallel tasks W = fT0; T1; :::; Tm�1g and a set of n

identical processors P = f1; :::; ng. Associated with each task Tj is a function

tj(�j) > 0 de�ning the task execution time as a function of the number of

processors 0 < �j � n alloted to the task. This problem is known as mal-

leable parallel task scheduling (MPTS). This de�nition of MPTS di�ers from

[47] as preemption is allowed. The restricted version of MPTS which the pro-

cessors allotments are know a priori is known as non-malleable parallel task

scheduling (NPTS). Generally MPTS can be divided into two subproblems

[28] :

� Allotment - Select for any task Ti a number of processors �i following

a prede�ned criteria

49

50 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

� Scheduling - Apply a scheduling algorithm for the resulting non-malleable

instance.

MPTS takes communications into account implicitly by the function rep-

resenting the parallel execution time with the penalty due to the manage-

ment of the parallelism[70]. In non-preemptive scheduling, an approximation

of guarantee � for the non-malleable problem on the allotment of the optimal

solution provides the same guarantee for the malleable problem. Similarly,

the results of this chapter are valid for both MPTS and NPTS problems.

In this chapter we consider that all m tasks of the workload are available

at time zero and have �nite execution times. We de�ne a workload change

as being the completion of a task. All tasks are independent. The objective

function (metric) is the overall makespan (also known as schedule length).

Given the completion times C = fco; :::; cm�1g under an algorithm A, the

overall makespan is de�ned as :

TA
C = maxfcj : j = 0; :::;m� 1g (4.1)

The gang scheduling algorithm analyzed reallocates all remaining parallel

tasks at each task completion and has no information about execution time

of individual parallel tasks. The dynamic behavior of the algorithm and the

limited amount of information available to it are the main reasons that justify

the utilization of competitive analysis in this chapter. Competitive analysis

is a formal way of evaluating algorithms that are limited in some way (e.g.,

limited information, computational power, number of preemptions) [17], what

is indeed our case. This measure was �rst introduced in the study of a memory

management system [67, 87].

For the de�nition of the competitive ratio, consider a workload W . We

de�ne toverOPT (W) as the overall makespan of workload W under the optimal

o�-line algorithm. Let toverA (W) be the overall makespan under an algorithm

A. Algorithm A is said to be r-competitive if for all workloads W , toverA (W) <
r:toverOPT (W). The competitive ratio of algorithm A is r.

The optimal o�-line algorithm is often referred also as an adversary which

plays against an arbitrary algorithm and de�nes an input which forces it to

incur a high cost, while at the same time the adversary itself can service

the same sequence at low cost. Since gang scheduling are preemptive algo-

rithms, in our case the optimal algorithm (adversary) is also preemptive.

The adversary technique is used to prove lower bounds in competitive ratio

analysis [46].

4.2. PREVIOUSWORKON THEORETICALRESULTS ONPREEMPTIVE SCHEDULING51

The main result of this chapter is to propose a scheduling strategy based

on gang scheduling which the competitive ratio is equal to two. This result

has two implications. First, the ratio found is independent of both the number

of processors and of the number of parallel tasks of the workload. Second, to

the best of our knowledge it is the �rst time that a competitive analysis of a

gang scheduling algorithm using the overall makespan as metric is made.

This chapter is organized as follows : section 4.2 describes previous theo-

retical work on preemptive scheduling. The execution mode of parallel tasks

under gang scheduling is detailed in section 4.3. Section 4.4 describes the al-

gorithm analyzed in this chapter. The competitive analysis of gang scheduling

is in section 4.5 and section 4.6 contains our �nal remarks.

4.2 Previous work on Theoretical Results on

Preemptive Scheduling

The complexity of o�-line algorithms for multiprocessor scheduling has

been subject of research for many years [50, 65, 93]. Non-preemptive schedul-

ing in the general case is NP-complete, including the single processor case

[15]. However preemptive scheduling, of which Gang scheduling is an exam-

ple, admits polynomial time solutions [6, 15]. The algorithm proposed in

[6] is based on the fact that the number of processors is necessarily �nite,

and therefore there is only a �nite number of ways in which the processors

can be divided among di�erent tasks executing simultaneously. The whole

set of tasks can be scheduled by using di�erent partitioning schemes for var-

ious processor requirements, in a way that the total cumulative time of each

partition size satis�es the execution time requirements of tasks with that pro-

cessor requirement. This leads to a linear programming formulation, where

the objective function is to minimize the sum of the times of the di�erent

partitioning schemes used. This linear programming problem may be solved

using Khachian's algorithm [53] in time bounded from above by a polyno-

mial in the number of variables, the number of constraints, and the sum of

logarithms of all the coe�cients in the LP problem.

The performance implications of Gang scheduling have been subject of

less work. Subramanian and Scherson [92, 79] have made a competitive anal-

ysis of Gang scheduling using a new metric dubbed happiness. They proved

that a variation of Gang scheduling named instruction balanced time slice

52 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

is the best possible algorithm under this new metric when considering a

workload composed of V-RAM [7] tasks. The ratio found is the maximum

ine�ciency of a given workload of V-RAM tasks, and by consequence it de-

pends on the characteristics of the workload being considered. The analysis

presented in this chapter di�ers from theirs in the metric and the partitioning

strategy used.

4.3 Executing Tasks Under Gang scheduling

In parallel task scheduling in general, and in gang scheduling in particular,

as the number of processors is greater than one, the time utilization as well

as the spatial utilization can be better visualized with the help of a two

dimensional diagram that we call trace diagram (this diagram is also known

in the literature as Ousterhout matrix [72], as well as Gantt chart). One

dimension represents processors while the other dimension represents time.

One such diagram is illustrated in �gure 4.1.

Gang scheduling algorithms are preemptive algorithms. We will be par-

ticularly interested in gang service algorithms which are periodic and preemp-

tive. The reason for considering periodicity is because it was proved in [84]

that periodic gang scheduling can always achieve equal or better utilization

when compared with aperiodic gang scheduling. Related to periodic preemp-

tive algorithms are the de�nitions of cycle, slice, period and slot. Since in

this chapter is considered that all tasks of a workload are available at time

zero, a Workload change occurs at the the completion of an existing parallel

task. We de�ne cycle as the time between workload changes. The period is

the minimum interval of time where all tasks are scheduled at least once. A

cycle/period is composed of slices ; a slice corresponds to a time slice in a

partition that includes all processors of the machine. A slot is the proces-

sors' view of a slice. A Slice is composed of N slots, for a machine with N

processors. If a processor has no assigned task during its slot in a slice, then

we have an idle slot.

In Gang scheduling, the task's perspective is similar to that of a dedicated

machine during the slices of its execution. Some reduction in I/O bandwidth

may be experienced due to interference from other tasks, but CPU and mem-

ory resources should be dedicated [48]. We will use this analogy in the fol-

lowing sense : given a task J1 that requires P1 processors and takes T1 units

of time to complete if it runs on a dedicated machine with P1 processors,

4.3. EXECUTING TASKS UNDER GANG SCHEDULING 53

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

�
�
�
�

�
�
�
�

��

�
�
�
�

J1

J1

J1

J1

Period

Workload Change Workload Change

Cycle

Period Period Period

Slot

J2

J2

J2

J2

J3

J4

J4

J4

J4

J4

J6

J6J1

J1

J3

P0

P1

P2

P3

P4

J5

J5

Slice

Idle Slots

n-1P

Fig. 4.1: Trace diagram. The �gure illustrates a gang scheduling period of 4

slices containing 6 tasks. In this �gure the tasks are identi�ed as J1 through

J6.

this tasks will complete under Gang scheduling after it is scheduled for a

number of slices that add up to T1. Eventual boundary e�ects are considered

not signi�cant for the competitive analysis.

When a task or a set of tasks are executed on a parallel machine un-

der Gang scheduling, we can divide the utilization of each processors of the

machine into two main areas :

� T
comp
i;B - The time corresponding to number of slots where processor i is

allocated for task B.

� S
space
i - Corresponds to the time associated with the number of slots

where processor i has no task assigned to it due to the following causes :

� Insu�cient number of parallel tasks.

� Non-optimality of the space sharing strategy used.

We de�ne the processor-time product PTC
B of a task TB as the number of

processors required by TB (�B) multiplied by time tCB necessary to complete

the task TB on a dedicated machine. Observe that this corresponds to the

area �B � tCB in the trace diagram.

PTC
B =

�BX

i=1

T
comp
i;B (4.2)

Equation 4.2 is related to one task only. When considering a workload

W with m tasks gang-scheduled on a machine, equation 4.2 becomes :

54 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

PTC =
mX

i=1

PTC
i + PT space (4.3)

= PT total + PT space

Where

PT total =
mX

i=1

PTC
i (4.4)

and

PT space =
nX

i=1

S
space
i (4.5)

Where n is the number of processors of the machine, PTC is the number

of processors in the machine multiplied by the overall makespan of workload

W , PT total is a sum over equation 4.2 for all tasks that compose the workload

W and PT space is the waste due to the packing strategy chosen.

4.3.1 Area Conservation

In this section we make some remarks that will be useful for the rest of

this chapter. Given the equation :

PTC = PT total + PT space (4.6)

If we divide the equation by n :

PTC

n
=
PT total

n
+
PT space

n
(4.7)

We obtain :

tover = ttotal + tspace (4.8)

4.3. EXECUTING TASKS UNDER GANG SCHEDULING 55

spacetotal

overt

tt

Task 1 Task 2Idle

P0

P2

P3

P4

P0

P1

P2

P3

P4

P1

Fig. 4.2: Area Conservation. In the �gure two parallel tasks are scheduled.

The overall makespan is equal to the sum of ttotal and tspace

Where tover is the overall makespan of workloadW. From equation 4.8 we

can verify that the area sums PT total and PT space with an overall makespan

tover can be converted into two contiguous areas nttotal and ntspace. The sum

of both areas are equal to ntover = PTC. This process is illustrated in �gure

4.2.

4.3.2 Partitioning in Gang Scheduling

When considering partitioning the machine among tasks, there are two

main possibilities :

� Simple Gang Scheduling : In this case no partitioning is possible and

the machine is dedicated to one task at a time, regardless of proces-

sor utilization of individual tasks. Observe that in this case, the overall

makespan ratio between an optimal schedule and the simple gang sched-

uler is a function of the workload and/or the number of processors. As

an example, consider a workload composed of tasks that are alloted to

one processor with a associated duration of 1 time unit. The optimal

overall makespan for this workload is dm
n
e, the the overall makespan for

the simple gang scheduler is m, the number of tasks in the workload.

56 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

� Concurrent Gang Scheduling : In this case, the machine can be shared

by multiple tasks concurrently, by using either static or dynamic par-

titions. Dynamic partitioning[34] will be considered for the rest of this

chapter.

4.4 Algorithm description

The algorithm analyzed in this chapter is a gang scheduler that permits

the sharing of the machine among multiple tasks through the use of multiple

partitions created dynamically. At time zero, all m tasks are sorted by pro-

cessor count in a non increasing order. Then all tasks are allocated on the

machine using a �rst �t allocation strategy. This packing strategy is known

in the literature as �rst �t decreasing(FFD). By the end of the allocation,

there will be a trace diagram which will indicate the temporal and spatial

distribution of tasks.

When a task completes, the same process of sorting and allocation repeats

itself. The remaining tasks are again sorted by processor count, and then

allocated in the trace diagram. The following steps are executed for each

workload change :

1 - Update Eligible task list

2 - Sort tasks by processor count in a non-increasing order

3 - Allocate processors for the parallel task

in the head of the queue

4 - While there is parallel tasks remaining

Allocate all remaining parallel tasks

using First Fit as partitioning strategy

5 - Run

4.5 Competitive Analysis

In this section we �nd a tight bound for the competitive ratio for the

gang scheduling algorithm described in the previous section.

Observe that in the following analysis all parallel tasks are available at

time zero and migration costs are not considered for both the gang scheduler

4.5. COMPETITIVE ANALYSIS 57

and the clairvoyant adversary.

The competitive ratio for the algorithm described in section 4.4 is stated

in theorem 4.

Theorem 4 The CR of Gang scheduling using �rst �t decreasing under over-

all makespan is 2.

Proof 1 Lower Bound - In order to �nd the lower bound we will use the ad-

versary technique. This technique employs an adversary which plays against

an arbitrary algorithm and concocts an input which forces it to incur a high

cost [46]. The objective of the optimal adversary when creating a workload for

competitive analysis is to minimize its overall makespan while at the same

time maximizing the overall makespan of the algorithm under analysis. In

order to maximize the overall makespan of the gang scheduling algorithm,

the adversary creates a workload that will avoid any sharing of the machine

among di�erent tasks at the same slice by the Gang scheduler. By doing so

the adversary is at the same time minimizing the utilization of the machine

and maximizing the completion time of the gang scheduling algorithm, by

making the overall makespan a sum of individual completion times of tasks.

One workload that has these characteristics is as follows :

� The adversary allots n/2+1 processors to all m tasks in order to avoid

any task sharing by a Gang scheduler. In this case the overall makespan

of the gang scheduler will be the sum of the completion times ti(n=2 +
1); 0 � i � m� 1 of individual tasks.

� All tasks are equal, and the tasks are de�ned in a way that the area

�i � ti(�i) for each task i is minimized when a number of processors

�i = n=2 + 1 is chosen.

The reason for considering a workload where all tasks have n=2 + 1 pro-

cessors is to avoid any sharing of the machine among diferent tasks at the

same slice by a Gang scheduler, even ones implementing a partitioning strat-

egy such as �rst �t decreasing. As a consequence, the utilization of the gang

scheduler is reduced, since there will be at least n/2-1 processors idle at any

time. The total makespan will be the sum of the completion time of individual

tasks.

For the optimal scheduler, we claim that in the best case :

PT space
opt = 0 (4.9)

58 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

Where PT space
opt = 0 is the total area in the trace diagram where a proces-

sor is idle due to insu�cient number of tasks and/or non-optimality of the

partitioning strategy. As a consequence we have :

PTC
opt =

mX

i=1

PTC
i (4.10)

To prove that equation 4.9 is valid we need to produce at least one instance of

the optimal scheduling where the amount of computation is perfectly balanced

and there is no idle time. First we claim that is possible to de�ne a placement

where each processor is allocated to the same number of tasks. This can be

done for a combination of n and m where m � (n=2 + 1) is a multiple of

n. Second, since the processor has full control of the characteristics of the

workload, it is capable of de�ne a scheduling without increasing the area �i�

ti(�i) required for any task i. One example of workload where for maximum

utilization is achieved in this case is one composed only by embarrassingly

parallel jobs. The scheduling for this workload would be a simple one, with

each processor dedicating the same amount of time to each task allocated

to it, without the need of coordinated scheduling among processors. Observe

that other examples of workload/scheduling with 100% utilization can also be

found. The overall makespan of the adversary in the best case will then be

equal to the computing area of all tasks divided by the number of processors.

Therefore we may consider that in the best case the optimal scheduler has

100% utilization and equation 4.10 holds.

Consider a workload W composed by m tasks, m > 1. For an algorithm

A we have :

PTC
A = PT total

A + PT space
A (4.11)

Where PTC
A is the area corresponding to the overall makespan of work-

load W multiplied by the number of processors, as stated in subsection 4.3.1.

PT total
A is the total computation related with workload W, and PT

space
A is the

idle time due to a non ideal partition of the machine among the di�erent

tasks.

With Gang scheduling we have :

PTC
Gang =

mX

i=1

PTC
i + PT space

gang (4.12)

4.5. COMPETITIVE ANALYSIS 59

We have already seen in the beginning of this proof that PT total
gang > PT space

gang ,

as all tasks require n/2+1 processors. However, it is possible to make PT space
gang

and near as PT total
gang as we want. As an example, consider the workload com-

posed only of tasks requiring n/2+1 processors. Clearly in this case is not

possible to space share the machine among diferent tasks at a given time

as we saw before. As n becomes large, n/2+1 approaches n/2-1, making the

di�erence between PT total
gang and PT space

gang negligible. Then, for the worst case

analysis, we will consider that PT total
gang = PT space

gang . We then have in the worst

case for the Gang scheduler :

PTC
Gang = 2�

mX

i=1

PTC
i (4.13)

Dividing equation 4.13 by equation 4.10 we have :

PTC
Gang

PTC
opt

=
toverGang

toveropt

= 2�

Pm
i=1 PT

C
iPm

i=1 PT
C
i

(4.14)

toverGang

toveropt

= 2 (4.15)

Upper Bound - Our objective is to prove that the workload considered in

the lower bound proof is a worst case workload for gang scheduling with �rst

�t decreasing. Similar to equation 4.11 the area corresponding to PTC
Gang can

be divided in two di�erent areas :

PTC
Gang = PT total

Gang + PT
space
Gang (4.16)

Now let us shift our attention to the schedule obtained by the optimal

scheduler. As in the previous case, there are two main areas :

PTC
opt = PT total

opt + PT
space
opt (4.17)

With PTC
gang � PTC

opt. We now investigate the variation between the cor-

responding areas in the two algorithms.

� PT total - There is no variation in this area for both optimal and Gang

scheduling, that is, PT total
opt = PT total

Gang.

� PT space - The di�erence of PT space between a Gang scheduler and an

optimal scheduler may be unbounded, and it depends on the packing

strategy used in the Gang scheduling algorithm. Observe that ,depending

60 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

on the workload, we may have PT space
opt > 0. In particular, the packing

strategy FFD used in the algorithm analyzed in this chapter is optimal

if the required number of processors for all tasks divide each other, e.g.

if they are powers of two [11]. It can be also proved that the number of

bins used by �rst �t decreasing is asymptotically bounded by about 22

percent of the optimal number [3]. Two cases are possible :

PT total
Gang � PT space

Gang . Here we have the same case of the one described

in the lower bound section. In the best case for the optimal scheduler

PT
space
opt = 0. The worst case for the Gang scheduler will happen when

no space sharing is possible at all. Otherwise the packing strategy will

reallocate tasks at each workload change, always sharing the machine

among tasks at a given time when possible. Then CR = 2 apply.

PT total
Gang < PT space

Gang . As we are using a packing strategy that re-maps

all tasks at each workload change, and has a behavior optimal for some

cases, the only case where PT
space
Gang > PT total

Gang is when the Gang schedule

reduces itself to variable partitioning (i.e. the period has only one slice)

after a time tk � 0 due to insu�cient number of tasks, and the processor

utilization is smaller than n/2 for a large amount of time. In this case

task durations are di�erent, and the task Tmax with maximum duration

is one that have j�maxj < n=2, otherwise the assumption PT total
Gang <

PT
space
Gang does not hold. For both the Gang and the optimal schedulers, the

minimum feasible overall makespan will be tmax, which is the completion

time on a dedicated machine of the task Tmax. tmax is the maximum

completion time over all tasks of the workload. In the following analysis

we consider the best case for the optimal scheduler, that is, tmax as being

the overall makespan for the optimal scheduler.

We can divide the slices corresponding to a scheduling generated by

the algorithm described in section 4.4 where PT total
Gang < PT space

Gang in two

parts : a set of slices with processor utilization < n=2 and another set

with processor utilization � n=2. One conclusion can be derived from

this scheduling :

� The time associated with the maximum number of slots of utiliza-

tion < n=2 is equivalent to tmax.

Otherwise Tmax could have been scheduled in one of the extra slices

where the processor utilization is < n=2 considering the partitioning

strategy used, since the duration of Tmax is maximum among all tasks.

4.6. CONCLUSION AND FUTURE WORK 61

As a consequence, in the worst case for the gang scheduler, the number

of slices where the processor utilization is < n=2 corresponds a time

amount equivalent to tmax. By other side, the maximum number of slots

of processor utilization > n=2 is also equal to tmax. Each slice with

processor utilization > n=2 must have at most �max�1 idle processors,

otherwise Tmax could have been scheduled at that slice considering the

partitioning strategy employed. Under these conditions, if the number

of slices where the processor utilization is > n=2 corresponds to a period
of time greater than tmax, the assumption PT total

Gang < PT
space
Gang does not

hold. Concluding, the number of slices with processor utilization > n=2
must be lower than or equal to tmax. In the worst case for the gang

scheduler, we have for the overall makespan ratio :

PTC
gang

PTC
opt

<
2� tmax

tmax

= 2 (4.18)

We �nally conclude that CR=2 also apply in this case

4.6 Conclusion and Future Work

Is this chapter is proposed and analyzed a gang scheduling based algo-

rithm which has a competitive ratio of two for a workload composed of m

parallel tasks available at time zero. The fact that the algorithm reallocates

all parallel tasks at each task completion makes the ratio found independent

of both number of processors and number of parallel tasks.

However, the frequent reallocation of parallel tasks also makes an actual

implementation of the algorithm very sensitive to migration costs. The anal-

ysis made in this chapter considered and �ideal� gang scheduler, where task

are reallocated at each workload change and migration costs are not consid-

ered. A natural sequence for the work presented on this chapter is to relax

these assumptions, and consider limited reallocation of tasks and migration

costs.

62 CHAPITRE 4. BOUNDS ON GANG SCHEDULING

Chapitre 5

Resource Management in Gang

Scheduling

5.1 Introduction

In this chapter we present one and multi-dimensional analysis of the re-

source sharing problem for gang scheduling on the average case. To do so, a

new methodology for average case analysis of scheduling algorithms, dubbed

Dynamic Competitive Ratio, is proposed in this chapter.

In the one dimensional resource sharing problem, jobs are represented by

only on parameter : the number of tasks that compose the job. The machine is

characterized by the number of processors. We suppose that other resources,

such as memory, have in�nite availability.

In the multi-dimensional case the resources available in a machine are rep-

resented by a m-dimensional vector R = (R1; R2; :::Rm) and the resources re-

quired by a job J are represented by a k-dimensional vector J = (J1; J2; :::Jk).

In this chapter we will be concerned with dynamic scheduling, that is,

scheduling when arrival times can be di�erent from zero. In dynamic schedul-

ing the trace diagram can be only updated instead of being recomputed at

each workload change, depending on the packing strategy used.

This chapter is organized as follows : First, we make a analysis of pe-

riodicity in gang scheduling algorithm in section 5.2. The one dimensional

resource sharing problem for gang service algorithms is stated and analyzed

in section 5.3. The multi dimensional resource sharing problem is the subject

of section 5.4.

63

64CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

5.2 Periodicity in Gang Scheduling

To begin our analysis, we prove a theorem that states that periodic sched-

ules achieve better (or at least as good as) spatial utilization than non-

periodic ones for a workload composed of SPMD jobs. That stated we may

consider only �nite trace diagrams (�gure 2.1) in the remainder.

Theorem 5 Given a workload W composed of parallel SPMD jobs, for every

temporal schedule S there exists a periodic schedule Sp such that the idling

ratio of Sp is at most that of S.

Proof 2 First, let's give a de�nition that will be useful in this proof. We de-

�ne here job happiness in an interval of time as the number of slots allocated

to a job divided by the total number of slots in the interval.

De�ne the progress of a job at a particular time as the number of slices

granted to each of its tasks up to that time. Thus, if a job has V tasks, its

progress at slice S may be represented by a progress vector of V components,

where each component is an integer less than or equal to S. Observe that no

task may lag behind another task of the same parallel SPMD job by more

than a constant C number of slices. We call this behavior as legal execution

rule. Note that C depends on the characteristics of the program. It can be

determined, for instance, by global synchronization statements. In the worst

case C slices corresponds to the completion time of the job. Observe that C <

1, since the data partitions in a SPMD program are necessarily �nite, so is

the program itself. Therefore, no two elements in the progress vector can di�er

by more than C. De�ne the di�erential progress of a job at a particular time

as the number of slices by which each task leads the slowest task of the job.

Thus a di�erential progress vector at time t is also a vector of V components,

where each component is an integer less than or equal to C. The di�erential

progress vector is obtained by subtracting out the minimum component of the

progress vector from each component of the progress vector. The system's

di�erential progress vector (SDPV) at time t is the concatenation of all job's

di�erential progress vectors at time t. The key is to note that the SDPV

can only assume a �nite number of values. Therefore there exists an in�nite

sequence of times ti1; ti2; ::: such that the SDPVs at these times are identical.

Consider any time interval [tik; ti0k]. One may construct a periodic schedule

by cutting out the portion of the trace diagram between tik ti0k and replicating

it inde�nitely along the time axis.

We claim that such a periodic schedule is legal. From the equality of the

5.3. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : ONEDIMENSIONALCASE65

SPDVs at tik and ti0k it follows that all tasks belonging to the same job receive

the same number of slices during each period. In other words, at the end of

each period, all the tasks belonging to the same job have made equal progress.

Therefore, no two tasks lag behind another task of the same job by more than

a constant number of slices.

Secondly, observe that it is possible to choose a time interval [tik ; ti0k] such
that the happiness of each job during this interval is at least as much as in

the complete trace diagram. This implies that the happiness of each job in

the constructed periodic schedule is larger than or equal to the happiness of

each job in the original temporal schedule.

Therefore, the idling ratio of the constructed periodic schedule must be

less than or equal to the idling ratio of the original temporal schedule. Since

the fraction of area in the trace diagram covered by each job increases, the

fraction covered by the idle slots must necessarily decrease. This concludes

the proof.

A consequence of the previous theorem is stated in the following corollary :

Corollary 1 Given a Workload W , for the set of all feasible periodic sched-

ules S, the schedule with smaller idling ratio is the one with smaller period.

Proof 3 The feasible schedule with smaller period is the one which has the

smaller number of slices (resulting in a smaller number of total slots) and

which packs all jobs as de�ned in the Gang Scheduling algorithm. The num-

ber of occupied slots is the same for all feasible periodic schedules, since the

workload is the same. So the ratio between the number of idle slots, which is

the di�erence between the total number of slots and the number of occupied

slots, and the total number of slots is minimized when we have a minimum

number of slices, which is the case in the minimum period schedule.

5.3 Resource Sharing in Parallel Job Schedul-

ing : One Dimensional case

In the one dimensional resource sharing problem, jobs are represented by

only on parameter : the number of tasks (which is equal to the number of re-

quired processors in Gang Scheduling) that compose the job. The machine is

characterized by the number of processors. We suppose that other resources,

such as memory, have in�nite availability. We will analyze in this section

66CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

the dynamic variation, where arrival times can be di�erent from zero. Ob-

serve that this problem is similar to the one dimensional dynamic (on-line)

bin-packing problem as will be shown below.

5.3.1 Packing in Gang Scheduling

Recall that the computation of a schedule (i.e. the computation of the

trace diagram) can be reduced to a bin packing problem. In the classical,

one dimensional bin-packing problem, a given list of items L = I1; I2; I3; :::

is to be partitioned into a minimum number of subsets such that the items

on each subset sum to no more than B, which is the capacity of the bins. In

the standard physical interpretation, we view the items of a subset as having

been packed in a bin of capacity B. This problem is NP-Hard [12], so research

has concentrated on algorithms that are merely close to optimal. For a given

list L, let OPT(L) be the number of bins used in optimal packing, and de�ne :

s(L) = d

P
jIjj

B
e (5.1)

Note that for all lists L, s(L) � OPT (L). For a given algorithm A, let

A(L) denote the number of bins used when L is packed by A and de�ne the

waste wA(L) to be A(L)-S(L).

When applying bin-packing to parallel job scheduling, bins corresponds

to slices in the trace diagram, and items represents SPMD jobs.

In this paper we deal with bin-packing algorithms that are dynamic (also

dubbed �on-line�). A bin packing algorithm is dynamic if it assigns items

to bins in order (I1; I2; :::), with item Ii assigned solely on the basis of the

sizes of the preceding items and the bins which they are assigned to, without

reference to the size or number of remaining items [81, 12]. Two of the most

well known strategies for dynamic bin-packing are �rst �t and best �t. In �rst

�t, the next item to be packed is assigned to the lowest-indexed bin having an

unused capacity no less than the size of the item. In best �t the used bins are

sorted according to their capacities. The item to be packed is assigned to the

bin with the smallest capacity that is su�cient. Best �t can be implemented

to run in time O(N logN), and among online algorithms o�ers perhaps the

best balance between worst and average case packing performance [12]. For

instance, the only known on-line algorithm with better expected waste than

best �t is the considerably more complicated algorithm of [81] that has

expected waste �(N1=2 log1=2N) (compared with �(N1=2 log3=4N) for best

5.3. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : ONEDIMENSIONALCASE67

�t) which is the best possible for any dynamic algorithm ; this algorithm

however has an unbounded asymptotic worst case-ratio.

However, it should be stressed that the problem that we consider in this

paper is slightly di�erent from the original dynamic bin packing problem,

since each item has a duration associated with it. As items represent SPMD

jobs, the duration represent the time it takes to run on a dedicated machine.

5.3.2 Dynamic Competitive Ratio

Competitive ratio(CR) based metrics [17, 69] are used to compare various

space sharing strategies. The reason is that the competitive ratio is a formal

way of evaluating algorithms that are limited in some way (e.g., limited in-

formation, computational power, number of preemptions) [17]. This measure

was �rst introduced in the study of a memory management problem [67, 87].

The Competitive ratio [51, 17] for a scheduling algorithm A is de�ned as :

CR(n) = sup
J:jJj=n

A(J)

OPT (J)
(5.2)

Where A(J) denotes the cost of the schedule produced by algorithm A,

and OPT(J) denotes the cost of an optimal scheduler, all under a prede-

�ned metric M. One way to interpret the competitive ratio is as the payo�

to a game played between an algorithm A and an all-powerful malevolent

adversary OPT that speci�es the input J [51].

We are interested in the dynamic case, where we have a sequence of jobs

J = fJ1; J2; J3; J4; ::::g, with an arrival times ai � 0 associated with each job,

which is the the case for jobs submitted to parallel supercomputers, as several

workload studies show [33, 27]. Observe that consecutive arrival times can

vary between seconds to hours, depending on the hour of the day [33]. For

instance, let's consider a machine that implements a Gang scheduler using

the trace diagram (an example is [71]). Upon arrival of a new job, the front

end will look for the �rst slice with su�cient number of processors in the trace

diagram (which is stored in the front end), will allocate the incoming job on

that slice, will update the trace diagram, and the new job will start running

in the next period. The same sequence of actions is taken for subsequent jobs.

For the dynamic case as de�ned in the previous paragraph, the de�nition

of equation 5.2 is not convenient. For a dynamic scheduling the number of

jobs n can be of order of thousands or tens of thousands of jobs, but they are

68CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

spaced in time, in a way that, at each instant of time, we would have typically

tens of jobs at most scheduled in the machine. Beyond that, competitive

analysis has been criticized because it often yields ratios that are unrealistic

high for "normal" inputs, since it consider the worst case workload, and as

a result it can fail to identify the class of online algorithms that work well

[51]. These facts led us to propose a new methodology for comparing dynamic

algorithms on parallel scheduling based on the competitive ratio.

For the application of CR methodology in dynamic scheduling, let's con-

sider as reference (adversary) algorithm the optimal algorithm OPT for a

prede�ned metric M applied at each new arrival time. The OPT scheduler

will be a clairvoyant dynamic adversary, with knowledge about all arrival

times and the characteristics of all jobs. We will call this methodology of

comparing dynamic algorithms as Dynamic Competitive Ratio (CRd), and
the scheduler de�ned by applying OPT at arrival times as OPTd. Formally

we have :

CRd(N) =
1

N

NX

�=1

A(�)

OPTd(�)
(5.3)

Where N represents the number of arrival times considered. Observe that

CRd only varies at arrival times. As Workload we have a (possibly in�nite)

sequence of jobs J = fJ1; J2; J3; J4; ::::g, with an arrival time ai � 0 associated
with each job. At the time of each arrival, workload changes are taken into

consideration in a way that only those jobs that are still running at the arrival

time are considered by both A and OPT algorithms.

A very important question is the determination of the workload to be

used in conjunction with CRd to compare di�erent algorithms. When choos-

ing the new coming job at each arrival time, we have two possibilities : either

selecting a �worst case� job that would maximize the CRd or considering syn-

thetic workload models with arrival times and running times being modeled

as random variables. Since with the �worst case� option we may create fake

workloads that never happen in practice and leads to the sort of criticism we

cited before, we believe that the best option is to use one of the synthetic

workload models that have been recently proposed in the literature [27, 33].

These models and its parameters have been abstracted through careful anal-

ysis of real workload data from production machines. The objective with this

approach is to produce an average case analysis of algorithms based on real

distributions.

5.3. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : ONEDIMENSIONALCASE69

A lower bound for the packing problem under dynamic competitive ratio

is derived in the following theorem.

Theorem 6 For the dynamic packing of SPMD jobs in the trace diagram

and for any non-clairvoyant scheduler, CRd(N) � 1 , N > 0

Proof 4 Consider N=1. In the case of a workload composed by one embar-

rassingly parallel job with a degree of parallelism P, if we have a non clair-

voyant scheduler that schedules each task in a di�erent processor, as would

do OPTd, we have CRd(1) = 1.
Conversely, an optimal clairvoyant scheduler will always be capable of

producing a scheduling at least as good as a non-clairvoyant one, since the

clairvoyant scheduler has all the information available about the workload at

any instant in time. So CRd(N) � 1.

For bin-packing, the reference or optimal algorithms will be simply the

sum of item sizes s(L), since s(L) � OPT (L), and it can be easily computed.

However, in order to use CRd to compare the performance of algorithms,

we must �rst de�ne precisely the workload model we will use in the CRd

computation, which is done in the next section.

5.3.3 Workload Model

The workload model that we consider in this paper was proposed in [27].

This is a statistical model of the workload observed on a 322-node partition

of the Cornell Theory Center SP2 from June 25, 1996 to September 12, 1996,

and it is intended to model rigid job behavior. During this period, 17440 jobs

were executed.

The model is based on �nding Hyper-Erlang distributions of common

order that match the �rst three moments of the observed distributions. Such

distributions are characterized by 4 parameters :

- p � the probability of selecting the �rst branch of the distribution. The

second branch is selected with probability 1 - p.

- �1 � the constant in the exponential distribution that forms each stage

of the �rst branch.

- �2 � the constant in the exponential distribution that forms each stage

of the second branch.

- n � the number of stages, which is the same in both branches.

70CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

Fig. 5.1: Sequence 1 - no migration

As the characteristics of jobs with di�erent degrees of parallelism di�er,

the full range of degrees of parallelism is �rst divided into subranges. This

is done based on powers of two. A separate model of the inter arrival times

and the service times (runtimes) is found for each range. The de�ned ranges

are 1, 2, 3-4, 5-8, 9-16, 17-32, 33-64, 65-128, 129-256 and 257-322.

Tables with all the parameter values are available in [27].

5.3.4 CRd applied to First Fit and Best Fit

We conducted experiments measuring the CRd of �rst �t and best �t

strategies. Our objective is to verify the behavior of these on-line packing

strategies in terms of number of slices used when compared against a clair-

voyant on-line algorithm. In particular, we are interested in knowing if the

non-optimality of either �rst �t or best �t can lead to an unbounded growth

of the number of slices in a period when compared against the optimal on-

line algorithm for the workload model chosen. The experiments consisted of

computing the CRd of both best �t and �rst �t for a sequence of SPMD jobs

generated through the model described in the previous section. The machine

considered has 128 processing elements, and the size of jobs varied between

1 and 128 tasks, divided in 8 ranges. Then the �rst and best �t strategies

were applied, and the number of slices used by each algorithm for each job

arrival was computed. This number was then divided by the number of slices

5.3. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : ONEDIMENSIONALCASE71

Fig. 5.2: Sequence 2 - no migration

that would be used considering the sum s(L) as de�ned in equation 5.1.

The smaller the number of slices, the smaller the period is, with more slots

dedicated to each job over time.Two cases were simulated :

- With job migration - All jobs return to the central queue and are redis-

tributed among all processors at each new arrival.

- Without job migration - In this case an arriving job is allocated accord-

ingly to a given algorithm without changing the placement of other jobs.

Two sequences of jobs were randomly generated using the model described

in the previous subsection. Both sequences have 30000 jobs. Results for the

�rst sequence without task migration are shown in �gure 5.1. The horizon-

tal axis represents number of job arrivals. We can see that best �t always

achieved better results than �rst �t, but with a small di�erence between the

two strategies. The bigger di�erence between the CRd of �rst �t and the CRd

of best �t was around 2%. Results for the second sequence of jobs are shown

on �gure 5.2. The results are similar to the one obtained for the �rst �gure,

but the larger di�erence for this sequence was also around 2%. Observe that

for a large number of jobs (> 10000) results of both sequences are almost

equal for both the best �t and �rst �t algorithms. There is no unbounded

growth of the number of slices when compared against the clairvoyant on-line

algorithm in any case.

CRd calculation for both sequences when task migration is considered

are shown in �gures 5.3 and 5.4. We can observe that the CRd for both

72CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

Fig. 5.3: Sequence 1 - with migration

algorithms is at least one order of magnitude smaller than the results with no

migration. As a consequence, the di�erence of the CRd between the two algo-

rithms become even smaller, with less than 1% in the worst case. Again, CRd

calculations for the two sequences became almost equal for a large number

of jobs.

5.4 Resource Sharing in Parallel Job Schedul-

ing : Multi-dimensional case

In the multi-dimensional case the resources available in a machine are rep-

resented by a m-dimensional vector R = (R1; R2; :::Rm) and the resources re-

quired by a job J are represented by a k-dimensional vector J = (J1; J2; :::Jk); k �
m. Of particular interest for Gang service algorithms is the amount of mem-

ory required for each job, since most of the parallel machines available today

do not have support for virtual memory, and the limited amount memory

available determine the number of jobs that can share a machine at any

given time.

Maximizing memory utilization in order to allow multiple jobs to be

scheduled simultaneously is a critical issue for Gang service systems. Many

5.4. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : MULTI-DIMENSIONALCASE73

Fig. 5.4: Sequence 2 - with migration

parallel applications demand a large amount of memory to run, and since

these machines normally do not have support for virtual memory, eventually

all applications submitted to a machine at a given time will not �t into the

main memory available, which means that some jobs will have to wait before

receiving service.

In the case of a distributed memorymachine, the machine itself is modeled

as a P-dimensional vector R(t) = (R1; R2; :::RP) where RI represents the

amount of memory available at time t in node I. The job is represented

as a F-dimensional vector J(t) = (J1; J2; :::JF), where F is the maximum

number of tasks of a job and JI is the amount of memory required for task

I at time t. As we are dealing with SPMD jobs, this formulation can be

simpli�ed as we will consider that the amount required by all tasks will be

the same, so the requirements of a job are represented by a bidimensional

vector J = (PJ ;MJ), where PJ is the number of tasks (which is equal to

number of processors in Gang service algorithms) of job J and MJ is the

maximum memory requirement among all tasks.

Observe that this problem is di�erent from the two-dimensional (geomet-

ric) bin-packing problem [11], in which rectangles are to be packed into a

�xed width strip so as to minimize the weight of packing, since the memory

segments required by a job do not need to be contiguous. It also di�ers from

the vector bin packing problem. In the d-dimensional version of the vector

packing problem, the size of an item is a vector I = (I1; I2; :::Id) and the

74CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

capacity of a bin is a vector C = (C1; C2; :::Cd). No bin is allowed to contain

items whose vector sum exceeds C in any component. In the multidimensional

resource sharing problem stated in this section the dimensions of the size of

an item and the capacity of a bin can be di�erent, as we are considering

a distributed memory machine and the resources (memory) available in the

machine are de�ned in a per-processor basis, not in a global basis. This leads

to di�erent solutions than those proposed in [60], since a direct association

between kth component of the resource vector R and the kth component of

requirement vector J is not mandatory.

5.4.1 Memory Fit algorithm

Our objective is to maximize the number of jobs that can be allocated

in the same period. To do so, the packing strategy must take into account

the amount of memory available on each node. That is the objective of the

memory �t algorithm proposed in this section. In the memory �t algorithm,

the front end at each job arrival chooses the slice and the processors that

will receive an incoming job depending on the amount of memory available,

in order to balance the usage of memory among the nodes of the machine.

If more than one solution is possible, the front end chooses a slice using the

best �t strategy. If there is no set of processors in the available slices with

su�cient memory to receive the new job, the front end can create a new

slice to accommodate the new coming job. Of course a new slice can also be

created due to insu�cient number of processors in the existing slices, as in

best �t and �rst �t.

If a job arrives and there is no su�cient resources available for its execu-

tion, it waits in the global queue until the amount of memory required by the

job becomes available. However, if another jobs arrives later and there is a

su�cient amount of memory to schedule the job, it is scheduled immediately,

as in the back�lling strategy.

When choosing a slice for scheduling a new coming job, �rst the memory

�t chooses the J processors in a slice where there is more memory available,

where J is the degree of parallelism of a job. Then computes a "measure

of balance" in order to know how much that particular allocation reduces

imbalance. The algorithm repeats this sequence for every existing slice and

also considers the possible creation of a new slice. The solution that minimizes

the memory imbalance in the machine is the chosen.

For the measure of memory imbalance, in this paper we have chosen a

5.4. RESOURCE SHARING IN PARALLEL JOB SCHEDULING : MULTI-DIMENSIONALCASE75

Fig. 5.5: Dynamic competitive ratio applied to memory �t

max/average balance measure [59]. For a given slice, the front end considers

the allocation of a job in the set of processors where there is more memory

available, and then compute the following measure :

B(slice) =
maxiMi
PP

i=1Mi

(5.4)

Where Mi is the amount of memory available in node i. A lower value of

B indicates a better balance.

5.4.2 CRd applied to Memory �t

In this section we apply a sequence of jobs to evaluate the performance

under CRd of the memory �t packing algorithm and we compare with the

best �t algorithm of section 5.3, with no migration in both cases. This al-

gorithm was modi�ed to take into account memory requirements. The bin

chosen is the one that minimizes processor waste and at the same time has

su�cient memory to accommodate the job, regardless of any memory bal-

ance. However, we must �rst de�ne a memory usage for each job in the

sequence, since the workload model used did not take into account memory

requirements. In this paper, we considered that the memory usage of a job

has a direct correlation with this size. This assumption is coherent with work-

load modeling that was used as a guide line for scheduler design in parallel

76CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

Fig. 5.6: Throughput of both best �t and memory �t

machines, notably in the Tera MTA [26]. In this work was observed that jobs

with large amounts of parallelism have large memory requirements and use

a lot of resources. Small tasks, on the other hand, use resources in bursts,

have small memory requirements and are not very parallel. Based on these

observations we de�ned that for each job, the memory utilization of a job

varied between 2 MB and 256 MB per node in function of the size of the job

and the ranges de�ned in subsection 5.3.3. For instance, we considered that

1 task jobs require 2 MB of memory, 2 task jobs require 4 MB per task, 3-4

task jobs require 8 MB per task, and so on. Each node had 512 MB of main

memory.

Our objective is to maximize the number of jobs that �t in one period of

the machine by maximizing the memory utilization of the machine. The ref-

erence algorithm always has a memory utilization of 100%, given that enough

jobs have arrived to �ll in the memory, due to its clairvoyance. Simulation

results are shown in �gures 5.5 and 5.6. Figure 5.5 illustrates the evolu-

tion of CRd over time. Figure 5.6 shows the throughput of both algorithms.

Observe that the number of arrivals and arrival times submitted to both al-

gorithms are the same, since the same sequence of jobs were submitted to

both algorithms. In both cases the horizontal axis represents time in seconds.

The evolution of the system was simulated for 10000, 20000, 30000, 40000

and 50000 seconds. These values are chosen in order to verify the evolution

of the system during a working day (50000 seconds represents 13.8 hours).

5.5. CONCLUSION 77

We can observe that the Memory Fit algorithm not only yields better

memory utilization than best �t, but it also improves the throughput, as

illustrated by �gure 5.6. This is a direct consequence of the capability of the

memory �t algorithm of allocating more jobs in the same period.

5.5 Conclusion

In this chapter we analyzed questions related to resource sharing in par-

allel scheduling algorithms. One conclusion derived from that analysis is that

multidimensional resource sharing analysis is necessary when de�ning a pack-

ing strategy for this class of algorithms, as the comparison between best �t

and memory �t in the limited memory analysis demonstrated.

To provide a sound analysis of Concurrent Gang performance, a novel

methodology, dubbed dynamic competitive ratio, based on the traditional

concept of competitive ratio is also introduced. Dynamic competitive ratio

was used to compare packing algorithms submitted to a workload generated

by a statistical model, and to compare packing strategies for job scheduling

under multiple constraints. For the unidimensional case we can conclude that

there is not a large di�erence between the performance of best �t and �rst

�t under the workload model considered, and �rst �t can be used without

signi�cant system degradation. For the multidimensional case, when memory

is also considered, the better performance of memory �t over best �t under

dynamic CR let us conclude that the packing algorithm must try to balance

the resource utilization in all dimensions at the same time, instead of given

priority to only one dimension of the problem.

78CHAPITRE 5. RESOURCEMANAGEMENT IN GANG SCHEDULING

Deuxième partie

Concurrent Gang

79

Chapitre 6

Concurrent Gang

6.1 Introduction

In this chapter we propose a class of scheduling policies, dubbed Con-

current Gang, that is a generalization of Gang-scheduling and allows for

the �exible simultaneous scheduling of multiple parallel jobs in a scalable

manner. In order to do that, the Concurrent Gang scheduler identi�es the

characteristics of each task at run time and takes a decision about the best

way of scheduling tasks depending on these characteristics. Along with that,

a solution to the problem related to Gang schedulers of what to do when a

task blocks is proposed.

The architectural model we will consider in this chapter is a distributed

memory processor with four main components :1) Processor/memory mod-

ules (Processing Element - PE), 2) An interconnection network that provides

point to point communication, 3) A synchronizer, that send a synchroniza-

tion (clock) signal to all PEs at regular intervals of L time units and 4) a

front end, where incoming jobs arrive. This architecture is similar to the one

de�ned in the BSP model [94].

This chapter is organized as follows : in section 6.2 we present the task

classi�cation policy that is used in the Concurrent Gang algorithm. The

Concurrent Gang scheduler is described in section 6.3. In section 6.4 ex-

perimental results are presented and analyzed, and section 6.5 contains our

�nal remarks for this chapter.

81

82 CHAPITRE 6. CONCURRENT GANG

6.2 Task Classi�cation

We will use information gathered at runtime to allow each PE to classify

each one of its allocated tasks into classes. Examples of such classes are : I/O

intensive, communication intensive, and computation intensive. Each one of

these classes is equivalent to a fuzzy set [96]. A fuzzy set related with a

class A is characterized by a membership function fA(T) which associates

each task T to a real number in the interval [0,1], with the value of fA(T)
representing the �degree of membership� of T in A. Thus, the nearer the

value of fA(T) to unity, the higher the degree of membership of T in A, that

is, the degree to which a task belongs to class A. For instance, consider the

class of I/O intensive tasks, with its respective membership function fIO(T).
A value of fIO(T) = 1 indicates that the task T belongs to the class I/O

intensive with maximum degree 1, while a value of fIO(T) = 0 indicates that
the task T has executed no I/O statement at all. Observe the deterministic

nature of degree of membership associations. It is also worth noting that the

actual number of classes used on a system depends on the architecture of the

machine.

The information related to a task may be gathered during system calls

and context switches. Information that can be used to compute the degree

of membership are the type, number and time spent on system calls, number

and destination of messages sent by a task, number and origin of receivedmes-

sages, and other system dependent data. These informations can be stored,

for instance, by the operating system on the internal data structure related

to the task.

When applying fuzzy sets for task classi�cation, the value of f(T) for a
class is computed by the PE in a regular basis, at the preemption of the

related task. As an example, let's consider the I/O intensive class. The exact

way of computing being system dependent, one way of doing the computation

is as follows : On each I/O related system call, the operating system will store

information related to the call on the internal data structure associated to

the task, and at the end of the time slice, the scheduler computes the time

spent on I/O calls in the previous slice. Then the scheduler computes the

time spent in I/O over the last N times where the task was scheduled (N can

be, for instance, 3). This average determines the degree of membership of a

particular task to the class I/O intensive. As many jobs proceed in phases,

the reason for using an average over the last N times a task was scheduled is

detection of phase change. If a task changes from an I/O intensive phase to a

6.2. TASK CLASSIFICATION 83

computation intensive phase, this change should be detected by the scheduler.

In general, the computation of the degree of membership of a task to the class

I/O intensive will always depend on of the number and/or duration of the

I/O system calls made by the task. The same is valid for the communication

intensive class ; the number and/or duration of communication statements

will de�ne the degree of membership of a task to this class. For the class

computing intensive, degree of membership will also be a function of system

calls and communication statements, but in another sense : for a smaller the

number of system calls and communications there is a increase of the degree

of membership of a given task to the class computing intensive.

6.2.1 Fuzzy subsets as points

It helps to see the geometry of fuzzy sets when we apply the theory to

a practical problem, in our case parallel job scheduling. In the geometric

representation of fuzzy sets [56, 55], the fuzzy power set F(2X), the set of all
fuzzy subsets of X, is represented by a cube. A fuzzy set is represented by

a point in the cube. The set of all fuzzy subsets equals the unit hypercube

In = [0; 1]. A fuzzy set is any point in the cube I. So (X,I) de�nes the

fundamental measurable space of �nite fuzzy theory.

Vertices of the cube I de�ne non-fuzzy sets. So the ordinary power set 2X ,
the set of all 2n non-fuzzy subsets of X, equals the boolean n-cube Bn :2X =
Bn. Fuzzy sets �ll in the latticeBn to produce the solid cube In : F (2X) = In.

Consider the set of two elements X = fx1; x2g. The non fuzzy power

set 2X contains four sets : 2X = f0; x2;X; x1g. These four sets corresponds

respectively to the four bit vectors (0 0),(0 1),(1 1), and (1 0).The 1s and 0s

indicates the presence or absence of the i-th element xi in the subset. More

abstractly, we can uniquely de�ne each subset A as one of the two valued

membership functions mA : X ! f0; 1g
Now consider the fuzzy subsets of X. We can view the fuzzy subset

A=(1/3, 2/3) as one of the continuum-many continuous-valued membership

function MA : X ! [0; 1]. In this example element x1 belongs to, or �ts in,

subset A to degree 1/3. Element x2 has a membership of 2/3. Analogous

to the bit vector representation of �nite countable sets, we say that the �t

vector (1/3, 2/3) represents A. The element mA(xi) equals the i-th �t or or

fuzzy unit value. The sets as points concept represents the fuzzy subset A as

a point in the I2, the unit square, as shown in �gure 6.1

Viewing a class as a fuzzy sets corresponds to associate them to a point

84 CHAPITRE 6. CONCURRENT GANG

1/3

2/3

X = (1 1)

φ = (0 0)

F = 2

x1

x2

1

2{x } = (1 0)

{x } = (0 1)

A

A

Fig. 6.1: Sets as points. The fuzzy subset A is a point in the unit 2-cube

with coordinates of �t values (1/3,2/3). The �rst element x1 �ts or belongs

to A to degree 1/3, the element x2 to degree 2/3. The cube consists of all

possible fuzzy sets of two elements x1; x2

in a n-dimensional space, with n being the number of tasks allocated to a

processor at time t. That is, given a class A, it can be described at a given

time t as A(t) = (fA(T1),fA(T2),fA(T3),...,fA(Tn)) for n tasks.

6.2.2 Example of task classi�cation using number of

statements

It is possible to compute the degree of membership of a task with very low

overhead and a small amount of stored information by the operating system,

based on the number of executed statements related to a task. This can be

done, for instance, as follows : at initialization the degree of membership of

a task related to each class is equal to 1/2. The measurement related to a

time slice is made as follows (in the following, we consider three classes) :

� If the task is blocked due to an I/O call in that time slice, the mea-

surement of the degree of membership of the class I/O bound is equal

to 4/5. Otherwise is equal to 1/5.

� If the task executes a number N of communication statements in a

time slice, the measurement of the degree of membership of the class

communication intensive is equal to 4/5. Otherwise is equal to 1/5.

� If the task is not blocked due to an I/O call and executes less than N

communication statements, the measurement of the degree of member-

6.3. CONCURRENT GANG 85

ship of the class computation intensive for that time slice is equal to

4/5. Otherwise is equal to 1/5.

The measurement for an interval is then summed to the previous total

measurement multiplied by 1/5, becoming the new total measurement for a

given class. Observe that the total measurement related to each class is a

real number between]0,1[.

6.3 Concurrent Gang

In this section we present the Concurrent Gang algorithm by describing

the components and the operation of a Concurrent Gang Scheduler.

6.3.1 De�nition of Concurrent Gang

Referring to �gure 6.2, for the de�nition of Concurrent Gang we view

the parallel machine as composed of a general queue of jobs to be scheduled

and a number of servers, each server corresponding to one processor. Each

processor may have a set of tasks to execute. Scheduling actions are made

at two levels : In the case of a workload change, global spatial allocation

decisions are made in a front-end scheduler, who decides in which portion

of the trace diagram the new coming job will run. The context switching of

local tasks in a processor as de�ned in the trace diagram is made through

local schedulers, independently of the front-end. The global synchronizer is

responsible for sending a synchronization signal to all processors every L time

units in order to indicate the end of a slice.

A local scheduler in Concurrent Gang is composed of two main parts :

the Gang scheduler and the local task scheduler (LTS). The Gang Scheduler

schedules the next task indicated in the trace diagram at the arrival of a

synchronization signal. The LTS is responsible for scheduling sequential tasks

and parallel tasks that do not need global coordination, as described in the

next paragraph, and it is similar to a UNIX scheduler. The Gang Scheduler

has precedence over the LTS.

We may consider two types of parallel tasks in a Concurrent Gang sched-

uler : Those that require coordinated scheduling with other tasks in other

processors and those that Gang scheduling is not mandatory. Examples of

the �rst type are tasks that compose a job with �ne grain synchronization

86 CHAPITRE 6. CONCURRENT GANG

interactions [37] and communication intensive jobs [31]. Second type exam-

ples are tasks that compose an I/O bound parallel job, for instance. In [58]

Lee et al. proved that response time of I/O bound jobs su�ers under Gang

scheduling and that may lead to signi�cant CPU fragmentation. On the other

hand a traditional UNIX scheduler does good job in scheduling I/O bound

tasks since it gives high priority to I/O blocked tasks when the data becomes

available from disk. As those tasks typically run for a small amount of time

and then blocks again, giving them high priority means running the task

that will take the least amount of time before blocking, which is coherent

to the theory of uniprocessors scheduling where the best scheduling strat-

egy possible under total completion time is Shortest Job First [69]. In the

LTS of Concurrent Gang, such high priority is preserved. Another example

of jobs where Gang scheduling is not mandatory are embarrassingly parallel

jobs. As the number of iterations among tasks belonging to this class of jobs

are small, the basic requirement for scheduling a embarrassingly parallel job

is to give those jobs the greater fraction of CPU time possible, even in an

uncoordinated manner.

The LTS de�nes a priority for each task allocated to the corresponding

PE. The priority of each task is de�ned based on the degree of membership of

a task to each one of the major classes described in the previous subsection.

Formally, the priority of a task T in a PE is de�ned as :

Pr(T) = max(�� fIO; fCOMP) (6.1)

Where fIO; fCOMP are the degrees of membership of task T to the classes

I/O intensive and Computation intensive respectively. The objective of the

parameter � is to give higher priority to I/O bound jobs (� > 1). In the exper-
iments of this chapter we have de�ned � = 2. The choices made in equation

6.1 intend to give high priority to I/O intensive and computation intensive

jobs, since such jobs can bene�t the most from uncoordinated scheduling.

The multiplication factor � for the class I/O intensive gives higher priority

to I/O bound tasks over computation intensive tasks, since those jobs have

a higher probability to block when scheduled than computing bound tasks.

On the other hand, synchronization intensive and communication intensive

jobs have low priority since they require coordinated scheduling to achieve

e�cient execution and machine utilization [37, 31]. A synchronization inten-

sive or communication intensive phase will re�ect negatively over the degree

of membership of the class computation intensive, reducing the possibility of

6.3. CONCURRENT GANG 87

a task be scheduled by the local task scheduler(LTS). Among a set of tasks

of the same priority, the LTS uses a round robin strategy.

In practice the operation of the Concurrent Gang scheduler in each pro-

cessor will proceed as follows : The reception of the global synchronization

signal will generate an interruption that will make each processing element

schedule tasks a Gang as de�ned in the trace diagram. If a task blocks, con-

trol will be passed to the LTS that will schedule one of the other ready tasks

allocated in the PE depending on the priority assigned to each one of the

tasks until the arrival of the next clock signal. The task chosen is the one

with higher priority.

At each workload change the front-end of the Concurrent Gang Scheduler

will :

1 - Update Eligible task list

2 - Allocate Tasks of First Job in General Queue.

3 - While not end of Job Queue

Allocate all tasks of remaining parallel jobs

using a de�ned spatial sharing strategy

4 - Run

Between Workload Changes

- If a task blocks or in the case of an idle slot, the local task scheduler

(LTS) is activated, and it will decide to schedule a new task based on :

� Availability of the task (task ready)

� Priority of the task de�ned by the local task scheduler

Considering rigid jobs, that is, jobs which the number of required proces-

sors is �xed and does not change during execution, the relevant events which

de�ne a workload change are job arrival and job termination.

The local queue positions represent slots in the scheduling trace diagram.

The local queue length is the same for all processors and is equal to the

number of slices in a period of the schedule. It is worth noting that in the

case of a workload change, only the PEs concerned by the modi�cation in

the trace diagram are noti�ed.

In the case of creation of a new task by a parallel task, or parallel task

completion, it is up to the local scheduler to inform the front-end of the work-

load change. The front end will then take the appropriate actions depending

on the prede�ned space sharing strategy.

88 CHAPITRE 6. CONCURRENT GANG

Front-End

Synch.

Trace Diagram

Queue
Global (Arrival)

Fig. 6.2: Modeling Concurrent Gang class algorithm

Scalability in Concurrent Gang is improved due to the presence of a syn-

chronizer working as a global clock, which allows the scheduler to be dis-

tributed among all processors. The front-end is only activated in the event

of a workload change, and decision in the front end is made depending on

the chosen space sharing strategy. This di�ers from typical Gang scheduling

implementation where job-wide context switch relies on the front end [20],

which limits scalability and e�cient utilization of processors when a task

blocks.

6.4 Experimental Results

The performance of Concurrent Gang was simulated and compared with

the traditional Gang scheduling algorithm, using �rst �t without thread mi-

gration as space sharing strategy. First the simulation methodology is ex-

plained and then simulation results are presented and analyzed.

6.4.1 Simulation Methodology

To perform the experiments we used an improved version of a general

purpose event-driven simulator, �rst described in [82], developed by our

research group for studying a variety of problems (e.g. dynamic scheduling,

load balancing, etc) [43]. The format for describing jobs is a set of parameters

used to describe the job characteristics such as computation/communication

ratio, I/O duration, etc. Observe that the actual communication type, timing

6.4. EXPERIMENTAL RESULTS 89

and pattern are left unspeci�ed and it is up to the simulator to convert this

user speci�cation into a DAG, using probabilistic distributions, provided by

the user, for each of the parameters. Other parameters include the spawning

factor for each thread, a thread life span, synchronization pattern, degree of

parallelism (maximum number of thread that can be executed at any given

time), etc. Even-though probabilistic distributions are used to generate the

workload, the generated workload itself behaves in a completely deterministic

way. A more complete description of the simulator is in appendix A, as well

as the procedure used for its veri�cation.

Once the workload and architecture characteristics are de�ned, and the

module responsible for implementing a particular scheduling heuristics is

plugged into the simulator, several experiments can be performed using the

same input by changing some of the parameters of the simulation such as

the number of processing elements available or the topology of the network,

among others. The outputs can be recorded in a variety of formats for later

visualization.

The workload model that we consider in this chapter is the same rigid job

model used on chapter 5 and proposed in [27]. This is a statistical model of

the workload observed on a 322-node partition of the Cornell Theory Center's

IBM SP2 from June 25, 1996 to September 12, 1996, and it is intended to

model rigid job behavior.

The model is based on �nding Hyper-Erlang distributions of common

order for inter-arrival and service times that match the �rst three moments

of the observed distributions. As the characteristics of jobs with di�erent

degrees of parallelism di�er, the full range of degrees of parallelism is �rst

divided into subranges. This is done based on powers of two. A separate

model of the inter-arrival times and the service times (execution times) is

found for each range. The de�ned ranges of degrees of parallelism are 1, 2,

3-4, 5-8, 9-16, 17-32, 33-64, 65-128, 129-256 and 257-322 .

Tables with all the parameter values are available in [27].

Four classes of workloads were used in simulations. Our intention is to

represent a superset of the major classes we considered in the description of

Concurrent Gang. They are :

� Communication Intensive - In this workload all jobs are communica-

tion intensive, i.e. the job proceed in phases and for each computation

intensive phase there is a communication intensive phase, where the

set of tasks related to a job make intensive point to point commu-

90 CHAPITRE 6. CONCURRENT GANG

nications. The semantics used for the point to point communication

was non-blocking asynchronous sends and blocking receives. For Gang

scheduling, receive statements are executed using the spin only mech-

anism ; this is due to the fact that typical Gang scheduler do not know

what to do if a task blocks. For Concurrent Gang schedulers was used

a spin block mechanism, where the task spin for some time waiting

for the message before blocking. The reason is that Concurrent Gang

schedulers are able to schedule another task if a task in a Gang blocks.

The Spin-block mechanism bounds the wait by above in presence of

irregularities among tasks. The minimum spin time considered is the

baseline time for the network used, that is, the minimum amount of

time necessary to keep tasks coordinated if they are already in such

state and there is no irregularities among tasks. Point-to-point com-

munication statements appeared in average each 5 ms.

� Computation intensive - In this class all tasks only have local compu-

tation instructions, that is, they never block.

� IO intensive - This job type is composed of bursts of local computations

followed by bursts of I/O commands, as represented in �gure 6.3. This

pattern re�ects the I/O properties of many parallel programs, where

execution behavior can be naturally partitioned into disjoint intervals,

each of which consist of a single burst of I/O with a minimal amount of

computation followed by a single burst of computation with a minimal

amount of I/O [77]. The interval composed of a computation burst

followed by an I/O burst are know as phases, and a sequence of con-

secutive phases that are statistically identical are de�ned as a working

set. The execution behavior of an I/O bound program is therefore com-

prised as a sequence of I/O working sets. This general model of program

behavior is consistent with results from measurement studies [88, 89].

Observe that I/O demands were considered in a �rst come �rst served

basis.

The time duration of the I/O burst for the simulations in this chapter

were equal to 50 ms in average. The ratio of the I/O working set used

in simulations was 1/1, that is, for a burst of 50 ms of I/O there was a

burst of 50 ms of computation in average. Observe that I/O requests

from di�erent jobs to the same disk are queued and served by arrival

order.

� Synchronization intensive - In this workload there is one global syn-

6.4. EXPERIMENTAL RESULTS 91

Processors

Time (ms)200 500 800 1100

I/O Bursts

Computation Bursts

Fig. 6.3: One I/O working set

chronization statement after a variable amount of computation, which

is the same for all tasks of a given job. The semantics for the synchro-

nization statement is the same of the communication intensive case,

that is, Gang schedulers use spin only, while spin-blocking is used for

Concurrent Gang schedulers, since those schedulers can choose another

parallel task to run when a parallel task blocks. Global synchronizations

occurred in average each 5 ms.

We have simulated a machine with 16 processors using as interconnection

network a 2D mesh, as in the Paragon multiprocessor. The simulator's time

unit is seconds, and results are obtained for 10000, 20000, 30000 and 40000

seconds. The time slice duration was 200 ms.

All workloads are randomly generated, and then the same set of jobs with

their arrival and execution times are presented to Concurrent Gang scheduler

with the priority mechanism as de�ned in section 6.3, a Concurrent Gang

scheduler without the priority mechanism (in this case a round robin strategy

for de�ning which task will run in an idle slice is used) and a Gang Scheduler.

Space sharing strategy for the Gang scheduler and the Concurrent Gang

scheduler is �rst �t without thread migration. At the end of each simulation,

the total idle time and number of completed jobs are returned. It should be

noted that the total idle time in the simulations is not composed by idle slots

only, but also by the time which a particular task was blocked waiting for

I/O, synchronization and communication completion.

92 CHAPITRE 6. CONCURRENT GANG

6.4.2 Simulation Results

Simulation results for the I/O intensive workload are shown in �gure 6.4.

The idle time associated with each algorithm is shown in �gure 6.5. We can

observe a signi�cant improvement over Gang scheduling, both in through-

put (jobs completed by unit of time) and total idle time, with Concurrent

Gang with priorities having a better performance. These results were ex-

pected, since Concurrent Gang provides larger �exibility than Gang schedul-

ing, which is necessary for this kind of job.

We can see a very signi�cant improvement of the modi�ed Gang over

the original Gang scheduler, due to the priority mechanism. Essentially, the

better performance of Concurrent Gang is due to the fact that it is able

to recognize when a task is in an I/O intensive phase, and schedule these

tasks as soon as another one blocks, what happens frequently in an I/O

bound workload. In Gang scheduling, if an I/O task blocks, the processor

remains idle until the end of the time slice. This explains the di�erence in

idle time between Gang scheduling and the two versions of Concurrent Gang.

The improvement in throughput observed in consequence of the improved

utilization achieved by Concurrent Gang. In [77] , Rosti et al. suggest that

that the overlapping of the I/O demands of some jobs with the computational

demands of other jobs may o�er a potential improvement in performance.

The improvement shown in �gures 6.4 and 6.5 is due to this overlapping.

The detection of I/O intensive tasks and the immediate scheduling of one of

these tasks when another task doing I/O blocks results in a more e�cient

utilization of both disk and CPU resources.

Figure 6.6 shows results of the simulation of a Computation intensive

workload, where the jobs have no communication, I/O or synchronization

statements at all. As a consequence, tasks in this workload never blocks.

The idle time is shown in �gure 6.7. Also in this case Concurrent Gang has

slightly better utilization than Gang scheduling. The reason is that Concur-

rent Gang uses the idle slots, that exists due to the non-optimality of the

packing strategy used, to schedule computing intensive tasks that the local

task scheduler on each PE detects at run-time. Observe that in this case the

improvement in utilization is so small that is not enough to cause a signif-

icant improvement in throughput. This supports the choice of �rst �t as a

good on-line packing strategy for the workload model considered.

Synchronization intensive workload results are shown in �gures 6.8 for the

throughput and �gure 6.10 for the idle time. The synchronization was always

6.4. EXPERIMENTAL RESULTS 93

global, i.e. over all tasks of a job. Although Gang scheduling is a better option

to schedule those jobs than uncoordinated scheduling, Concurrent Gang had

better performance than Gang scheduling for the simulated workload. This is

due to the fact that Concurrent Gang with priority can recognize those tasks

that are computing intensive, that is, those tasks that belong to jobs having

only one task, and reschedule those tasks on idle slots. In the workload model

that we used, nearly 40% of the jobs are one task jobs. Since they are one task

jobs, there is no synchronization/communication statements, so they do not

block and can be considered computing intensive. The better service given

to those jobs when idle slots are present explains the better performance of

Concurrent Gang when compared with regular Gang for this workload.

Observe also that Concurrent Gang scheduler without the priority mech-

anism have worse performance than Gang scheduler. The reason is the inca-

pacity of the scheduler without the priority mechanism of di�erentiate among

those jobs that are computing intensive than those that are synchronization

intensive. The scheduling of synchronization intensive tasks in idle slots hurts

the performance of the job as a whole. This is illustrated in �gure 6.9, where

we have a trace diagram with four processors and three jobs. Scheduling a

synchronization intensive task belonging to job 3 (J3) in an uncoordinated

manner makes this task block at the �rst barrier call. When the other tasks

belonging to job J3 are scheduled, the blocked task is not, and the local sched-

uler of Concurrent Gang without priority will schedule a task belonging to

another job (job 1) in that slot. As the job is synchronization intensive, the

other scheduled tasks belonging to job J3 will block at the next barrier call

after the one that caused the blocking of the �rst task, since this �rst task

is not scheduled. The other job J3 tasks will then yield their respective pro-

cessors, resulting in a degraded performance for job J3. Since the local task

scheduler in this case is oblivious, this process will happen may times, which

results in a reduced throughput if compared with Gang scheduling, when all

tasks of synchronization intensive jobs are scheduled only in a synchronized

way.

In �gures 6.11, throughput results for communication intensive (point to

point) workload are shown for 16 processors. Idle times are in �gures 6.12.

Once again we observe a improvement in total idle time and in throughput

due to the identi�cation and scheduling of those jobs that are in a computing

intensive phase in idle slots. Again, although Gang scheduling is better than

uncoordinated scheduling for this kind of job, Concurrent Gang shows to

be slightly better than Gang scheduling, due to the better service given to

94 CHAPITRE 6. CONCURRENT GANG

10000 20000 30000 40000
00

55

10

15

20

25

30

35

16 Processors − IO

Cgang no
Priority

Gang

Cgang

Time
#

 o
f

jo
b

s

Fig. 6.4: 16 Processors, I/O bound workload : Throughput

computing intensive tasks.

As with the synchronization intensive workload, Concurrent Gang with-

out priorities is worse than Concurrent Gang and Gang scheduling. The rea-

son is the same of the synchronization intensive workload. This happens be-

cause, without the priority mechanism, Concurrent Gang schedulers do not

have information to decide if a task is a communication intensive or compu-

tation intensive. The scheduling of a communication intensive task in a idle

slot may put that task into a blocking state, since we use spin block semantics

for both Concurrent Gang schedulers. This task will then be blocked during

the assigned slice of the job in the trace diagram and then may cause the

blocking of other tasks. As in the synchronization intensive workload, this

hurts the response time of that job as a whole. Other tasks of the Gang will

be executed, but those tasks which communicate with the task that blocked

�rst will eventually block as well.

6.5 Discussion and Conclusion

In this chapter we presented a new parallel scheduling algorithm dubbed

Concurrent Gang. The main di�erences over standard Gang scheduling are

the explicit de�nition of an external global synchronizer and the presence of

local task scheduler which decides what to do if a task of the job scheduled as

a Gang blocks, as we propose in this chapter a solution to the task blocking

6.5. DISCUSSION AND CONCLUSION 95

10000 20000 30000 40000
00

10

20

30

40

50

60

70

80

16 Processors − IO

Cgang no
Priority

Gang

Cgang

Time

Id
le

 T
im

e
 (

%
)

Fig. 6.5: 16 Processors, I/O bound workload : idle time

10000 20000 30000 40000
00

55

10

15

20

25

30

35

40

45

50

55

16 Processors − Comp

Cgang no
Priority

Gang

Cgang

Time

#
 o

f
jo

b
s

Fig. 6.6: 16 Processors, Computation intensive workload : Throughput

96 CHAPITRE 6. CONCURRENT GANG

10000 20000 30000 40000
00

2,5

55

7,5

10

12,5

15

16 Processors − Comp

Cgang no
Priority

Gang

Cgang

Time

Id
le

 T
im

e
 (

%
)

Fig. 6.7: 16 Processors, Computation intensive workload : idle time

10000 20000 30000 40000
00

55

10

15

20

25

30

35

40

45

50

16 Processors − Synch

Cgang no
Priority

Gang

Cgang

Time

#
 o

f
jo

b
s

Fig. 6.8: 16 Processors, Synchronization intensive workload : Throughput

6.5. DISCUSSION AND CONCLUSION 97

P 1 1

1

1

1

2

2

3

3

3

3

1

1

1

1

2 2

2

2

3

3

3

3

1Idle
Slot

2

2

2

1

1 - Job 1 (computing intensive)

3 - Job 3 (synchronization intensive)

1

2

2

2

P

P

P 2

3

4

Time

2 - Job 2 (synchronization intensive)

Task Blocking

Task Blocking

Fig. 6.9: Execution of a synchronization intensive workload by a Concurrent

Gang scheduler without priorities. Observe that the scheduling of an isolated

that belonging to a synchronization intensive job causes the blocking of the

other tasks of the same job on its assigned slice

10000 20000 30000 40000
00

2,5

55

7,5

10

12,5

15

17,5

20

22,5

16 Processors − Synch

Cgang no
Priority

Gang

Cgang

Time

Id
le

 T
im

e
 (

%
)

Fig. 6.10: 16 Processors, Synchronization intensive workload : idle time

98 CHAPITRE 6. CONCURRENT GANG

10000 20000 30000 40000
00

55

10

15

20

25

30

35

40

45

50

16 Processors − Comm

Cgang no
Priority

Gang

Cgang

Time

#
 o

f
jo

b
s

Fig. 6.11: 16 Processors, Communication intensive workload : Throughput

10000 20000 30000 40000
00

2,5

55

7,5

10

12,5

15

17,5

20

22,5

25

16 Processors − Comm

Cgang no
Priority

Gang

Cgang

Time

Id
le

 T
im

e
 (

%
)

Fig. 6.12: 16 Processors, Communication intensive workload : idle time

6.5. DISCUSSION AND CONCLUSION 99

problem in Gang scheduling.

The Concurrent Gang approach is more bene�cial to workloads that re-

quire a more �exible scheduling than is possible with Gang scheduling. An

example is I/O bound workloads, as is demonstrated with simulation re-

sults. For workloads requiring coordinated scheduled, the Concurrent Gang

algorithm becomes equivalent to the standard Gang scheduler, as veri�ed

with a communication bound workload. But simulation results showed that

even with communications intensive and synchronization intensive workloads

Concurrent Gang may yield improved performance over Gang scheduling.

The utilization in Concurrent Gang is improved because, in the event of

an idle slot or blocked task, Concurrent Gang always tries to schedule tasks

that do not require, at that moment, coordinated scheduling with other tasks

of the same job. This is the case, for instance, of I/O intensive tasks and

computation intensive tasks. The priority mechanism in Concurrent Gang is

used by the scheduler to make a intelligent choice of which task to schedule

in a idle slot, thus improving performance over a Concurrent Gang scheduler

with no priority as shown in simulations.

100 CHAPITRE 6. CONCURRENT GANG

Chapitre 7

Concurrent Gang Analysis

7.1 Introduction

This chapter complements the previous one by making a detailed anal-

ysis of Concurrent Gang algorithms in two di�erent points : �rst, we com-

pare Concurrent Gang with Gang scheduling and a oblivious local scheduler.

Then we analyze the performance of Concurrent Gang the presence of ir-

regular jobs, and propose an improvement to Concurrent Gang which binds

the Concurrent Gang scheduler with a load balancing algorithms to deal

with jobs that presents irregularities in the number of eligible tasks during

execution.

In the �rst section of this chapter we compare scheduling algorithm that

make use of runtime measurements to gather information about tasks, as

Concurrent Gang, against other algorithms that do not make use of such in-

formation, such as Gang schedulers and oblivious local schedulers. The main

result from this chapter is that oblivious schedulers can not do better than

schedulers for which the runtime information is available. We can therefore

conclude that a Concurrent Gang scheduler will always be at least as good

as a Gang scheduler for the same distribution of tasks among processors.

Additionally, we can also conclude that it will always perform better than a

local scheduler oblivious to runtime information.

In the second section, we make an analysis of the behaviors of Concurrent

Gang in the presence of irregular jobs. In order to make Concurrent Gang

evenmore e�cient when a irregular workload is scheduled, the propose in this

section a variation of the Concurrent Gang scheduling algorithm that includes

101

102 CHAPITRE 7. CONCURRENT GANG ANALYSIS

a load balancing algorithm. In the case of jobs that have irregularities in

the number of eligible tasks during execution, the load balancer is activated

to make the execution of that particular job and, as a consequence, of the

workload as a whole more e�cient.

7.2 Comparison Between Concurrent Gang and

oblivious schedulers

The main result of this chapter is presented at theorem 7. It states that

oblivious schedulers can not do better than Concurrent Gang scheduler when

employing the same task distribution strategy. By that we mean that each

task ti from the set of K tasks present at the machine at time T is allocated

to the same processor for all schedulers.

Theorem 7 Oblivious schedulers, such as Gang scheduler and local sched-

uler, can do no better than Concurrent Gang for the same task distribution

strategy, using schedule length as metric.

Proof 5 We should prove that, using the terminology de�ned in chapter 4,

PT space and PT idle of Concurrent Gang is smaller than or equal to a Gang

scheduler and a oblivious local scheduler for any workload W on every proces-

sor for a given task distribution. In order to do so, we minimize the schedule

length on every processor. The following analysis considers one processor at

each time. Given Si, the scheduler length on processor i, the overall schedule

length is equal to max(S1; S2; :::; Si; :::; SP)

� Gang scheduler - Since Gang schedulers have no solution to the task

blocking problem, when a task blocks the processor becomes idle. In the

case of Concurrent Gang, the processor only becomes idle if there is no

more tasks to schedule. The total idle time in both schedulers has two

components : PT space and PT idle. Let's consider the behavior of both

schedulers for each case :

PT space
cg � PT

space
Gang - This is true as the Concurrent Gang scheduler

will always try to schedule a ready task on a idle slot due to the packing

strategy

PT idle
cg � PT idle

Gang - This is due to the fact that the local scheduler

of Concurrent Gang detects that a task is blocked (due to I/O for in-

stance), and will try to schedule a ready task to ful�ll the inactivity

period of a processor.

7.2. COMPARISONBETWEENCONCURRENTGANGANDOBLIVIOUS SCHEDULERS103

� Oblivious local scheduler - Consider a processor P where the same set

of tasks T is allocated for both the local scheduler and the Concurrent

Gang scheduler. Our objective is to minimize P idle, in order to min-

imize the schedule length on that particular processor. Let's consider

the moment when a given task, T, blocks. Both the Concurrent Gang

scheduler and the oblivious local scheduler will try to schedule another

task. However, as the oblivious scheduler does not have any information

about the internal characteristics of the tasks, it will schedule a task in

function of his internal list of priority, which contains no information

regarding the internal behavior of the task. The di�erence of P idle be-

tween an oblivious local scheduler and Concurrent Gang is mainly due

to active waiting by a process, which increases the schedule length on

that processor. Two cases are relevant :

� Workload composed of tasks with no interactions between them-

selves - An example of such workload is one composed by embar-

rassingly parallel and I/O bound jobs only. The performance in

this case of the oblivious local scheduler and the Concurrent Gang

Scheduler are quite similar, since both will try to schedule a ready

task when the running task blocks, giving priority for I/O bound

jobs

� Workload with �ne grain synchronization/communication jobs -

In this case a Concurrent Gang Scheduler may have a signi�cant

advantage over a oblivious local scheduler. The problem of locally

scheduling �ne grain synchronization jobs becomes worse as the

load on the node increases. In [37] it was proved that the time

for a single iteration of a �ne grain synchronization job using

uncoordinated local scheduling is ln�1 slower than Gang schedul-

ing, where l is the load in one processor and n is the number of

synchronizing tasks. In this case the barrier was implemented us-

ing spin only busy wait and the total load was evenly distributed

among processors. This wait increases the schedule length on all

processors where that particular job is being scheduled. The waste

of computing cycles caused by the uncoordinated scheduling varies

depending on the implementation of the busy wait mechanism. For

spin only, the task spins until the end of time quantum, and the

waste of computing cycles can be signi�cant, as mentioned in [37].

This waste can be bounded by using a two phase blocking mecha-

104 CHAPITRE 7. CONCURRENT GANG ANALYSIS

nism, but even in this case it cannot improve the response time

to the level achieved by the Gang scheduler [37]. Finally, a block

mechanism can reduce further the waste of computing cycles. But

even in this case the local scheduler can do no better than Con-

current Gang due to the increased number of preemptions caused

by the non-coordinated scheduling, which hurts the performance of

synchronization intensive jobs.

A special case occurs when there are multiple synchronization in-

tensive tasks allocated in the same processor. Similar to [76], let's

consider the case where there is only one �ne grain synchroniza-

tion job on the machine, and that a task blocks when reaching a

barrier. The number of tasks in this case is much larger than the

number of processors. Let the time for thread i on processor j to

reach the barrier be tij. In local scheduling, the time for one barrier

to complete is :

Tm =
mX

i=1

n
max
j=1

(tij) (7.1)

Which will be the same for a Concurrent Gang scheduler if no

lower bound is de�ned for the priority. In this case, the Concur-

rent Gang scheduler will try to schedule another task even if the

available tasks have low priorities. It will not schedule a task only

when there is no task available, like the oblivious local scheduler.

So, in this case, the behavior of both schedulers will be very similar,

which implies that equation 7.1 is valid for both.

7.3 Performance of Concurrent Gang in the pres-

ence of Irregular Jobs

Parallel programs can be broadly classi�ed into regular and irregular.

In regular programs the amount of parallelism remains constant throughout

its execution. Examples of regular parallel programs are : FFT algorithms

(In [13] Cooley and Tukey present an FFT algorithm that can be easily

programmed into data-parallel form), linear algebra algorithms (e.g. matrix-

vector product), computational geometry algorithms (e.g. convex hull), graph

algorithms (e.g. minimum spanning tree) [7].

7.3. PERFORMANCEOFCONCURRENTGANG INTHE PRESENCE OF IRREGULAR JOBS105

P
ro

c
e
s
s
o
rs

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

P0

P1

P2

P3

P4

n-1P

Time

��
��
��
��

Fig. 7.1: X and Y irregularities

On the other hand, irregular programs change their degree of parallelism

(or amount of computation per task) over the course of its execution. Exam-

ples include back track searches, theorem proving, ray tracing, monte carlo

methods (e.g. to evaluate Feynman path integrals) [92]. In this thesis, we

will use the same classi�cation of parallel irregularity as de�ned in [76]. This

classi�cation follows the geometric de�nitions based on the trace diagram

introduced in chapter 4. The irregularity of a program can be expressed in :

� Variation in the amount of computation performed per task during

execution. We will de�ne this variation as X irregularity.

� Variation in the number of tasks, that is, the job's degree of parallelism

varies during execution. We will term this variation as Y-irregularity.

The concept of X and Y irregularities are illustrated in the trace diagram

in �gure 7.1. The variation on the number of eligible tasks of a job, that can

be viewed as variations in the number of processors the job is actually using,

may be visualized through variations in the Y axis. It is possible to view

variation of computing power used by a task by following its progression in

the X axis.

A program that presents both X and Y irregularities is called a completely

irregular program. Most irregular jobs that appear in practice have been

shown to display a similar tree structure [52]. By using information gathered

at runtime, it is possible to e�ciently run irregular jobs using Concurrent

Gang.

106 CHAPITRE 7. CONCURRENT GANG ANALYSIS

7.3.1 Y-irregularity and Concurrent Gang

In Concurrent Gang Y irregularity is partly compensated by the local

task scheduler, which tries to schedule another task when a slot dedicated

to a job is idle due to job irregularity. Upon the creation of new tasks, those

tasks will be spawned in idle slots dedicated to the job to which the spawning

tasks belongs. Initially is assumed that the number of required processors in

Concurrent Gang is the maximum number of tasks during the execution of

a job.

For the case where the number of allocated processors for a job J is equal

to K, and the number of tasks belonging to this job becomes larger than K

, we propose a variation of Concurrent Gang that includes a load balancing

phase. Observe that, in most parallel machines, the user requires a given

number of processors at submission time to run a job and this number can

not change during execution. If there is more tasks than processors allocated,

in many sites the scheduler is not allowed to increase the number of processors

allocated to that particular job. An idea to solve this problem is to integrate

a load balancing strategy to the Concurrent Gang scheduler. Our goal is to

keep one basic property of Gang scheduling, i.e. the job J has the illusion of

being served by a machine of K nodes, and simultaneously try to balance the

number of tasks among those K nodes. Observe that all tasks newly created

become eligible to be scheduled by the local task scheduler either on idle

slots in the PE they are allocated in or when a task belonging to another job

blocks. But in a slot associated with a irregular job, tasks belonging to other

jobs will only be scheduled if all tasks associated with job J are blocked.

The slot associated with job J in a processor will be shared among all tasks

belonging to that job. Note that only the set of processors belonging to job

J's slice will participate in the load balancing for this particular job. That

means that Concurrent Gang will implement a variation of family scheduling

for those jobs where the number of tasks becomes larger than the partition

dedicated to that job.

Observe that when the number of tasks becomes larger than the number

of processors dedicated to a job, them semantics of the barrier call in case

of a synchronization intensive program will change automatically from spin

or spin block to blocking, since one should schedule all tasks as soon as

possible in order to pass the barrier. This situation can be detected by the

runtime measurement system, by identifying the synchronization intensive

tasks belonging to the same job in the same processor.

7.3. PERFORMANCEOFCONCURRENTGANG INTHE PRESENCE OF IRREGULAR JOBS107

De�ning a load balancing strategy In order to do load balancing in

a set of processors associated with a job, many strategies are possible, such

as receiver-initiated [30], sender initiated [30] and rate of change load bal-

ancing [9]. Note that the load balancing in this case will involve only tasks

belonging to the irregular job, and it will be done only among those proces-

sors associated with that job. The ideal strategy would have the following

characteristics :

� Will leave no processor idle when there are a su�cient number of tasks.

� Each task ends up with either dT=Ke or bT=Kc tasks.

� In order to improve scalability, redistribution of tasks should be based

only on local knowledge.

Integrating a load balancing strategy with Concurrent Gang Once

that one load balancing strategy is chosen, it is necessary to integrate the

load balancing algorithm with Concurrent Gang in way that the execution

constraints imposed by Concurrent Gang are respected. One possible way of

integration is to enable the load balancing at the job level. In Concurrent

Gang, each job has a number of processors allocated to in a slice. The load

balancing for tasks of a given job can be done among those processors. Even-

tually a job may have more than one task allocated on one processor if it

has a strong Y-irregular behavior. In this case, the scheduler will do a two-

level scheduling for that job on its slice through family scheduling. It is clear

that additional tasks allocated on the processor may bene�t from idle slots

or idle time due to task blocking through the local task scheduler/priority

mechanism, as all other tasks in the same processor.

7.3.2 X-irregularity and Concurrent Gang

X irregularities in Concurrent Gang are compensated by the local task

scheduler that will try to schedule a ready task each time a task block due

to, for instance, a barrier.

We may consider the control of the spin time of a task in order to reduce

imbalances due to X-irregularity, as we did with Y-irregularities. Runtime

measurements can be used to control the spin time of a task. For instance,

when there is multiple synchronization intensive tasks from one job in one

processor, the spin time should be set to zero in order to minimize the time

required to go through the barrier. Another use of runtime measurements to

108 CHAPITRE 7. CONCURRENT GANG ANALYSIS

control the spin time will be detailed in the next chapter. In that case, the

spin time is set depending on the total workload on a node, and can be used

to improve the throughput in the case of frequent imbalances.

7.3.3 Handling completely irregular programs

The irregularities in a completely irregular program is a combination of

X and Y irregularities. A completely irregular program will required the

combination of strategies used for X-irregular and Y-irregular program in

order to achieve e�cient execution.

7.4 Conclusion

In this chapter we presented an analysis comparing Concurrent Gang

against Local and Gang schedulers. We proved that oblivious schedulers can

not do better than Concurrent Gang when using schedule length as metric,

for the same distribution of tasks. We also made an analysis of the behavior of

Concurrent Gang under an irregular workload, and proposed the integration

of a load balancing algorithm with Concurrent Gang to improve the execution

e�ciency of a Y-irregular workload.

Chapitre 8

Runtime measurements in parallel

job scheduling

8.1 Introduction

In this chapter we systematize and make a deeper analysis of the utiliza-

tion of runtime information in parallel job scheduling, introduced in chapter

6, to improve throughput and utilization on a parallel computer. Our objec-

tive is to use information such as number of I/O calls, duration of I/O calls,

number of messages arrived, number of messages sent, number of barriers,

time spent in spinning while waiting for message/synchronization arrival and

other information available depending on the architecture in order to asso-

ciate a speci�c task in a given moment of time to one class belonging to a

set of prede�ned classes with the help of fuzzy sets and Bayesian estima-

tors. Observe that the classi�cation of a task may change over time, since we

consider, as in [17], that characteristics of jobs may change during execution.

Some possible uses for the task classi�cation information are, for instance,

to decide which task to schedule next (as described in chapter 6), to decide

what to do in the case of an idle slot in Gang scheduling, or to de�ne spinning

time of a task depending on the total workload on a processor. One possible

utilization of these concepts is to give better service to I/O bound jobs in

Gang scheduling, by using task classi�cation to identify I/O bound tasks

either to reschedule them in idle slots (as discussed in chapter 6) or to

control the spin time of communication/synchronization tasks to give better

service to interactive jobs. This approach is di�erent from the one proposed

109

110CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

in Lee et al. [58] since it does not interrupt running jobs.

In section 8.2 we discuss some previous work in parallel/distributed job

scheduling that considers the use of runtime information to modify scheduling-

related parameters at runtime. Section 8.3 presents the task classi�cation

mechanism based on runtime information we use in this chapter. How to

use this information to improve throughput and utilization in parallel job

scheduling is discussed at section 8.4. Our experimental results are presented

and discussed in section 8.5 and section 8.6 contains our �nal remarks.

8.2 Previous Work

In [2], Arpaci-Dusseau, Culler and Mainwaring use information available

at run time (in this case the number of incoming messages) to decide if a

task should continue to spin or block in the pairwise cost bene�t analysis in

the implicit cosheduling algorithm.

In [38], Feitelson and Rudolph used runtime information to identify ac-

tivity working sets, i.e. the set of activities (tasks) that should be scheduled

together, through the monitoring of the utilization pattern of communication

objects by the activities. Their work can be considered complementary to ours

in the sense that our objective here is not to identify activity working sets at

runtime but to improve throughput and utilization of parallel machines for

di�erent scheduling strategies using such runtime information.

In [58], Lee et al., along with an analysis of I/O implications for Gang

scheduled workloads, presented a method for runtime identi�cation of ganged-

ness, through the analysis of messaging statistics. It di�ers from our work

in the sense that our objective is not to explicitly identify gangedness, but

to provide a task classi�cation, which may vary over time depending on the

application, which can also be used to verify the gangedness of an application

in a given moment of time among other possibilities.

8.3 Task Classi�cation using Bayesian Estima-

tors

The objective of this section is to introduce a more robust task classi�-

cation mechanism than the one described in the chapter 6 using elements of

Bayesian decision theory. Bayesian decision theory is a formal mathematical

8.3. TASK CLASSIFICATION USING BAYESIAN ESTIMATORS 111

structure which guides a decision maker in choosing a course of action in the

face of uncertainty about the consequences of that choice [49]. In particu-

lar we will be interested in this section in de�ning a task classi�er using a

Bayesian estimator adapted to the fuzzy theory.

A Bayesian model is a statistical description of an estimation problem

which has two main components. The �rst component, the prior model p(u)
(this probability function is also known as prior probability distribution) is a

probabilistic description of the world or its properties before any sense data is

collected. The second component, the sensor model p(dju), is a description of

the noisy or stochastic process that relate the original (unknown) state u to

the sampled input image or sensor values d. These two probabilistic models

can be combined to obtain a posterior model, p(ujd) (posterior probability
distribution), which is the probabilistic description of the current estimate

of u given the data d. To compute the posterior model we use Bayes' rule :

p(ujd) =
p(dju)p(u)

p(d)
(8.1)

where

p(d) =
X

u

p(dju)p(u) (8.2)

The fuzzy version of equation 8.1 to compute the degree of membership

of a task T to a class i as a function of measurementE can be written as [56] :

SE(i) =
Si(E)fi(T)
Pk

1
Sj(E)fj(T)

(8.3)

Where Sj(k) represents subsethood between two fuzzy sets j and k. In

our case Si(E) is the subsethood between the two fuzzy sets represented by

measurement E on task T and class i, that is, the degree of membership of

task T relative to class i considering only the data gathered at measurement

E. fi(T) is the degree of membership of task T relative to class i before

measurement E. SE(i) in our case represents the degree of membership of

task T relative to class i after the measurement E and becomes fi(T) in the

next interval computation.

112CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

8.3.1 Overhead Analysis of Task Classi�cation Compu-

tation

It is possible to compute the degree of membership of a task using equa-

tion 8.3 with very low overhead and a small amount of stored information by

the operating system, based on the number of executed statements related

to a task. Here we use a variation of the measurement method proposed at

section 6.2.2, adapted to use Bayesian estimators : at initialization the de-

gree of membership of a task related to each class is equal to 1/2, as well as

the measurement related to each class. The measurement related to a time

slice is made as follows (in the following, we consider three classes) :

� If the task is blocked due to an I/O call in that time slice, the mea-

surement of the degree of membership of the class I/O bound is equal

to 1/2. Otherwise is equal to zero.

� If the task executes a number N of communication statements in a

time slice, the measurement of the degree of membership of the class

communication intensive is equal to 1/2. Otherwise is equal to zero.

� If the task is not blocked due to an I/O call and executes less than N

communication statements, the measurement of the degree of member-

ship of the class computation intensive for that time slice is equal to

1/2. Otherwise is equal to zero.

The measurement for an interval is then summed to the previous total

measurement multiplied by 1/2, becoming the new total measurement for a

given class. Observe that the total measurement related to each class is a

real number between]0,1[. Having the total measurement for all classes and

the degree of membership of a task to all prede�ned classes, it is possible to

compute equation 8.3. Note that the result of equation 8.3 becomes the new

degree of membership of a task T to a class C. Observe that the only over-

head associated with measurement is to count the number of communication

statements that are associated with a class in a time slice. In the case of an

I/O statement, as the task will block anyway, there is no overhead associated

with the measure.

8.4. USINGTASK CLASSIFICATION IN PARALLEL JOB SCHEDULING113

8.4 Using task classi�cation in Parallel Job Schedul-

ing

In this section we will describe some possible uses of task classi�cation

information and we show how to apply these concepts into another imple-

mentation of Gang scheduling, the distributed hierarchical control algorithm

8.4.1 Scheduling Using Runtime measurements

The objective of this section is to systematize the task classi�cation

scheme �rst described in chapter 6 in a way that it may be used by any

parallel scheduler.

When using task classi�cation information, the local task scheduler on

each PE computes a priority for each task allocated to the PE. This priority

de�nes if a task T is a good candidate for being rescheduled if another task

blocks or in case of a idle slot. The priority of each task is de�ned based on

the degree of membership of a task to each one of the major classes described

before. As an example of the computation of the priority of a task T in a PE

we have [86] :

Pr(T) = max(�� (fIO � fCOMM); fCOMP) (8.4)

Where fIO; fCOMP ; fCOMM are the degree for membership of task T to

the classes I/O intensive, Computation intensive and Communication inten-

sive. The objective of the parameter � is to give greater priority to I/O

bound jobs (� > 1), since was proved by Lee et al. [58] that I/O bound

jobs su�er under Gang scheduling. The choices made in equation 8.4 intend

to give high priority to I/O intensive jobs (those that are not at the same

time communication intensive) and computation intensive jobs, since such

jobs can bene�t the most from uncoordinated scheduling. The multiplication

factor � for the class I/O intensive gives higher priority to I/O bound tasks

over computation intensive tasks, since those jobs have a greater probably

to block when scheduled than computing bound tasks. By other side, com-

munication and synchronization intensive jobs have low priority since they

require coordinated scheduling to achieve e�cient execution and machine

utilization [37, 31]. A communication intensive phase will re�ect negatively

over the degree of membership of the class computation intensive (a commu-

nication intensive phase will have a negative impact over the measurement

114CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

related to the class computing intensive, when using the measurement strat-

egy described in the previous section), reducing the possibility of a task be

scheduled by the local task scheduler. Among a set of tasks of the same pri-

ority, the local task scheduler uses a round robin strategy. The local task

scheduler may also de�ne a minimum priority �. If no parallel task has prior-

ity larger than �, the local task scheduler considers that all tasks in the PE do

intensive communication and or synchronization, thus requiring coordinated

scheduling. Observe that there is no starvation of communication intensive

jobs, as they will be scheduled in a regular basis by the Gang scheduler itself,

regardless of the decisions made by the local task schedulers.

Observe that the parameters � and � de�ne the bounds of the variation

of the priority of a task in order to it be considered to rescheduling, as stated

in the next proposition.

Proposition 1 � � Pr(T) � �, in order to a task be considered for reschedul-

ing.

Proof - � is the lower bound by de�nition. For the upper bound, observe

that fmax
IO = 1. So, as � > 1, the upper bound is � � 1 = �

Interactive tasks can be regarded as a special type of I/O intensive task,

where the task waits for a input from the user at regular intervals of time.

These tasks also su�er under Gang scheduling, and should have priority as

I/O intensive tasks.

8.4.2 Adjusting Spinning Time depending on the work-

load

Another parameter that can be adjusted in order to improve throughput

of I/O bounds and interactive jobs in Gang scheduling is the spinning time of

a task. Our objective is to make changes not only depending on the runtime

measurements of the related job, but also considering other jobs where tasks

are allocated to the same processor. We consider that a typical workload will

be composed of a mix of jobs of di�erent types and it is important to achieve

a compromise in order to give a good response for all types of jobs.

The anticipated blocking of a job performing synchronization or commu-

nication can bene�t those jobs that do not need coordinated scheduling, such

as I/O intensive and embarrassingly parallel. So the idea is to determine the

spinning time of a task depending on the workload allocated in a processor.

8.4. USINGTASK CLASSIFICATION IN PARALLEL JOB SCHEDULING115

For instance, in a given moment of time if a processor has many I/O inten-

sive jobs allocated to it, this would have a negative impact in spinning time

duration. As described in [2], a minimum spin time should be guaranteed

in order to insure that processes stay coordinated if already in such a state

(baseline spin time). This minimum amount of time ensures the completion

of the communication operation when all involved processes are scheduled

and there is no load imbalance among tasks of the same job.

Considering Gang scheduling the spinning time of a task may vary be-

tween a baseline spin time and a spin only state with no blocking. The main

external factor that will have in�uence in the variation of the spin time is

the number of interactive and I/O bound tasks in the workload allocated to

one processor. A large number of these tasks would imply a smaller spinning

time, in order to use the remaining time until the next global preemption to

schedule those tasks, providing better service to I/O bound and interactive

tasks. The algorithm we propose to set up the spinning time as a function of

the workload on a given PE for a Gang scheduling based algorithm (such as

Concurrent Gang) is as follows : If there is one or more tasks in a PE clas-

si�ed as I/O intensive or interactive, a task doing communication will block

just after the baseline spin time if the two following conditions are satis�ed :

� At least one of the tasks classi�ed as interactive or I/O bound is ready

� There is a minimum amount of time � between the end of baseline and

the next context switch epoch.

If any of the two conditions are not satis�ed the task doing communication

will spin until receiving the waited response. The � time depends on the

context switch time of the machine. Given
, the context switch time of the

machine, it is clear that � >
. We can de�ne that � > 2�
, in order to give

the job at least the same amount of CPU time that the system will spend in

context switch. In our experiments we empirically de�ne it as being 4 times

the average amount of time required for a context switch.

If both conditions are satis�ed, the tasks will spin for a time corresponding

to the baseline spin time, and if no message is received the task blocks and

the I/O bound or interactive task can be scheduled. The reason of minimizing

the spinning time is the need of I/O and interactive tasks to receive better

service in Gang scheduling, and the fact that in Gang scheduling tasks are

coordinated due to the scheduling strategy itself ; so an application with

no load imbalances would need only the time corresponding the baseline to

complete the communication.

116CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

ControllerController

ControllerController Controller Controller

PE PE PE PE PEPEPEPE

Controller

Fig. 8.1: Controller in the Distributed Hierarchical Control scheme

The control of spin time using task classi�cation information is another

mechanism available to the scheduler to provide better service to I/O bound

and interactive jobs under Gang scheduling based strategies along with the

priority computation described in the previous section. Observe that the spin

time control depending on the workload is always used in conjunction with

the priority mechanism described in section 8.4.

8.4.3 Distributed Hierarchical Control with alternative

scheduling

As an example of the use of the task classi�cation mechanismwith schedul-

ing algorithms other than Concurrent Gang, in this subsection we integrate

scheduling mechanisms based on information gathered at runtime to the dis-

tributed hierarchical control algorithm. The distributed hierarchical control

(DHC) de�nes a control structure over the parallel machine and combines

time-slicing with a buddy-system partitioning scheme, as described in chap-

ter 3. A schematic representation of such structure for a machine with 8

processors is showed in �gure 8.1. In [36] a DHC scheme for supporting

Gang scheduling was proposed. Some characteristics of DHC is the utiliza-

tion of preemption through the Gang scheduling of related tasks, load bal-

ancing among controllers, and no migration support. A full description of the

distributed hierarchical control was provided in chapter 3.

One optimization of the DHC algorithm of fundamental importance is

8.4. USINGTASK CLASSIFICATION IN PARALLEL JOB SCHEDULING117

the use of alternative scheduling. In alternative scheduling, jobs are allowed

to run in alternative slots, di�erent from the ones which have been originally

assigned to it. In [33], Feitelson proved that a buddy system with alternative

scheduling performs better than other classical packing schemes such as best

�t and �rst �t.

Intelligent Alternative Scheduling

The controllers in the DHC algorithm can be used in conjunction with

the task classi�cation mechanism to provide an intelligent choice of which job

should be scheduled in alternative scheduling when we have a slot composed

of idle processors and more than one job to be scheduled in that slot. Since the

controller may have access to the task classi�cation information of each one of

the processors it controls, the controller can make use of that information to

decide what to do with the idle slot. We have three objectives when de�ning

an Intelligent Alternative Scheduling, in order :

� Improve service given to I/O bound and interactive jobs The idea is to

try to schedule the job with the largest number of I/O bound tasks,

since those jobs su�er under Gang scheduling. Since those tasks nor-

mally run for a small amount of time and then block again, giving

priority to those tasks will allow the scheduler to give better service to

these jobs and reschedule other tasks when I/O bound tasks block.

� Improve service given to Communication/Synchronization intensive jobs

If there are not I/O bound jobs ready to be scheduled, and if the

number of processors is enough, we try to scheduler a communica-

tion/synchronization intensive job. Since these jobs require coordinated

scheduling, an idle slot with enough processors available is a good op-

portunity for give better service to those jobs, as they normally do

not have a high priority for rescheduling in case of task blocking, if

compared to I/O and embarrassingly parallel jobs.

� Improve overall utilization and throughput Third, we try to schedule

individual tasks depending on their priority. If there is no su�cient

number of ready tasks available, the controller yield control of the idle

processor to the lower level controller.

118CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

8.5 Experimental Results

In this section we present some simulation results that compares the per-

formance of a Gang scheduler that uses the algorithms described in sections

8.4 and 8.4.2 with another Gang scheduler without such mechanisms, both of

them using the same packing strategy (�rst �t). Our objective is to measure

the bene�ts of using runtime measurements and task classi�cation informa-

tion by comparing a given scheduler that makes use of runtime information

with another one that does not consider it. First we describe our simula-

tion methodology, and then we present and comment the results obtained

in our simulations. Simulations using the DHC algorithm are presented in

subsection 8.5.3.

8.5.1 Simulation Methodology

To perform the actual experiments we used the simulator already de-

scribed at chapter 6. This is a general purpose event driven simulator being

developed by our research group for studying a variety of problems (e.g.,

dynamic scheduling, load balancing, etc).

We have modeled in our simulations a network of workstations connected

by a network characterized by LogP [25, 24] parameters. The LogP parame-

ters corresponds to those of a Myrinet network, and they were the similar to

the ones used in [2], with Latency being equal to 10 �s, and overhead to 8.75

�s. We de�ned the baseline spin time as being equal to a request-response

message pair, which in the LogP model is equal to 2L+4o. Therefore, the

baseline time is equal to 55 �s. The number of processors considered were 8

and 16. I/O requests of a job were directed to the local disk of each work-

station, and consecutive requests were executed on a �rst come �rst serve

basis. Quantum size is �xed as being equal to 200 ms and context switch

time equal to 200 �s.

The values of the � and � parameters used for simulations were � = 2
and � = 0:3. As stated in proposition 1 the priority should vary inside the

bounds de�ned by � and � in order to a task be considered to reschedule.

For de�ning job inter arrival, time, job size and job duration we used a

statistical model proposed in [27], which was already described at chapters

5 and 6. For the simulations for a 16 processors machine we used 5 ranges of

degrees of parallelism, and for a 8 processors machine 4 ranges, as the de�ned

ranges are 1, 2, 3-4, 5-8, 9-16, 17-32, 33-64, 65-128, 129-256 and 257-322. The

8.5. EXPERIMENTAL RESULTS 119

time unit of the parameters found in [27] was seconds, and the duration of

all simulations was de�ned as being equal to 50000 seconds. A number of jobs

are submitted during this period in function of the inter arrival time, but not

necessarily all submitted jobs are completed by the end of simulation. A long

time was chosen in order to minimize the in�uence of start-up e�ects.

In order to avoid the saturation of the machine, we limited the number of

tasks that can be allocated to a node at a given moment of time to 10. If a

job arrives and there is no set of processors available with less than 10 tasks

allocated to them, the task waits until the required number of processors

become available.

We use a mix of four types of synthetic applications in our experiments.

These classes are similar to the ones de�ned in chapter 6 :

� I/O - This job type is composed of bursts of local computations fol-

lowed by bursts of I/O commands, as represented in �gure 8.2. This

pattern re�ects the I/O properties of many parallel programs, where

execution behavior can be naturally partitioned into disjoint intervals,

each of which consist of a single burst of I/O with a minimal amount

of computation followed by a single burst of computation with a min-

imal amount of I/O [77]. The interval composed of a computation

burst followed by an I/O burst are know as phases, and a sequence of

consecutive phases that are statistically identical are de�ned as a work-

ing set. The execution behavior of an I/O bound program is therefore

comprised as a sequence of I/O working sets. This general model of

program behavior is consistent with results from measurement studies

[88, 89]. The time duration of the I/O burst was equal to 100 ms in

average. The ratio of the I/O working set used in simulations was 1/1,

that is, for a burst of 100 ms of I/O there was a burst of 100 ms of

computation in average. Observe that I/O requests from di�erent jobs

to the same disk are queued and served by arrival order.

� Embarrassingly parallel - In this kind of application constituent pro-

cesses work independently with a small amount or no communication

at all among them. Embarrassingly parallel applications require fair

scheduling of the constituent processes, with no need for explicit coor-

dinated scheduling.

� Msg - In this type of synthetic application we model message passing

jobs, where messages are exchanged between two processes chosen at

random. Each process sends or receives a message every 10 ms in av-

120CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

Processors

Time (ms)200 500 800 1100

I/O Bursts

Computation Bursts

Fig. 8.2: I/O bound job with one I/O working set

erage. The communication semantics used here were the same of the

PVM system [21], that is, asynchronous sends and blocking receives.

For the modi�ed version of Gang scheduler, the one that incorporates

spin control and priority computation, the spinning time of the receive

call will be de�ned by the spin control mechanism described in section

8.4.2. The pure Gang scheduler only implements the spin only mecha-

nism, since the original Gang schedulers do not know what to do if a

task blocks.

� BSP - This type of application models Bulk Synchronous Parallel

(BSP) style jobs [94], where there is a sequence of supersteps, each su-

perstep being composed of a mix of computation/communication state-

ments, with all processes being synchronized between two supersteps.

In this type of applications, there is a synchronization call every 50 ms

(in average) and all communication/computation generated previous to

the barrier call is completed before the job proceeds in the next compu-

tation/communication superstep. Again, there is a spin time associated

with the barrier and communication calls.

In all simulations, the same sequence of jobs were submitted to both a

Gang scheduler with the priority computation and spin time control mecha-

nisms described in section 8.4 and 8.4.2 and another Gang scheduler without

such mechanisms. A di�erent sequence is generated for each experiment. The

packing strategy was �rst �t without thread migration. Each workload was

composed of a mix of the 4 types of jobs previously de�ned :

� IO - This workload was composed of I/O bound jobs only. As I/O bound

8.5. EXPERIMENTAL RESULTS 121

jobs su�er under Gang scheduling, this workload was simulated in order

to evaluate the performance impact of the modi�ed Gang scheduler if

compared against a traditional Gang scheduler.

� IO/Msg - This workload was composed of a mix of IO and Msg jobs.

At each job arrival, the job type was chosen according with a uniform

distribution, with a probability of 0.5 to both jobs

� IO/BSP - As in the previous workload, both job types had the same

probability of being chosen at each job arrival.

� IO/Msg/Embarrassingly - Since the priority mechanisms intends to give

better service to I/O bound and Compute intensive bounds, we in-

cluded the Embarrassingly parallel type in the IO/Msg workload, to

verify is there is any improvements in throughput due to the inclusion

of computing intensive jobs.

� IO/BSP/Embarrassingly - Same case for the IO/BSP workload. As

in previous cases, at each job arrival all three job types have equal

probability to be chosen.

� Emb/Msg and Emb/BSP - These workloads were added to evaluate the

impact of the priority mechanism over workloads that do not include

I/O bound jobs. They are composed of Embarrassingly parallel jobs

with Msg and BSP job types respectively. In this case the spin control

is not activated since it is conceived to provide better service to I/O

bound and interactive tasks only, as these are the type of jobs that have

poor performance under Gang scheduling.

A second set of experiments were performed using the workloads IO/BSP

and IO/Msg to compare the performance of a Gang scheduler with both

the priority computation and spin control mechanisms with another Gang

scheduler having only the priority control mechanism in order to evaluate

the impact of the spin control in the results presented.

8.5.2 Simulation Results

Simulations results for the IO workload are shown in �gure 8.3. In the uti-

lization column, the machine utilization (computed as a function of the total

idle time of the machine on each simulation) of the modi�ed Gang scheduler

was divided by the machine utilization of the non-modi�ed version of the

Gang scheduler. In the throughput column, the throughput of the modi�ed

122CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

Gang scheduler (The number of jobs completed until the end of the simula-

tion, 50000 seconds) is divided by the throughput in the original Gang. We

can see a very signi�cant improvement of the modi�ed Gang over the original

Gang scheduler, due to the priority mechanism. To explain the reason of such

improvement, tables 8.1 and 8.2 show the actual results of simulations for 8

and 16 processors machines under the I/O bound workload. In [77] , Rosti et

al. suggest that that the overlapping of the I/O demands of some jobs with

the computational demands of other jobs may o�er a potential improvement

in performance. As in chapter 6, the improvement shown in �gure 8.3 is due

to this overlapping. The detection of I/O intensive tasks and the immediate

scheduling of one of these tasks when another task doing I/O blocks results

in a more e�cient utilization of both disk and CPU resources. As we consider

an I/O working set composed by a burst of 100 ms of computation followed

by another burst of 100 ms of I/O, the scheduler implementing the priority

mechanism always tries to overlap the I/O phase of a job with the computa-

tion phase of another, which explains the results obtained. In the ideal case,

the scheduling strategy will be able to interleave the execution of applications

such that the ratio of the per-phase computation and I/O requirements is

maintained very close to 1, thus achieving a total overlapping of computation

and I/O. For this workload, since the utilization of the machine is doubled

by using runtime information, we can conclude that the overlap of I/O phase

is almost 100%, since the duration of the I/O phase is in average equal to

the duration of the computation phase and the utilization obtained for the

Gang scheduler without runtime information is due only to the computation

phase. The di�erences between throughput and utilization are due to con-

tention on local disks and not completed tasks. Another interesting point is

that, in both machines, about half of the completed jobs were 1 task jobs,

since a large amount of jobs generated by the workload model were 1 task

jobs.

Comparing the results of �gure 8.3 with those of chapter 6, we con-

clude that the results related to the I/O bound workload in this chapter are

expected. The compared performance is reduced since the duration of both

the I/O burst and the computation burst doubled when compared against

simulation parameters of chapter 6. The di�erence in absolute values for

number of completed jobs is related with the increased simulation time and

di�erent workload characteristics.

For the IO/Msg workload, results are shown in �gure 8.4. Again, the mod-

i�ed Gang achieved better results for both throughput and utilization. Since

8.5. EXPERIMENTAL RESULTS 123

Utilization Throughput
00

0,25

0,5

0,75

11

1,25

1,5

1,75

22

8 Processors

16 Processors

Fig. 8.3: I/O bound workload with one I/O working set

Tab. 8.1: Experimental results - I/O intensive workload - 8 Processors

8 Processors Jobs Completed Utilization (%)

With Runtime Information. 60 84

Without Runtime Information 40 42

Gang schedulers have good performance for communication bound jobs, the

improvement due the utilization of runtimemeasurements and task classi�ca-

tion is smaller if compared against the results obtained for the IO workload,

as the machine utilization of the Gang scheduler without runtime information

is better in this case if compared against the results related to the previous

workload. Tables 8.3 and 8.4 show the absolute machine utilization for

the experiments using the IO/Msg workload. As the machine utilization for

the regular Gang scheduler is around 60%, an improvement in utilization as

observed with the IO workload is no longer possible.

Results for the IO/Msg/Emb workload are shown in �gure 8.5. The

greater �exibility of the modi�ed Gang algorithm to deal with I/O intensive

and embarrassingly parallel jobs results in an increase in throughput and

Tab. 8.2: Experimental results - I/O intensive workload - 16 Processors

16 Processors Jobs Completed Utilization (%)

With Runtime Information. 55 84

Without Runtime Information 36 43

124CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 8.4: IO/Msg workload

Tab. 8.3: Experimental results - IO/Msg workload - 8 Processors

8 Processors Jobs Completed Utilization (%)

With Runtime Information. 50 82

Without Runtime Information 43 63

utilization. It is worth noting, however, that the in�uence of idle time due to

I/O bound jobs is reduced, with the regular Gang scheduler having even bet-

ter machine utilization if compared against results for the IO/Msg workload,

as shown in tables 8.5 and 8.6.

When we substitute the Msg workload for the BSP workload in the previ-

ous experiments, results are similar in both relative and absolute values. The

reason is that both types of jobs are communication/synchronization inten-

sive, taking advantage of the Gang scheduling strategy. Results for IO/BSP

and IO/BSP/Emb workloads are shown in �gures 8.6 and 8.7 respectively.

As in previous cases, there is improvement over the Gang scheduler without

the priority computation and spin control mechanisms in both utilization and

throughput. Again, the combination of the priority and spin control mech-

Tab. 8.4: Experimental results - IO/Msg workload - 16 Processors

16 Processors Jobs Completed Utilization (%)

With Runtime Information. 53 79

Without Runtime Information 40 62

8.5. EXPERIMENTAL RESULTS 125

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 8.5: IO/Msg/Emb workload

Tab. 8.5: Experimental results - I0/Msg/Emb workload - 8 Processors

8 Processors Jobs Completed Utilization (%)

With Runtime Information. 47 83

Without Runtime Information 40 72

anisms explains the better results obtained by the scheduler using runtime

measurements for both workloads.

To evaluate the impact of the spin control mechanism in the total per-

formance of the modi�ed Gang scheduler, we compared the performance be-

tween a modi�ed Gang with both the priority and spin control mechanisms

and other version of the modi�ed Gang where only the priority computation

was active. Results for workloads IO/Bsp and IO/Msg are shown in �gures

8.8 and 8.9 respectively. In �gures 8.8 and 8.9 the performance of the

scheduler with spin control and priority mechanism is divided by the perfor-

mance of the Gang scheduler with the priority computation only. The gain

in throughput is due to the better service provided to I/O bound jobs, while

in utilization Gang scheduling with only the priority mechanism has slightly

Tab. 8.6: Experimental results - IO/Msg/Emb workload - 16 Processors

16 Processors Jobs Completed Utilization (%)

With Runtime Information. 61 81

Without Runtime Information 51 70

126CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 8.6: IO/BSP workload

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 8.7: IO/BSP/Emb workload

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 8.8: Evaluation of the spin control mechanism - IO/BSP workload

8.5. EXPERIMENTAL RESULTS 127

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

8 Processors

16 Processors

Fig. 8.9: Evaluation of the spin control mechanism - IO/Msg Workload

better performance. This can be explained by the fact the I/O bound jobs

run for some time and then block again, while BSP and Msg jobs keep spin-

ning and runs again after receiving the message. As said before, the objective

of the spin control mechanism is to achieve a compromise in order to have a

better performance for I/O intensive tasks, because these tasks su�er under

Gang scheduling. In Gang scheduling with spin control and priority, this com-

promise is achieved by given a better a service to I/O bound jobs, having as

consequence a reduction in the spin time of synchronization/communication

intensive tasks.

To evaluate the performance impact for workloads with no I/O intensive

jobs, we have simulated two workloads composed of embarrassingly parallel

jobs with Msg and BSP jobs respectively. Comparative results are displayed

in �gures 8.10 and 8.11. Since Gang scheduling has a good performance for

both synchronization and communication intensive jobs, the improvement

is reduced if compared against the previous workloads. Observe that the

performances of both the regular Gang scheduler and the Gang scheduler

using runtime information are quite similar. The main improvement in these

cases is in utilization and its due mainly to the scheduling of tasks belonging

to embarrassingly parallel jobs on idle slots in the Ousterhout matrix [72],

that is, those time slices where a processor do not has a parallel task to

schedule.

128CHAPITRE 8. RUNTIMEMEASUREMENTS IN PARALLEL JOB SCHEDULING

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 8.10: Emb/Msg workload

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 8.11: Emb/BSP workload

8
.5
.
E
X
P
E
R
I
M
E
N
T
A
L
R
E
S
U
L
T
S

1
2
9

10000
20000

30000
40000

50000
00 10 20 30 40 50 60 70 80 90

100

D
H

C
 w

ith
R

un tim
e

D
H

C

Tim
e (sec onds)

U t i l iz a t io n (%)

F
ig
.
8
.1
2
:
R
esu

lts
fo
r
th
e
co
m
p
u
tin

g
in
ten

siv
e
(em

b
a
rra

ssin
g
ly
p
a
ra
llel)

w
o
rk
-

lo
a
d

8
.5
.3

S
im
u
la
tio

n
s
u
sin

g
th
e
D
H
C
A
lg
o
rith

m

In
th
is
su
b
sectio

n
w
e
co
m
p
a
re

tw
o
a
lg
o
rith

m
s
b
a
sed

o
n
th
e
D
H
C

a
lg
o
-

rith
m

:
O
n
e
u
sin

g
ru
n
tim

e
in
fo
rm

a
tio

n
,
a
n
d
o
th
er

o
b
liv

io
u
s
to

th
a
t
in
fo
rm

a
-

tio
n
.
R
esu

lts
sh
o
w
in
g
th
e
va
ria

tio
n
o
f
m
a
ch
in
e
u
tiliza

tio
n
ov
er
tim

e
o
f
th
e
tw
o

sch
ed
u
lers

fo
r
a
n
em

b
a
rra

ssin
g
ly

p
a
ra
llel

w
o
rk
lo
a
d
a
n
d
a
n
I/
O

b
o
u
n
d
w
o
rk
-

lo
a
d
(u
sin

g
o
n
e
I/
O

w
o
rk
in
g
set

[7
7
])a

re
sh
o
w
n
in

�
g
u
res

8
.1
2
a
n
d

8
.1
3

resp
ectiv

ely.
T
h
e
m
a
ch
in
e
in

th
is
ca
se

h
a
s
1
6
p
ro
cesso

rs
a
n
d
th
e
sa
m
e
sim

-

u
la
tio

n
p
a
ra
m
eters

d
escrib

ed
in

th
e
p
rev

io
u
s
su
b
sectio

n
.
T
h
e
im

p
ro
v
em

en
t

rela
ted

to
th
e
em

b
a
rra

ssin
g
ly

p
a
ra
llel

w
o
rk
lo
a
d
is
sm

a
ll,

sin
ce

D
H
C
w
ith

a
l-

tern
a
tiv

e
sch

ed
u
lin

g
d
o
es

a
lrea

d
y
a
v
ery

g
o
o
d
jo
b
in

th
is
ca
se,

w
ith

m
o
re

th
e

9
0
%

o
f
m
a
ch
in
e
u
tiliza

tio
n
fo
r
sim

u
la
tio

n
tim

e
su
p
erio

r
to

3
0
0
0
0
seco

n
d
s.

T
h
e
im

p
ro
v
em

en
t
o
b
serv

ed
is
d
u
e
to

id
le
slo

ts
n
o
t
u
sed

b
y
D
H
C
w
ith

a
lter-

n
a
tiv

e
sch

ed
u
lin

g
.
W
h
en

u
sin

g
ru
n
tim

e
m
ea
su
rem

en
ts,

th
e
co
n
tro

ller
o
f
a
n

id
le
p
ro
cesso

r
is
a
b
le
to

reco
g
n
ize

ta
sk
s
b
elo

n
g
in
g
to

em
b
a
rra

ssin
g
ly

p
a
ra
llel

jo
b
s
d
u
e
to

th
e
ta
sk

cla
ssi�

ca
tio

n
a
lg
o
rith

m
a
n
d
th
en

sch
ed
u
le
th
o
se

ta
sk
s
in

id
le
p
ro
cesso

rs.
H
ow

ev
er,

w
h
en

sim
u
la
tin

g
I/
O
b
o
u
n
d
w
o
rk
lo
a
d
th
e
im

p
ro
v
e-

m
en
t
is
sig

n
i�
ca
n
t,
sin

ce
th
ese

w
o
rk
lo
a
d
s
su
�
er

u
n
d
er

g
a
n
g
sch

ed
u
lin

g
,
a
n
d

D
H
C
is
b
a
sed

o
n
g
a
n
g
sch

ed
u
lin

g
.

1
3
0
C
H
A
P
I
T
R
E
8
.
R
U
N
T
I
M
E
M
E
A
S
U
R
E
M
E
N
T
S
I
N
P
A
R
A
L
L
E
L
J
O
B
S
C
H
E
D
U
L
I
N
G

10000
20000

30000
40000

50000
00 10 20 30 40 50 60 70 80 90

D
H

C
 w

ith
R

un tim
e

D
H

C

Tim
e (sec onds)

U t i l iz a t io n (%)

F
ig
.
8
.1
3
:
R
esu

lts
fo
r
th
e
I/
O

b
o
u
n
d
w
o
rk
lo
a
d

8
.6

C
o
n
c
lu
s
io
n

In
th
is
ch
a
p
ter

w
e
p
resen

t
so
m
e
p
o
ssib

le
u
ses

o
f
ru
n
tim

e
m
ea
su
rem

en
ts
fo
r

im
p
rov

in
g
th
ro
u
g
h
p
u
t
a
n
d
u
tiliza

tio
n
in

p
a
ra
llel

jo
b
sch

ed
u
lin

g
.
W
e
b
eliev

e

th
a
t
in
co
rp
o
ra
tin

g
su
ch

in
fo
rm

a
tio

n
in

p
a
ra
llel

sch
ed
u
lers

is
a
step

in
th
e

rig
h
t
d
irectio

n
,
sin

ce
w
ith

m
o
re
in
fo
rm

a
tio

n
a
va
ila
b
le
a
b
o
u
t
ru
n
n
in
g
jo
b
s
in

a

g
iv
en

m
o
m
en
t
o
f
tim

e
a
sch

ed
u
ler

w
ill

b
e
a
b
le
to

d
o
a
in
tellig

en
t
ch
o
ice

a
b
o
u
t

m
a
n
y
ev
en
ts
in
p
a
ra
llel

ta
sk

sch
ed
u
lin

g
,
su
ch

a
s
w
h
a
t
ta
sk

sh
o
u
ld

h
av
e
h
ig
h
er

p
rio

rity
d
ep
en
d
in
g
o
n
th
e
b
a
se

sch
ed
u
lin

g
a
lg
o
rith

m
u
sed

,
h
ow

to
ch
a
n
g
e

o
p
era

tin
g
sy
stem

s
p
a
ra
m
eters

in
o
rd
er

to
im

p
ro
v
e
m
a
ch
in
e
u
tiliza

tio
n
,
etc.

T
h
e
in
crea

se
in

th
ro
u
g
h
p
u
t
a
n
d
u
tiliza

tio
n
is
co
n
�
rm

ed
b
y
th
e
ex
p
erim

en
ta
l

resu
lts

w
e
o
b
ta
in
ed
.

H
ow

ev
er,

th
ere

a
n
u
m
b
er
o
f
p
o
ssib

ilities
n
o
t
ex
p
lo
red

in
th
is
ch
a
p
ter

th
a
t

a
re

su
b
ject

o
f
o
u
r
cu
rren

t
a
n
d
fu
tu
re

resea
rch

.
F
o
r
in
sta

n
ce,

q
u
estio

n
s
th
a
t

w
e
a
re

in
v
estig

a
tin

g
a
re

th
e
u
se

o
f
ru
n
tim

e
in
fo
rm

a
tio

n
a
n
d
ta
sk

cla
ssi�

ca
tio

n

to
im

p
ro
v
e
p
a
ra
llel/

d
istrib

u
ted

sch
ed
u
lin

g
w
ith

o
u
t
ex
p
licit

co
o
rd
in
a
tio

n
,
th
e

u
tiliza

tio
n
o
f
ta
sk

cla
ssi�

ca
tio

n
to

id
en
tify

g
a
n
g
ed
n
ess

o
f
a
n
a
p
p
lica

tio
n
,
a
n
d

o
th
er

w
a
y
s
o
f
u
sin

g
ta
sk

cla
ssi�

ca
tio

n
in
fo
rm

a
tio

n
to

im
p
ro
v
e
p
a
ra
llel

jo
b

sch
ed
u
lin

g
.

Chapitre 9

Conclusion

In the �rst part of this thesis, we presented the Gang scheduling algorithm

and made several performance analysis related to it. In chapter 4 we make

a competitive analysis of Gang scheduling using workload completion time

as metric. The main result of this analysis is that the competitive ratio of

Gang scheduling under completion time is no smaller than 4, being equal to

4 when the Gang scheduler implements a packing strategy based on �rst �t

decreasing with support for job migration.

To provide a sound analysis of the performance of packing algorithms un-

der Gang Scheduling, a novel methodology based on the traditional concept of

competitive ratio was introduced in chapter 5. Dubbed dynamic competitive

ratio, the new method is used to compare dynamic bin packing algorithms

used in this paper. These packing algorithms apply to the Concurrent Gang

scheduling of a workload generated by a statistical model. Moreover, dynamic

competitive ratio is the �gure of merit used to evaluate and compare packing

strategies for job scheduling under multiple constraints. It was shown that for

the unidimensional case there is a small di�erence between the performance

of best �t and �rst �t ; �rst �t can hence be used without signi�cant system

degradation. For the multidimensional case, when memory is also considered,

we concluded that the packing algorithm must try to balance the resource

utilization in all dimensions simultaneously, instead of given priority to only

one dimension of the problem.

In the second part of this thesis we propose a new scheduling policy based

on Gang scheduling that takes advantage of idle times due to blocked tasks

and idle slots. The Concurrent Gang improvement over Gang scheduling is

more bene�cial to workloads that require a more �exible scheduling than

131

132 CHAPITRE 9. CONCLUSION

is possible with Gang scheduling. An example is I/O bound workloads, as

was demonstrated with simulation results. For workloads requiring coordi-

nated scheduled, the Concurrent Gang algorithm becomes equivalent to the

standard Gang scheduler. Concurrent Gang schedule jobs belonging to this

workload on the basis of whole process working sets, as in Gang scheduling.

In particular, the signi�cant improvement of Concurrent Gang over Gang

scheduling for I/O bound workloads is due manly to the overlapping of com-

putation and I/O bursts from di�erent jobs. The method of de�ning the

degree of membership of a task related to di�erent classes allows the sched-

uler to decide which task is more suitable to be scheduled at a given time.

In chapter 8 we presented other possible uses of runtime measurements

for improving throughput and utilization in parallel job scheduling, as well a a

more robust task classi�er through the use of Bayesian estimators. Examples

of how to use this information in other schedulers is also given. Again, we

believe that incorporating such information in parallel schedulers is a step

in the right direction, since with more information available about running

jobs in a given moment of time a scheduler will be able to do an intelligent

choice about di�erent events in parallel job scheduling

9.1 List of Current Publications Related to this

Thesis

The publications related to this thesis up to now are :

� Fabricio Silva and Isaac D. Scherson E�cient Parallel Job Scheduling

Using Gang Service To appear in the International Journal of Founda-

tions of Computer Science.

� Luis Miguel Campos, Mary M. Eshaghian, Isaac Scherson, Fabricio

Silva An Information Power Grid Resource Management Tool To ap-

pear in the Ibero American Journal of Research "Computing and Sys-

tems"

� Fabricio Silva and Isaac D. Scherson Improving Parallel Job Scheduling

Using Runtime Measurements Proceedings of the 6th Workshop on Job

Scheduling Strategies for Parallel Processing , Cancun, Mexico, May

2000. An extended version of this paper is to appear in an special issue

of Lecture Notes on Computer Science.

9.1. LIST OF CURRENTPUBLICATIONSRELATED TO THIS THESIS133

� Fabricio Silva and Isaac D. Scherson Improving Throughput and Uti-

lization in Parallel Machines Through Concurrent Gang Proceedings of

the IEEE International Parallel and Distributed Processing Symposium

2000, Cancun, Mexico, May 2000.

� Fabricio Silva and Isaac D. Scherson Towards Flexibility and Scalabil-

ity in Parallel Job Scheduling 11th IASTED International Conference

on Parallel and Distributed Computing and Systems, Boston, USA,

November 1999.

� Fabricio Silva and Isaac D. Scherson Concurrent Gang : Towards a

Flexible and Scalable Gang Scheduler 11th Symposium on Computer

Architecture and High Performance Computing, Natal, Brazil, Septem-

ber 1999.

� Fabricio Silva and Isaac D. Scherson Bounds on Gang Scheduling Algo-

rithms 2nd International Conference on Parallel Computing Systems,

Ensenada, Mexico, August 1999.

� Fabricio Silva and Isaac D. Scherson Improvements in Parallel Job

Scheduling Using Gang Service Proceedings of the 1999 International

Symposium on Parallel Architectures, Algorithms and Networks - Free-

mantle, Australia - June 1999.

� Fabricio Silva, Luis Miguel Campos e Isaac D. Scherson A Lower Bound

for Dynamic Scheduling of Data Parallel Programs, Proceedings of the

4th International Euro- Par Conference - Southampton, UK - Septem-

ber 1998.

� Fabricio Silva, Luis Miguel Campos e Isaac D. Scherson Improvements

in Gang Scheduling for Parallel Supercomputers, Proceedings of the 8th

International Parallel Computing Workshop - Singapore - September

1998.

134 CHAPITRE 9. CONCLUSION

Troisième partie

Conclusions et Discussion Finale

135

Chapitre 10

Conclusions

Dans cette conclusion, nous résumons d'abord nos résultats/contributions

au domaine de l'ordonnancement parallèle chapitre par chapitre, avant d'in-

troduire quelques pistes pour de nouvelles directions de recherche.

10.1 Chapitre 4

Le premier résultat obtenu dans ce chapitre est une borne inférieure pour

le taux de compétitivité de l'ordonnancement Gang, comme indiqué dans le

premier théorème du chapitre. Le taux de compétitivité est égal à 4 quand

l'ordonnanceur Gang fait usage d'une stratégie de partitionnement du type

"�rst �t decreasing" avec le support nécessaire pour la migration des tâches

entre les processeurs. C'est la première fois, à notre connaissance, qu'une

analyse de compétitivité indépendante du modèle de programmation pour

l'ordonnancement Gang est proposée. Néanmoins Il faut rappeler que l'anal-

yse de compétitivité est une analyse du pire cas. Par exemple, il est possible

de visualiser quelques cas simples où le temps d'exécution de la charge de

travail obtenu par l'ordonnanceur Gang est optimal, si des coûts liés à la

préemption ne sont pas considérés.

10.2 Chapitre 5

Dans ce chapitre nous avons analysé des questions liées au partage de

ressources pour les algorithmes d'ordonnancement Gang. Une conclusion de

cette analyse est que le partage de ressources multidimensionnel est nécessaire

137

138 CHAPITRE 10. CONCLUSIONS

pour dé�nir une stratégie d'empaquetage pour les algorithmes d'ordonnance-

ment Gang, comme le montre la comparaison entre les algorithmes "best

�t" et "memory-�t". Une autre contribution de ce chapitre est la propo-

sition du taux de compétitivité dynamique comme nouvelle méthode pour

comparer des algorithmes dynamiques. Le taux de compétitivité dynamique

a été utilisé pour comparer des algorithmes d'empaquetage soumis à une

charge de travail générée par un modèle statistique, et pour comparer des

stratégies d'empaquetage pour l'ordonnancement parallèle sous contraintes

multiples. Pour le cas unidimensionnel nous pouvons conclure qu'il n'y a pas

une grande di�érence entre les performances de "best �t" et "�rst �t" sous

le modèle de charge de travail considéré, et "�rst �t" peut être utilisé sans

dégradation signi�cative de la performance. Pour le cas multidimensionnel,

quand la mémoire est également considérée, la meilleure performance de la

stratégie "memory �t" par rapport à la stratégie "best �t" démontre que l'al-

gorithme d'empaquetage doit essayer d'équilibrer l'utilisation des ressources

dans toutes les dimensions considérées, au lieu d'accorder la priorité à seule-

ment une dimension du problème.

10.3 Chapitre 6

Dans ce chapitre nous avons présenté un nouvel algorithme d'ordonnance-

ment nommé "Concurrent Gang". Les di�érences principales par rapport à

l'ordonnancement Gang standard sont la dé�nition explicite d'un synchro-

niseur global externe et la présence de l'ordonnanceur de tâche local qui

décide quoi faire si une tâche de l'application exécutée en tant que Gang est

bloquée

L'approche Concurrent Gang est plus avantageuse pour les charges de

travail qui font beaucoup d'entrées/sorties, comme cela est démontré par nos

résultats de simulation. Ces résultats ont aussi montré que même avec des

charges de travail ayant beaucoup de communications, l'algorithme Concur-

rent Gang peut être meilleur que l'ordonnanceur Gang.

10.4 Chapitre 7

Dans ce chapitre a été présenté une analyse comparant l'algorithme Con-

current Gang aux ordonnanceurs local inconscient et Gang. Nous avons mon-

10.5. CHAPITRE ??RUNTIMECHAP:RUNTIME 139

tré que ces ordonnanceurs ne peuvent pas être meilleurs que l'ordonnanceur

Concurrent Gang si on utilise le temps d'exécution de la charge de travail

comme métrique, pour la même distribution des tâches. Nous avons égale-

ment fait une analyse du comportement de l'algorithme Concurrent Gang

sous une charge de travail irrégulière, et nous avons proposé l'intégration d'un

algorithme d'équilibrage de charge avec Concurrent Gang pour améliorer l'-

e�cacité d'exécution d'une charge de travail Y-irrégulière.

10.5 Chapitre 8

Dans ce chapitre nous présentons quelques utilisations possibles des mesures

faites au moment de l'exécution pour améliorer l'ordonnancement parallèle.

Les contributions de ce chapitre sont la proposition d'un mécanisme de clas-

si�cation de tâches utilisant la théorie de la décision Bayesienne et la propo-

sition d'un algorithme de dé�nition du temps d'attente d'une réception blo-

quante en fonction de la charge de travail du processeur. Nous avons aussi

démontré que la classi�cation proposée peut être incorporée par n'importe

quel ordonnanceur parallèle, comme par exemple l'algorithme DHC.

Nous croyons que l'utilisation des mesures faites au moment de l'exécu-

tion dans les ordonnanceurs parallèles est un pas dans la bonne direction,

puisque avec plus d'information disponible sur les tâches en cours l'ordon-

nanceur est capable de faire un choix plus intelligent sur l'ordonnancement.

L'augmentation du débit et de l'utilisation des ressources est con�rmée par

les résultats expérimentaux présentés dans ce chapitre.

10.6 Nouvelles Directions de Recherche

Dans cette section, nous suggérons quelques directions de recherche dans

le domaine de l'utilisation des mesures faites au moment de l'exécution pour

l'ordonnancement parallèle.

� On peut chercher à améliorer l'algorithme "Implicit Coscheduling" [16,

2] en ajoutant des informations associées à d'autres tâches dans le calcul

du temps d'attente dans une communication blocante.

� Il serait intéressant d'analyser et d'améliorer le comportement de l'al-

gorithme Concurrent Gang sous des situations de pénurie de ressources.

Dans ce cas, non seulement les caractéristiques de chaque tâche mais

140 CHAPITRE 10. CONCLUSIONS

également la disponibilité des ressources devraient être considérées par

l'ordonnanceur.

� Il faudrait en�n améliorer et rendre plus e�cace l'intégration entre

l'ordonnanceur Concurrent Gang et le système d'équilibrage de charge.

Annexe A

Simulator Veri�cation

This appendix describes the simulation environment1 used in this thesis,

and the methodology used for its veri�cation. The simulator and its docu-

mentation is available for download at www.ics.uci.edu/�schark/.

At the core of the environment is an event-driven simulation engine [10].

Algorithm-speci�c modules aimed at solving a user's particular problem can

be added to the environment at compile time. In addition, several frequently

used probability distributions are provided as external modules.

The following sections present the simulator's features in terms of the

fundamental concepts, the principles of operation and the internal architec-

ture.

A.1 Fundamental Concepts

The simulator implements a discrete event simulation algorithm. In this

type of simulation, the simulator machine concentrates on processing events,

and the system does not change its internal states between two consecutive

events. A state change may occur only due to the processing of an incoming

event. The advantage of this type of simulation when compared with other

models, such as discrete time simulation algorithms, is that it is inherently

more e�cient.

According to the terminology de�ned by Zeigler [97], the simulator can be

classi�ed as a Multicomponent DEVS (Discrete Event System Speci�cation).

1Simulator and simulation environment will be used intermixed throughout this ap-

pendix

141

142 ANNEXE A. SIMULATOR VERIFICATION

Examples of di�erent components, or objects, implemented in this simulator

are processors, network, tasks and jobs. With this formalism, events occurring

in one component may result in state changes and/or rescheduling of events

in other components. This formalism is quite popular, since the simulation

strategies realized in many commercial simulation languages and systems fall

into the category of multicomponent DEVS [97].

The Multicomponent DEVS implementation strategy employed by this

simulator is the event-scheduling model. Event-scheduling implementation

models work with prescheduling of all events. Because of its simplicity, event

scheduling simulation is the preferred strategy when implementing customized

simulation systems in procedural programming languages. An example is

given below [97] :

Component d

Scontrol
d = ev1; ev2; ev3; :::; evn

�((Scontrol
d))

case Scontrol
d

ev1 : call event� routine1
ev2 : call event� routine2
...

evn : call event� routinen

Algorithm 1 - Event Scheduling Model Implementation (adapted from [97])

In Algorithm 1, the set of event types Scontrol
d = fev1; ev2; ev3; :::; evng

divides the state transition function �d of component d into n functions �evid ,

each describing the activity of component d depending on the event type and

the state of the component.

A.2 Block Diagram

The input to the simulator, both the architectural and workload descrip-

tions, are given in the form of ASCII �les. For the detailed descriptions of

both the architectural and workload types of input please refer to [43].

The mechanism by which external modules, implementing a particular

algorithm, communicate with the simulation engine is explained in section

A.3.

A.2. BLOCK DIAGRAM 143

A
l
g
o
r
i
t
h
m
s

Workload
Description

SIMULATOR

OUTPUT

INPUT

Architectural
Description

. . . .

View 1 View N

Load Balancing

Dynamic Scheduling

Static Scheduling

Fig. A.1: The Logical Structure of the Simulation Environment

144 ANNEXE A. SIMULATOR VERIFICATION

The output of the simulator is implemented by a module independent of

the simulation engine itself. This provides several di�erent �views� that can

be customized according to a user's preferences. Note that multiple views

can be viewed simultaneously.

The algoritm module exchanges information with the simulation engine

through a well de�ned interface (see A.3). This interface allows for one-way

communication only. Information �ows from the simulation engine to the

algorithm module, or to be more precise, to an instance of a particular user's

view. All possible instances must listen to a particular event. They di�er in

two ways :

� The way they implement the actions associated with the triggering of

the event

� How they display the information associated with the event

This way, the information associated with each occurrence of the event

can be displayed in real-time.

Additionally, all information being tracked by a particular simulation is

made available through the output module at the conclusion of the simulation

in the form of ASCII �les. These �les can then be processed to display relevant

statistical information.

By separating the algorithm module from the simulation engine, we allow

for programmers to develop their own algorithms providing the functionality

they desire, instead of us trying to develop a monolithic module using a one

�ts all approach.

A.3 Event-Driven Simulation

An individual algorithm implementation communicates with the simula-

tion engine via events. Every module implementing a particular algorithm

must listen to one or more of the six events exported by the simulator. Once

an event is generated, the engine passes it to all registered algorithms (reg-

istration is done when an algorithm is initialized). Some of the events are

generated regardless of which actions the algorithm may take, for instance

the event JobArrival is dependent only on the workload, in particular the

choice of probability distribution for the inter-arrival time. Others, however,

are a direct result of the interaction between the algorithm and the engine.

For instance the event PEIdle is obviously a direct result of the actions taken

A.3. EVENT-DRIVEN SIMULATION 145

by the algorithm when acting upon a previous generated event. A typical ex-

ample would be a dynamic scheduler algorithm that in response to the event

EndOfTimeSlice assigns a particular task to the PE in question, which in

turn will lead to the triggering of the event PEIdle when the task running on

that PE performs an I/O operation. No algorithm can, however, schedule an

event directly, that is, to force the engine to generate an event at a speci�c

time.

The simulation engine provides support for six events. Their synopsis are :

� PEIdle

Description :

Invoked when a PE has become idle for some reason

� EndOfTimeSlice

Description :

Invoked when a time-slice has expired on a PE (time slice set by the

scheduler through the variable simulator.timeSlice).

� TaskArrival

Description :

Invoked when a new task arrives, only if the network is asynchronous

� JobArrival

Description :

Invoked when a new job is submitted to the system

� TaskStateChange

Description :

Invoked when a task has changed state

� GlobalClock

Description :

Called at regular intervals of time (period set by the scheduler through

the variable simulator.globalClock)

146 ANNEXE A. SIMULATOR VERIFICATION

A.4 Simulator Veri�cation

Veri�cation is the procedure followed to establish that the simulator is

guaranteed to faithfully generate the model's output given its initial state

and its input. This relation between a simulator and its model is known as

simulation relation in the literature [97]. A simulator may be capable of ex-

ecuting a whole class of models. That is the case of the simulator described

in this appendix. Each main component of the simulator, such as intercon-

nection network, processor and task, may be associated with one or more

di�erent models.

There are two general approaches to veri�cation [97] :

� Formal proofs of correctness

� Extensive testing

Formal proofs employ mathematical and logical formalisms to rigorously

establish the required relation between the simulator and the model. Un-

fortunately, such proofs are di�cult or impossible to to carry out for large,

complex systems [97], and such is the case with our simulator. Moreover, they

may also be prone to error since in many cases humans have to understand

the symbols and carry out their manipulation.

In the absence of de�nitive proofs, extensive testing must be done to

ensure that all types of conditions that could arise in the operation of the

simulator have been covered by test cases. The testing methodology em-

ployed during the implementation of the simulator was the following : each

component which represents a separate model (for instance, the interconnec-

tion network) was tested in isolation, with initial conditions and interactions

with other components prede�ned to cover a reasonable number of testing

conditions. Then, after testing all components in isolation, simple examples

were applied to the system as a whole in order to ensure that for the coupled

system the simulation relation still holds.

Naturally, as one could expect, we can not cover the entire domain for

every variable of every component that is visible (i.e. accessible) from the

outside world when testing the coupled system.

A possible solution is then to classify the input domain into groups and

perform extensive testing for every combination of the input groups, selecting

individual values from each group that lead to results that can be veri�ed in

practice (i.e. by hand). This procedure is especially important for the testing

of boundary values.

A.4. SIMULATOR VERIFICATION 147

Given the previous considerations, two simple methodologies were used

for the veri�cation of the simulator as a coupled system :

� Execute testing examples whose results can be veri�ed by tracing every

event generated and comparing the evolution of state trajectories and

outputs with what had been expected by �running� the simulator by

hand.

� Execute testing examples that test boundary conditions of internal vari-

ables and/or states.

The �rst methodology was employed by testing simple scheduling/load

balancing algorithms which the behavior can be veri�ed by hand, and then

comparing it with the output of the simulator. One example is a variable

partitioning scheduling algorithm which the number of jobs, arrival times

and execution times are set in advance and workload is composed of rigid

regular jobs.

The second methodology was employed in order to guarantee the correct

behavior of the simulator under extreme or incorrect input parameters, in

particular parameters related with probability distributions.

148 ANNEXE A. SIMULATOR VERIFICATION

Bibliographie

[1] B.S. Ang, D. Chiou, L.Rudolph, and Arvind. The StarT-Voyager Parallel

System. In Proceedings PACT 98, 1998.

[2] A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring. Scheduling

with Implicit Information in Distributed Systems. In Proceedings of

ACM SIGMETRICS'98, pages 233�243, 1998.

[3] S. Baase. Computer Algorithms. Addison-Wesley Publishing Company,

1988.

[4] E. Barton, J. Cownie, and M. McLaren. Message Passing on the Meiko

CS-2. Parallel Computing, 20(4) :497�507, 1994.

[5] J. M. Barton and N. Bitar. A Scalable Multi-Discipline, Multiple Pro-

cessor Scheduling Framework for IRIX. Job Scheduling Strategies for

Parallel Processing, LNCS 949, 1995.

[6] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling Multiprocessor

Tasks to Minimize Schedule Length. IEEE Transactions on Computers,

35(5) :389�393, 1986.

[7] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT

Press, Cambridge,Massachusetts, 1990.

[8] R. M. Bryant, H-Y Chang, and B. S. Rosenburg. Operating System

Support for Parallel Programming on RP3. IBM Journal of Research

and Development, 35(5/6) :617�634, Sep/Nov 1991.

[9] L.M. Campos and I.D. Scherson. Rate of Change Load Balancing in Dis-

tributed and Parallel Systems. In Proceedings of the 1999 International

Parallel Processing Symposium, 1999.

[10] Luis Miguel Campos. Resource management techniques for multipro-

grammed distributed systems. In PhD Thesis. University of California,

Irvine, 1999.

149

150 BIBLIOGRAPHIE

[11] E.G. Co�man, M.R. Garey, and D.S. Johnson. Bin Packing with Divis-

ible Item sizes. Journal of Complexity, 3 :406�428, 1987.

[12] E.G. Co�man, D.S. Johnson, P.W. Shor, and R.R. Weber. Markov

Chains, Computer Proofs, and Average Case Analysis of Best Fit Bin

Packing. In Proceedings of the 29th ACM Symposium on Theory of

Computing, pages 412�421, 1993.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Algorithms. MIT

Press, Cambridge, MA, 1990.

[14] Intel Supercomputer Systems Division. Paragon User's Guide. Order

number 312489-003, 1994.

[15] J. Du and J. Y-H Leung. Complexity of Scheduling Parallel Task Sis-

tems. SIAM Journal of Discrete Mathematics, 2(4) :473�387, 1989.

[16] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. E�ective Distributed

Scheduling of Parallel Workloads. In Proceedings of ACM SIGMET-

RICS'96, pages 25�36, 1996.

[17] J. Edmonds, D.D. Chinn, T. Brecht, and X. Deng. Non-Clairvoyant

Multiprocessor Scheduling of Jobs with Changing Execution Character-

istics (extended abstract). In Proceedings of the 1997 ACM Symposium

of Theory of Computing, pages 120�129, 1997.

[18] A. Greiner et al. La Machine MPC. Le Calculateur Parallele, 1998.

[19] A. Hori et al. Time Space Sharing Scheduling and Architectural Support.

Job Scheduling Strategies for Parallel Processing, LNCS 949 :92�105,

1995.

[20] A. Hori et al. Implementation of Gang Scheduling on Workstation Clus-

ter. Job Scheduling Strategies for Parallel Processing, LNCS 1162 :126�

139, 1996.

[21] Al Geist et al. PVM : Parallel Virtual Machine - A User's guide and

tutorial for networked parallel computing. The MIT Press, 1994.

[22] C. E. Leiserson et al. The Network Architecture of the Connection

Machine CM-5. Journal of Parallel and Distributed Computing, 33 :145�

158, 1996.

[23] D. Chiou et al. StarT-NG : Delivering Seamless Parallel Computing. In

Proceedings EUROPAR'95, 1995.

[24] D. Culler et al. LogP : Towards a Realistic Model of Parallel Compu-

tation. In Proceedings of 4th ACM SIGPLAN Symposium on Principles

an Practice of Parallel Programming, pages 1�12, 1993.

BIBLIOGRAPHIE 151

[25] D. Culler et al. A Practical Model of Parallel Computation. Communi-

cation of the ACM, 93(11) :78�85, 1996.

[26] G. Averson et al. Scheduling on the Tera MTA. Job Scheduling Strategies

for Parallel Processing, LNCS 949, 1995.

[27] J. Jann et al. Modeling of Workloads in MPP. Job Scheduling Strategies

for Parallel Processing, LNCS 1291 :95�116, 1997.

[28] J. Turek et al. Approximate Algorithms for Scheduling Parallelizable

Tasks. In Proceedings of the 1992 ACM Symposium on Parallel Algo-

rithms and Architectures, pages 323�332, 1992.

[29] M. Crovella et al. Multiprogramming on Multiprocessors. In Proceed-

ings of the 3th IEEE Symposium on Parallel and Distributed Processing,

pages 590�597, 1991.

[30] P. Kok et al. How Network Topology A�ects Dynamic Load Balancing.

IEEE Parallel and Distributed Technology, Fall 1996 :25�35, 1996.

[31] Patrick G. Solbalvarro et al. Dynamic Coscheduling on Worksta-

tion Clusters. Job Scheduling Strategies for Parallel Processing, LNCS

1459 :231�256, 1998.

[32] R Chandra et al. Scheduling and Page Migration for Multiprocessor

Compute Servers. In Proceedings of the 6th International Conference on

Architecture Support for Programming Languages and Operating Sys-

tems, pages 12�24, 1994.

[33] D. Feitelson. Packing Schemes for Gang Scheduling. Job Scheduling

Strategies for Parallel Processing, LNCS 1162 :89�110, 1996.

[34] D. Feitelson. Job Scheduling in Multiprogrammed Parallel Systems.

Technical report, IBM T. J. Watson Research Center, 1997. RC 19970

- Second Revision.

[35] D. Feitelson and M. A.Jette. Improved Utilization and Responsiveness

with Gang Scheduling. Job Scheduling Strategies for Parallel Processing,

LNCS 1291 :238�261, 1997.

[36] D. Feitelson and L. Rudolph. Distributed Hierarchical Control for Par-

allel Processing. IEEE Computer, pages 65�77, May 1990.

[37] D. Feitelson and L. Rudolph. Gang Scheduling Performance Bene�ts for

Fine-Grain Synchronization. Journal of Parallel and Distributed Com-

puting, 16 :306�318, 1992.

152 BIBLIOGRAPHIE

[38] D. Feitelson and L. Rudolph. Coscheduling Based on Runtime Iden-

ti�cation of Activity Working Sets. International Journal of Parallel

Programming, 23(2) :135�160, 1995.

[39] D. Feitelson and L. Rudolph. Evaluation of Design Choices for Gang

Scheduling Using Distributed Hierarchical Control. Journal of Parallel

and Distributed Computing, 35 :18�34, 1996.

[40] D. Feitelson and L. Rudolph. Metrics and Bechmarking for Parallel Job

Scheduling. Job Scheduling Strategies for Parallel Processing, LNCS

1459 :1�24, 1998.

[41] H. Franke, P. Pattnaik, and L. Rudolph. Gang Scheduling For Highly

E�cient Distributed Multiprocessor Systems. In Proceedings of Fron-

tiers'96, 1996.

[42] B. Gorda and R. Wolski. Time Sharing Massively Parallel Machines. In

International Conference on Parallel Processing, pages 214�217, Volume

II, 1995.

[43] Schark Research Group. http ://www.ics.uci.edu/ schark/simulator.

Simulator Home Page, 2000.

[44] A. Gupta, T. Tucker, and S. Urushibara. The Impact of Operating

Systems Scheduling Policies and Synchronization Methods on the Per-

formance of Parallel Applications. In Proceedings of ACM SIGMET-

RICS'91, pages 120�132, 1991.

[45] A. Hori, H. Tezuka, and Y. Ishikawa. Overhead Analysis of Preemp-

tive Gang Scheduling. Job Scheduling Strategies for Parallel Processing,

LNCS 1459 :217�230, 1998.

[46] S. Irani and A. R. Karlin. On Online Computation. Approximation

Algorithms for NP-Hard Problems - Ed. Dorit Hochbaum, 1996.

[47] K. Jansen and L. Porkolab. Linear Time Approximation Schemes for

SchedulingMalleable Parallel Tasks. In Proceedings of 10th annual ACM

symposium on discrete algorithms, pages 490�498, 1999.

[48] M. A. Jette. Performance Characteristics of Gang Scheduling In Multi-

programmed Environments. In Proceedings of SC'97, 1997.

[49] J.J.Martin. Bayesian Decison Problems and Markov Chains. John Wiley

and Sons Inc., New York, N.Y., 1967.

[50] D. S. Johnson. The NP-Completeness Column : an Ongoing Guide. J.

Algorit., 4(2) :189�203, 1983.

BIBLIOGRAPHIE 153

[51] B. Kalyanasundaram and K. Pruhs. Speed is as Powerful as Clairvoy-

ance. In Proceedings of the 36th Symposium on Computer Science, pages

214�221, 1995.

[52] R. M. Karp. Parallel Combinatorial Computing. Very Large Scale Com-

putation in the 21th Century, pages 221�238, 1991.

[53] L. G. Khachian. A polynomial algorithm for linear programming (in

Russian). Doklady Akad. Nauk USSR, 244 :1093�1096, 1979.

[54] K.L.Park and L.W. Dowdy. Dynamic Partitioning of Multiprocessors

Systems. International Journal on Parallel Programming, 18(2) :91�

120, 1989.

[55] B. Kosko. Fuzziness vs. Probability. International Jounal of General

Systems, 17(2-3), 1990.

[56] B. Kosko. Neural Networks and Fuzzy Systems : A Dynamical Systems

Approach for Machine Intelligence. Prentice Hall, Inc., 1992.

[57] R.N. Lagerstrom and S. K. Gipp. PSheD : political scheduling on the

Cray T3E. Job Scheduling Strategies for Parallel Processing, LNCS

1291 :117�139, 1997.

[58] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph. Implications

of I/O for Gang Scheduled Workloads. Job Scheduling Strategies for

Parallel Processing, LNCS 1291 :215�237, 1997.

[59] W. Leinberger, G. Karypis, and V. Kumar. Job Scheduling in the Pres-

ence of Multiple Resources Requirements. In Proceedings of Supercom-

puting' 99, 1999.

[60] W. Leinberger, G. Karypis, and V. Kumar. Multi-Capacity Bin Packing

Algorithms with Applications to Job Scheduling under Multiple Con-

straints. In Proceedings of the 1999 International Conference On Paral-

lel Processing, 1999.

[61] E. J. Lerner. The End of the Road for Moore's Law ? IBM Think

Research, 1(4), 1999.

[62] S. T. Leutenegger and M. K. Vernon. The Performance of Multipro-

grammed Multiprocessor Scheduling Policies. In Proceedings of ACM

SIGMETRICS'90, pages 226�236, 1990.

[63] K. Li, J. F. Naughton, and J. S. Plank. An E�cient Checkpointing

Method for Multicomputers with Wormhole Routing. International

Journal of Parallel Programming, 20(3) :159�180, 1991.

154 BIBLIOGRAPHIE

[64] S-P Lo and V. D. Gligor. A comparative Analysis of Multiprocessor

Scheduling Algorithms. In Proceedings of the 7th International Confer-

ence On Distributed Computing Systems, pages 356�363, 1987.

[65] Jr. M. J. Gonzalez. Deterministic Processor Scheduling. ACM Comput-

ing Surveys, 9(3) :173�204, 1977.

[66] S. Majumdar, D.L. Eager., and R.B. Bunt. Characterization of Pro-

grams for Scheduling in Multiprogramming Parallel Systems. Perfor-

mance Evaluation, 13(2), 1991.

[67] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive Algo-

rithms for On Line problems. In Proceedings of the Twentieth Annual

Symposium on the theory of Computing, pages 322�333, 1988.

[68] E. P. Markatos and T. J. Leblanc. Using Processor A�nity in Loop

Scheduling on Shared Memory Multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 5(4) :379�400, 1994.

[69] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. The-

oretical Computer Science, 130(1) :17�47, 1994.

[70] G. Mounie, C. Rapine, and D. Trystram. E�cient Approximation al-

gorithms for Scheduling Malleable Tasks. In Proceedings of SPAA'99,

pages 23�31, 1999.

[71] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa : An Exper-

iment in Distributed Operating System Structure. Communications of

the ACM, 23(2) :92�105, 1980.

[72] J.K. Ousterhout. Scheduling Techniques for Concurrent Systems. In

Proceedings of the 3rd International Conference on Distributed Comp.

Systems, pages 22�30, 1982.

[73] E. W. Parsons and K. C. Sevcik. Implementing Multiprocessor Schedul-

ing Disciplines. Job Scheduling Strategies for Parallel Processing, LNCS

1291 :166�192, 1997.

[74] P. Pierce and G. Regnier. The Paragon Implementation of the NX Mes-

sage Passing Interface. In Proceedings of the Scalable High Performance

Computing Conference, pages 184�190, 1994.

[75] R. Pool. Assembling Life's Building Blocks. IBM Think Research, 1(4),

1999.

[76] V. Ramakrishnan and I. D. Scherson. Executing Communication-

Intensive Irregular Programs E�ciently. In Proceedings of Irregular

2000, 2000.

BIBLIOGRAPHIE 155

[77] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. The Impact of I/O

on Program Behavior and Parallel Scheduling. In Proceedings of ACM

SIGMETRICS'98, pages 56�64, 1998.

[78] V. Sakar. Determining Average Program Execution Times and Their

Variance. In Proceedings of the 1989 SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 298�312, 1989.

[79] Isaac D. Scherson, Raghu Subramanian, Veronica L. M. Reis, and

Luis Miguel Campos. Scheduling computationally intensive data parallel

programs. In Bertil Folliot, editor, Placement Dynamique et Répartition

de Charge : application aux systèmes parallèles et répartis, pages 39�61.

Centre National De La Recherche Scienti�que, July 1996.

[80] S. K. Setia. Trace-Driven Analysis of Migration Based Gang Scheduling

Policies for Parallel Computers. In Proceedings of International Confer-

ence on Parallel Processing, 1997.

[81] P.W. Shor. How to do better than best �t : Tight bounds for average case

on-line bin packing. In Proceedings of the 32th IEEE Annual Symposium

on Foundations of Computer Science, pages 752�759, 1990.

[82] F.A.B. Silva, L.M. Campos, and I.D. Scherson. A Lower Bound for

Dynamic Scheduling of Data Parallel Programs. In Proceedings EU-

ROPAR'98, 1998.

[83] F.A.B. Silva, L.M. Campos, and I.D. Scherson. Improvements in Gang

Scheduling for Parallel Supercomputers. In Proceedings 8th International

Parallel Computing Workshop, 1998.

[84] F.A.B. Silva and I. D. Scherson. E�cient Parallel Job Scheduling Using

Gang Service. To appear in the Internation Journal of Foundations of

Computer Science, June 2001.

[85] F.A.B. Silva and I.D. Scherson. Improvements in Parallel Job Scheduling

Using Gang Service. In Proceedings 1999 International Symposium on

Parallel Architectures, Algorithms and Networks, 1999.

[86] F.A.B. Silva and I.D. Scherson. Improving Throughput and Utiliza-

tion on Parallel Machines Through Concurrent Gang. In Proceedings of

the IEEE International Parallel and Distributed Processing Symposium

2000, 2000.

[87] D.D. Sleator and R.E. Tarjan. Amortized E�ciency of List Update and

Paging Rules. Communications of the ACM, 28(2) :202 � 208, 1985.

156 BIBLIOGRAPHIE

[88] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed. I/O Require-

ments of scienti�c aplications : an evolutionary view. In Proceedings

of the IEEE international Symposium of High Performance Distributed

Computing, pages 49�59, 1996.

[89] E. Smirni and D. A. Reed. Lessons from characterizing the input/output

behavior of parallel scienti�c applications. Performance Evaluation,

33 :27�44, 1998.

[90] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times

Using Historical Information. Job Scheduling Strategies for Parallel Pro-

cessing, LNCS 1459 :122�142, 1998.

[91] P. Steiner. Extending Multiprogramming to a DMPP. Future Genera-

tion Computing Systems, 8(1) :93�109, 1992.

[92] Raghu Subramanian. A framework for parallel job scheduling. In PhD

Thesis. University of California, Irvine, July 1995.

[93] J. D. Ullman. NP-Complete Scheduling Problems. J. Comput. System

Science, 10(3) :384�393, 1975.

[94] L. G. Valiant. A bridging model for parallel computations. Communi-

cations of the ACM, 33(8) :103 � 111, 1990.

[95] Y. Yan, C. Jin, and X. Zang. Adaptively Scheduling Parallel Loops in

Distributed Shared-Memory Systems. IEEE Transactions on Parallel

and Distributed Systems, 8(1) :70�81, 1997.

[96] L. A. Zadeh. Fuzzy Sets. Information and Control, 8 :338�353, 1965.

[97] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and

Simulation, 2nd Edition. Academic Press, New York, NY, 2000.

