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Abstract

We present a new model of gene expression, which relies on an

interpretation with a stack. We �rst give an outline of the main

morphogenic evolutionary computation approaches, and bring out the

properties we wish to have from a gene expression model used to build

structures. Then we present our model and an application of its prin-

ciples. Finally, we give a discussion on the properties of the model and

on experimental results.

Résumé

Nous présentons un nouveau modèle d'expréssion génétique, qui re-

pose sur une interprétation à l'aide d'une pile. Nous dressons d'abord

un tableau des principales approches morphogénétiques en informa-

tique évolutionniste, et faisons ressortir les propriétés que nous recher-

chons dans un modèle d'expression génétique utilisé pour construire

des structures. Ensuite nous présentons notre modèle et une appli-

cation de ses principes. En�n, nous discutons sur les propriétés du

modèle et sur des résultats expérimentaux.
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1 Introduction

A major trend in evolutionary computing is about automatically designing

structures, let them be structures that are used to solve a problem (e.g. a cir-

cuit [1], a �nite state machine [2]) or structures that are used to have agents

behave (e.g. neural networks [3], program trees [4]). Most of the time, these

are executable structures [5] the behavior of which is evaluated.

This evolutionary computing process is inspired by the representation trans-

formations o�ered by the natural gene expression process, where information

is taken from one structure (the genotype) to build another one (a protein)

after various transformations, mainly the gathering of amino-acids into a

peptides chain, and its folding to form an actual protein, helped by speci�c

enzymes. Some evolutionary computing approaches respect this paradigm of

successive transformations steps (indirect genetic encoding) while the others

directly use the genotype as the structure (direct genetic encoding).

Choosing a genetic encoding is thus a main issue in gene expression compu-

tation. This choice has to be done on a multi-criteria basis: the encoding

must allow to describe solutions to the given problem to solve (that is the

expression part) and it must also allow to gradually �nd adapted solutions

despite evolution is a blind process.

The existing evolutionary computing approaches provide di�erent answers

according to the features they focus on, but the �rst requisite of choosing

between direct and indirect encoding already has strong consequences. On

the one hand, we already can observe that over time, di�erent approaches

have converged on many points (e.g. the use of crossing over as a genetic

operator, the use of a genetic mutation rate included in the genotype to ob-

tain adaptivity) but on the other hand this convergence didn't happen yet

for this �rst choice : it is a fact that direct and indirect encoding both have

advantages.

We think that these advantages may not be contradictory, and we propose a

new approach based on genetic interpretation to build structures, that could

conciliate them.

We �rst summarize and discuss the di�erent existing approaches of gene

expression already used to evolve structures, in the light of the type of encod-

ing they use (direct or indirect). Afterwards, we explain what we expect from

a gene expression process that has to build structures, and how a gene ex-

pression process that uses a meaningless bitstring genome and an stack-based
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interpreter to build a structure from it might be an interesting alternative

for the design of evolvable structures. We then detail an application of these

principles to build some kind of automaton (an ATN1) and give some exper-

imental results.

2 Existing Models of Gene Expression to Evolve

Structures

We can classify the existing models of gene expression aimed at evolving

structures � morphogenic evolutionary computation [6] � in two main groups:

the ones that use direct encoding, and the ones that use indirect encoding.

One the one hand, direct encoding is motivated by phenotypical consid-

erations, i.e. producing (executable) structures in which there is a strong

behavioral linkage between parent and o�spring, and on the other hand in-

direct encoding allows faster or �ner-grain search space exploration, and is

also nearer to biological models of gene expression � the primary inspiration

source for evolutionary computation.

2.1 Direct Encodings

There are roughly two approaches to produce structures with direct encoding.

The �rst one sets parameters for a prior given structure; it allows �ne-tuning

of a given structure, but does not allow to generate it from scratch. The

second one makes no separation between the genotype and the structure; it

allows to generate any structure, but to do this the designer has to think of

genetic operators that must face many constraints.

2.1.1 The Genotype as a Set of Parameters for a Prior Given

Structure

With this approach, the genes do not encode directly a structure, but rather

parameters to be used by a preexisting structure. The evolutionary process

thus consists in optimizing a set of parameters [7] for a structure that has

already been designed and mainly involves Evolution Strategies [8, 9, 10] or

Genetic Algorithms [11, 12, 13]. This approach has been mainly used to

1ATN stands for Augmented Transition Network
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evolve arti�cial neural networks (see [3], section 3.1), for example [14, 15, 16,

...].

The optimization is often reported to produce good results compared to

other learning algorithms. In addition the approach allows to �ne-tune the

structure parameters for a given problem. But on the other hand, it does not

allow plasticity, since the structure architecture is given, which sets strong

assumptions and restrictions on the search space. We retain that direct

parameter encoding lacks expressive power.

2.1.2 The Genotype as the Structure Itself

This approach makes no distinction between the genotype and the phenotype:

the genes are components of the structure. Many structures are reported to

be evolved this way: �nite state machines [2, 17], graphs [18], neural networks

[19], trees [4], : : : The evolutionary algorithms involved are mainly Evolu-

tionary Programming [2] and Genetic Programming (EP and GP) [4, 20] for

trees.

Structures can be built from scratch, which is a strong advantage over param-

eters optimization because it allows a wide search in the space of structures.

However, the design of the genetic operators has to face more constraints.

The main ones address the following issues:

� The syntactic issue consist in ensuring the consistency of the structures

that are produced. A random generation, mutations on a structure or

crossing over of two structures must produce valid o�spring.

� The semantic issue is brought by the phenotypical orientation of the

approach: the behavior of the executable structures. Operators should

produce o�spring whose behavior is close to the behavior of the parents.

� Finally, the completeness issue means the ability to explore the whole

search space without excluding portions of the search space that may

eventually contain better solutions, or not biasing too much operators

towards a part of the search space (for the same reason).

To sum up, this approach allows to build structures, but it su�ers from di�-

cult design of genetic operators. These issues have been widely discussed and

o�ered solutions [4, 20, 21, 22, 23, ...]. This di�culty partly relies on the fact

that the genotype is divided into parts that have di�erentiated properties
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(due to the structure). Thus the modi�cations induced by genetic operators

have to take into account these di�erent roles according to syntactic and se-

mantic issues. A similar problem has been encountered in classical biological

paradigms for gene expression [24]. As a consequence, the balance between

trying to maintain behavioral proximity between parents and o�spring on

the one hand and exploring the search space on the other hand is made more

di�cult.

2.2 Indirect Encodings

Indirect encodings involve more complex gene expression processes to pro-

duce the evaluated structures (morphogenic evolutionary computation, [6]).

The indirection features several advantages, mostly:

� adaptibility in the creation process: the evaluated structure might not

be straight-forward interpretation of the genes. This may help to solve

syntactic issues mentionned before (section 2.1.2).

� compacity of the genetic code: the phenotype structure might be much

more larger than the genetic representation.

In a similar way to section 2.1, we may distinguish two main approaches

to produce structures with indirect encoding. The �rst one sets describing

parameters for a structure allowing �ne-tuning of a given structure, but it

has �bad� genetic properties. The second one uses a describing structure as a

genotype to build the evaluated structure (phenotype); it allows to generate

any structure and to compress gene representation, but again the designer

has to face design di�culties as argued in section 2.1.2.

2.2.1 The Genotype as a Set of Describing Parameters

This approach relies on parameters arrays that are interpreted to form the

structure. It has been used to evolve arti�cial neural networks (see [3], section

3.4), for example [25, 26, ...].

Like in direct encoding (section 2.1.1), the parameterization allows to �ne-

tune the structure, and adds the possibility to partially build it from scratch.

But even if the structure is not a priori given, the gene expression process

needs �xed assumptions about the structure which are made according to

prior knowledge. The prior knowledge necessary to structure building makes
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this approach not very �exible, because all the possibilities have to be foreseen

to be parametered. From the completeness point of view, the portions of

search space that can be explored are thus limited. And �nally, since the

genotype is tightly linked with the expressed structure, the designer has to

choose very enforcing genetic operators to ensure syntactic correctness of the

generated genotypes.

This approach allows to carefully �ne-tune structures on which the designer

already has some prior knowledge, but it is not convenient if we need to

evolve structures in a more plastic way.

2.2.2 The Genotype as a Describing Structure

This approach, the most sophisticated one, evolves structures as genotypes

to describe the evaluated, phenotypic structures. The latter are generated

according to an interpretation of the �rst structure, which may be of a totally

di�erent nature. The gene expression process is referred to as development,

by analogy with the biological development. This approach has been used

to design networked structures, among which electrical circuits [1], and espe-

cially arti�cial neural networks (see [3], section 3.2.2). The gene expression

process involved can operate by successive rewritings, of e.g. grammatical

rewriting rules (L-systems [27]) in [28], matrix-based rewriting rules [29], or

by executing a developmental program tree that can be syntactically con-

strained [30] or not [31, 32].

The size of the describing structure and that of the phenotype structure

may not be correlated. This indirect gene expression scheme allows to gener-

ate phenotype structures the size of which is greater than the genotype one by

orders of magnitude. Development not only permits to produce compressed

genetic representation, but also structures that might be of any complexity,

still keeping simple genotype representation. However, the underlying struc-

ture which is manipulated by the operators still has to indirectly address the

issues detailed in section 2.1.2: its expression must produce a valid evalu-

ated structure (syntactic constraint), the behavior of o�spring should be as

close as possible to the parents one (semantic constraint) and no portion of

the search space that could contain interesting solutions should be excluded

(completeness constraint).

The syntactic constraint is generally easy to deal with: through using gram-

matical genotype structures, generating valid phenotype structures is straight-
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forward. But the semantic and completeness constraints are the hard part,

because of the indirection level: it becomes even harder to foresee if most

of the manipulations on the gene structure will induce small changes in the

phenotypic structure, and will allow full exploration of the interesting por-

tions of the search-space (that are most of the time unknown). This is due to

the lack of knowledge on the e�ect of smaller manipulations of the genotype

structure, that could be expressed as too coarse grain modi�cations at the

phenotype structure level. Thus, again (like in section 2.1.2), this approach

implies much work from the designer, and it is often necessary to introduce

strong biases in the genetic operators to correct unwanted e�ects.

3 Stack-Based Gene Expression and Structure

Design

In [33], we have stated principles that an evolutionary process that builds

behaviors for agents [34] or animats [35] � autonomous entities behaving in an

environment � should comply with. These principles, called Ethogenetics, are

an attempt to cumulate the advantages of Genetic Algorithms � cumulative

adaptation � and those of Genetic and Evolutionary Programming � power

of expression � that are not contradictory. These principles can be imported

without many changes in their formulation for the evolution of structures,

which are the substratum for the behavioral expression in agents.

In the next sections, we �rst summarize the characteristics of the existing

approaches of gene expression to build structures as detailed in section 2.

Then we state the qualities we are seeking in an evolutionary process that

evolves structures, and argue that these properties are not contradictory, by

outlining and de�ning a new model of gene expression that ful�lls them.

This is a �ne-grained, stack-based gene expression model. Finally we detail

its functioning and how to evolve structures with it.

3.1 Toward Stack-Based Gene Expression

Direct encoding approaches allow to have a direct access to the structure,

and thus facilitate engineering and human manipulations. That could be very

useful to introduce prior knowledge and �bootstrap� the evolution process, or

for re�ning or testing a solution made by hand. Then, the phenotypical con-

siderations of strong behavioral linkage between parents and o�spring seem
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an interesting property to search for in an evolutionary approach, because it

allows cumulative adaptation: evolution is a blind process in which the ge-

netic operators act randomly and are not very liable to bring about adaptive

improvements. So, if there is no continuity with the expressed behavior of

the structure, the evolutionary process would not be able to improve the be-

haviors. Continuity is the property of having small variations of the genotype

inducing most of the time, small variations in the phenotype � the behav-

ior expressed by the structure. But direct encoding either lacks expressive

power, or raises many genetic operators issues because of strong syntactic

constraints.

On the other hand, indirect encoding approaches allow to have more �ex-

ibility and placticity (e.g. by building the structure in an adaptive way

depending on its environment) or compact genetic representations. Besides,

it is closer to biological gene expression process. But it is also harder to

foresee the impact of the gene manipulations, thus much design work has to

be done to try to obtain cumulative adaptation because of indirect semantic

and completeness constraints.

Thus, the qualities we are seeking to build structures through an evolu-

tionary computation process are:

� relative simplicity of gene expression process in order to facilitate hu-

man engineering and manipulations.

� easiness of genetic operators conception, with regards to the syntactic,

semantic and completeness constraints expressed in section 2.1.2.

� continuity in the genotype-to-phenotype function, in order to allow

cumulative adaptation. Continuity implies strong behavioral linkage

between parents and o�spring, since small di�erences in the genotype

mostly induce small variations in the phenotype � anyway, evolutionary

approaches work optimally with gene expression processes that respect

this property.

� power of expression, in order to be able to generate any structure of any

complexity, this without having to make changes to the gene expres-

sion process (e.g. adding biases to genetic operators to counterbalance

unwanted e�ects).
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Since the existing approaches do not ful�ll all these requirements simultane-

ously, we propose a new one, that uses a stack-based gene expression process.

Interpretation with a stack is a simple expression process, some common com-

puter languages are stack-based (e.g. PostScript, Forth). The use of a stack

also allows to have instruction locally interacting through the stack during

the structure building process. This way most modi�cations on the genotype

will only have local impact on the structure, hence ensuring the continuity

property.

We then have to choose a langague that would be rather declarative, in order

to avoid having a hierarchical structure (which carries many problems in the

design of genetic operators). The language should support locality by avoid-

ing atoms that deeply modify the structure, thus we propose to use �ne-grain

structure-building languages. Finally, this language should obviously be able

to describe any structure of the kind we are evolving.

3.2 Related Works

[36] has �rst used a stack-based genetic programming model with success.

He didn't use it to build structures, but only to execute a program. This

approach resulted to be competitive compared to classical GP.

[37] have then also used this approach in a parallelized way (HiGP), and

added re�ection to the language in order to obtain adaptivity during the ex-

pression of a program [38, 39]. This resulted in a faster evolutionary process,

but they didn't use this approach to produce structures either.

3.3 The Stack-Based Gene Expression Model

The model we propose is inspired by biological gene expression process (see

�gure 1), with two separate steps: a translation and an interpretation.

The stack-based gene expression model we use is an indirect encoding of

the structure, with a plain bitstring as genotype.

In the biological process, the production of a protein mainly involves a

traduction by the ribosome, that gathers amino-acids in a peptidic chain, and

then the folding of this peptidic chain into the actual protein, with the help

of enzymes. The �behavior� (i.e. function) of the protein is mainly in�uenced

by its shape, which means that its �semantics� is not directly dependent on

the �syntax� of its amino-acids components. If the same peptidic chain is

folded into two di�erent shapes, for example because di�erent enzymes were
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Figure 1: Ribosomic gene expression. a. the ribosome reads a nucleic acids

chain and gathers amino-acids into a polypeptidic chain; b. the polypeptidic

chain folds, helped by enzymes...; c. ...into the actual protein

a b

ribosome

nucleic acid chain

amino acids

peptidic chain

c

protein

enzymes

involved during the folding step, they are liable to behave di�erently. How-

ever this process always relies on the same physico-chemical laws, involved

only in local interactions. In stack-based gene expression, we also use a two-

step expression process (�gure 2) using translation and interpretation. The

interpretation process is always the same, whatever the kind of structure we

evolve or the building language we use.

The �rst step (�gure 2) is the translation of the bitstring into a tokens stream,

that is sent to a stack-based interpreter (that produces the structure, as the

second step).

The translator uses a genetic code, i.e. a function

G : f0; 1g
n
�! T (jT j � 2

n
)

where T is a set of tokens, and n is the size of our �codons�. The tokens are

divided into two categories: some of them are instructions of the stack-based

language (stack tokens, e.g. the swap token the action of which is to swap the

two top elements of the stack) and the others ones are speci�c to the kind

of structure we want to evolve (structure tokens, e.g. the connect token

which creates an edge between nodes for a graph structure). Notice that the

genetic code may be redundant (many codons associated to the same token),

and this contributes to the continuity between genotype and phenotype (a
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Figure 2: Stack-based gene expression. a. the translator reads a bit string

and outputs a token stream ; b. the tokens are sent to the interpreter, that

may push the token on the stack and/or perform an action associated to the

token ; c. the actual structure is popped from the stack

a

bitstring

b
tokens

translator

c

structure

interpreter

stack

mutation is likely to transform a codon into another one that produces the

same token).

The behavior of the structure used as the phenotype is also mainly dependent

on its shape, so the analogy with the biological process is quite straight-

forward.

4 ATNoSFERES: Application to the Design of

ATNs

The goal of the ATNoSFERES model [40] is to automatically design evolvable

agents behaviors, in a way that ful�lls the Ethogenetics principles [33].

ATNoSFERES uses the SFERES framework [41] as a tool for modeling the

agents classes, integrating those classes to the system, designing an environ-

mental simulator and providing classical evolutionary techniques. The agents

behaviors are described by a labelled graph structure, an ATN2 (see �gure 3).

An ATN[42] is a particular kind of graph that was primarily used in language

2ATN stands for Augmented Transition Network
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processing theory and have also then been used by [43] for designing agent

behaviors.

We will not discuss here the behavioral issues speci�c to agents, but rather

Start 1 2 3

4

5

End

action1! condition1?

action2!

condition2?

action3!

action2!

c
o
n
d
it
io
n
3
?

a
c
t
i
o
n
5
!

condition1?
condition4?

Figure 3: An example of ATN.

focus on the evolution features of our model. Then we will show an example

of ATN building and give some experimental results.

4.1 The ATNoSFERES Model

In the ATNoSFERES model, we assume that the behavior of any agent may be

described by a directed labelled graph (ATN). Thus we propose to produce

it from a bitstring genotype, following the stack-based expression principle

explained in section 3.3.

Each agent category is associated with two collections of tokens: condition

ones and action ones. The actions are behavioral �primitives� that can be

performed by the agent, the conditions are perceptions or stimuli that induce

action selection. The edges of the graph are labelled with a set of conditions

and a sequence of actions (see �gure 3).

The ATN is built by creating nodes and edges and �nalize the structure by

adding two particular nodes: a �Start� node and an �End� node.

At each time step, the agent (initially in the �Start� state) randomly chooses

an edge among those having either no condition in their label, or all condi-

tions simultaneously true. It performs the actions associated with this edge

and jumps to the destination node. It stops working when its state is �End�.

This is a state-based architecture: the agent goes through the states of the
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ATN one at a time during its whole life-cycle.

We will now detail more precisely the translator and interpretor used to

build ATN graphs from a bitstring. We will then give an illustrated example

of stack-based expression to build the ATN.

4.1.1 The Translator

The translator is completely de�ned by the genetic code it uses. There are 2

types of tokens (see table 1):

� stack tokens, that are used to manipulate the structure under construc-

tion.

� structure tokens, including:

� ATN tokens, such as those used to create nodes and to connect

them.

� agent tokens, such as conditions and actions ones, that are used

to label edges between nodes in the ATN.

4.1.2 The Interpreter

The purpose of the interpreter is to build an ATN from the tokens. It suc-

cessively reads them from the translator, and computes the eventual actions

that are associated with them (see table 1):

� each stack token computes a speci�c action on the stack,

� condition and action tokens are just pushed on the stack,

� nodes and connection creation tokens push a node (it may be a node

connected to �Start� or to �End�) on the stack, or connect the two last

nodes on the stack, labelling the edge with the action and condition

tokens that are between them.

If an instruction cannot execute successfully, it is simply ignored. Finally,

when the interpreter does not receive tokens any more, it terminates the

ATN: actions and conditions tokens still present between nodes are treated

as implicit connections (so that new edges are created) and the consistency
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token (initial list state) �! (resulting list)

dup (x y :::) �! (x x y :::)

del (x y :::) �! (y :::)

dupNode (x y Ni z :::) �! (Ni x y Ni z :::)

delNode (x Ni y Ni z :::) �! (x y Ni z :::)

popRoll (x y ::: z) �! (y ::: z x)

pushRoll (x ::: y z) �! (z x ::: y)

swap (x y :::) �! (y x :::)

node (x :::) �! (Ni x :::)
a

connectStart (x :::) �! (Ni x :::)
b

connectEnd (x :::) �! (Ni x :::)
c

connect (c1? c2? x Ni y c1? z a2! a1! t Nj u :::) �! (x Ni y z t Nj u :::)
d

condition? (x :::) �! (condition? x :::)

action! (x :::) �! (action! x :::)

Table 1: The ATN-building language.

acreates a node Ni
bcreates a node Ni and connects �Start� to it
ccreates a node Ni and connects it to �End�
dcreates an edge between Nj and Ni, with (c1?& c2?) as condition label and the list

{a1!,a2!} as action label

of the ATN is checked (�Start� node is linked to nodes having no incoming

edges, except from themselves; in the same way, nodes having no outgoing

edges are linked to �End�). This may be considered as the actions associated

with a virtual finish token that would always be at the end of any token

stream: there is no contradiction with the genericity of the interpreter of the

stack-based model.

We note that the programming language implemented by the interpreter is

quite declarative (only locally imperative) and does not require an exhaustive

explicitation of the structure.

4.2 Example of ATN building

(see �gure 4, page 17)
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Figure 4: Example of stack-based ATN building. 1. initial state: no structure

and stack empty ; 2. a �rst node is created ; 3. conditions and actions are

pushed on the stack ; 4. dupNode pushes a copy of the �rst node encountered

; 5. node 1 is connected to itself ; 6. �nal state, after an implicit connection

to the Start node.
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4.
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4.3 Experiments

The experiment we will describe here is just a simple illustration of how be-

havior based on ATN graphs may evolve through our model. It addresses a

simple problem in order to emphasize that speci�c constraints on the struc-

ture may be taken into account and solved by genotype reorganization, due

to the stack-based building process.

Additional experiments on coevolution of predators and preys in an ecosys-

tem are currently ongoing and should provide soon results regarding the issue

of the complexity of the behaviors.

4.3.1 Experimental setup

To illustrate the evolution of simple behaviors, we will consider an experiment

with a discrete environment containing a color light bulb and a single agent

with the action and perception abilities described in table 2. We want the

agent to go to the right when the light is green and to the left when it is red.

To make the agent behavior evolve, we apply the rules of darwinian selection

over a population of 100 homogeneous agents.

Actions Conditions

N! no action

R! move to the right g? true when the light is green

L! move to the left r? true when the light is red

U! move up rand? true with probability p = 0:5

D! move down

Table 2: Action and condition tokens of the agent.

The genetic code for these agents contains the 11 stack and ATN tokens

and the 8 action/condition tokens; thus it needs at least 32=25 codons. In

the following experiments, a 32-codon genetic code has been automatically

built from the list of all the tokens. The genotype of the agents is initially a

random bitstring (chromosome) with a random length.

We evaluate the �tness of each agent by making it run during 100 time

steps in its environment. The color of the light bulb randomly �ips (with

probability 0.05 at each time step) from green to red and vice-versa. The

rewarding rules in the �tness function are: +1 point if the move is correct, -1
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point if it is erroneous (e.g. left when green), 0 in the other cases (e.g. move

up). Only the �rst move performed during the current time step is rewarded

(N! is not considered as a move).

At each generation, the agents are evaluated through their average �tness

(calculated over 10 runs in the above conditions) and selected to produce 30

new agents (by crossing over chromosomes), thus replacing 30 agents removed

from the old population (depending on their �tness, too).

We have experimented with various mutation strategies, among them:

1. before their evaluation, all agents are subject to punctual random mu-

tations of their chromosome with rate r (r % of the bits are randomly

�ipped);

2. same situation, but p % of the mutations are random insertions or

deletions of codons in the chromosome, instead of punctual mutations.

4.3.2 Results

As agents are initialized in their �Start� state, the �rst time step is used to

jump to one of the available nodes. Then, during the 99 other time steps, the

behavior of the agents only depends on their ATN structure and its ability

to respond to environmental changes. Thus, the maximum �tness in these

experiments is 99 (correct answers at each time step after the �rst one).

Figure 5 shows the average evolution of the �tness with the �rst mutation

strategy. It has been calculated from 10 experiments. Figure 6 shows the

average evolution of the �tness with the second mutation strategy, and the

evolution of the chromosome length (10 experiments too).

4.3.3 Results analysis

Though the problem to solve is very simple, these results validate the AT-

NoSFERES model for evolving agent behaviors from a �ne-grain substrate

and they already show interesting organizational genetic properties of the

stack-based gene expression process. We would like to focus on the speci-

�city of this model and give a qualitative analysis of the behaviors produced

by natural selection.

The ATN described on �gure 7 is the �optimal� solution to this problem

(99 points with the simplest ATN structure): when the light is red, go to the
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Figure 5: Evolution of the �tness (punctual mutations only, r = 1 %).

left; when it is green, go to the right. To produce this ATN, only 35 bits are

theoretically required, e.g. to encode the following tokens:

node, g?, R!, dupNode, L!, r?, dupNode

(with a maximal use of implicit connections). But in this solution the order

and nature of tokens is crucial, thus it is highly vulnerable to mutations. In

addition to this, the agents have much more bits in their chromosome than

necessary � this can be a source of inadequate behavior.

The experimental results show that two strategies are used to produce

an adequate behavior (99 points). The �rst one consists in building a simple

ATN (very close or same than the �optimal� ATN on �gure 7), by delaying

the node creation and thus using tokens that have no e�ect. For instance, a

207-bit chromosome encoding the following tokens:
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L!, dup, swap, popRoll, popRoll, del, popRoll, swap, dup, del,

popRoll, R!, L!, swap, rand?, L!, del, connectStart, R!, dup, g?,

dupNode, popRoll, pushRoll, L!, del, pushRoll, L!, r?, connectStart,

del, dup, dupNode, r?, R!, del, dup, R!, dup, g?, popRoll

produces an ATN represented on �gure 8, very close to �gure 7, with labels

(r?, L!L!R!R!) on one edge and (g?, R!R!) on the other. This is a good

example of using the properties of the ATN-building language.

The agents using the second strategy build a complex ATN in which a

small subset only is used, for instance like the ATN on �gure 9. It leads to

exactly the same behavior than the �optimal� solution, since a large part of

it cannot be reached from the other nodes.

5 Discussion

We will discuss stack-based gene expression with regards to the three issues

raised by morphogenic evolutionary computing as expressed in section 2.1.2,

i.e. syntax,semantics and completeness.

5.1 Syntactical Issues

5.1.1 Dynamic String Representation

As most evolutions of executable structures, the stack-based gene expression

uses a dynamic representation as a genotype [21, 44]. This is more convenient,

as we do not know by advance what structure will be the �ttest, and thus

what bitstring length will be needed to build it.

But while in other works representation size is limited by the designer (and

not only by the host system memory), e.g. trees depth in GP [4], or string

length in Stack-Based GP [36] or in HiGP [37], we did not have to add such a

constraint. We observed convergence of strings length to a (reasonable) �nite

limit, so we did not need to constrain genotype maximal representation size.

We are currently investigating this property more precisely. We think that it

is linked with the locality property, and that an equilibrium is found between

the growing and the shortening tendencies. Our hypothesis is that:

� if the string length is too short, mutations impact is probabilistically

stronger (due to a reduced redundancy in the tokens, see sections 4.3.3
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and 5.1.3) and the genotype does provide few �junk� code to protect

itself from mutations. By �junk� code we intend substrings that ei-

ther are not expressed, or produce parts of the structure that are not

used (e.g. in ATNoSFERES, subgraphs that are not connected with the

�Start� node (see section 4.3.3 and �gure 9)).

� if the string length grows too long, it becomes even harder for crossing

over to make e�cient exchanges of genetic materials. Each exchanged

substrings are likely to carry a usable part of the �nal structure (thanks

to the locality property), since they tend to be longer and longer. Thus

the crossing over is more and more liable to juxtapose incompatible

graph subparts, and thus becomes ine�cient.

5.1.2 Separation between Syntax and Semantics

As the genotype syntax is not closely tight to the structure semantics, the

stack-based gene expression is even less constrained than for example in-

direct grammar-based encodings, or GP. With stack-based gene expression

there is no need to constrain the genotype syntax like in other approaches

(e.g. closure principle [4] or on the contrary strong types [20] in Genetic

Programming). This allows greater �exibility for the genetic operators. The

bitstring can be manipulated through a �blind� process without any regard

to its interpretation and we do not need operators that are speci�c to the

structure that is being built.

Furthermore, the genotype that is manipulated is a meaningless bitstring

structure, and as any genotype can be expressed as a valid structure, any

genetic operator imported from the GA may be used without any restriction.

We even can think of some additional genetic operators like insertion or dele-

tion (see section 4.3), that could manage resizings of the genotype string in

a smoother way than crossing over.

5.1.3 Redundancy

The description of the various parts of the structure is not position depen-

dent, many combinations of genotype substrings may produce the same struc-

ture. What seems more important is the relative positions and distances of

the tokens involved in the design of a given part, because the tokens inter-

act locally through the stack. Furthermore, the interpretation of some token

may not take into account order of the tokens they are acting on in the stack.



Stack-Based Gene Expression 23

For example in the ATNoSFERES model (see section 4.1), the connect token

does not set any constraint nor on the order of conditions used to produce a

set labeling an edge (since all the conditions need to be true for an edge to

be eligible), neither on the conditions-actions order (since all the conditions

will be tested before any action occurs when crossing the elected edge). This

redundancy in the interpretation increase the evolvability of the model, since

the same structure may be obtained in di�erent ways.

Another kind of redundancy is that of the genetic code (see for example

section 4.1.1 for details about the genetic code used in ATNoSFERES): de-

pending on the number of tokens available, the genetic code might be more or

less redundant. If necessary, it can be designed in order to resist mutations,

or to encourage structure-building operations (having probabilistically more

codons for stack or structure manipulations).

5.2 Semantical Issues

5.2.1 Strong Parents-O�spring Behavioral Linkage

We assumed that we use a �ne-grain building language (section 3.1). Locality

of action of the language atoms, and their �ne-grain scope ensures that with

stack-based gene expression, most of the manipulations on the genotype have

only a local impact, thus o�spring structures are most of the time produced

from weak variations of their parents.

This strong parents-o�spring behavioral linkage is an important feature be-

cause it allows to have continuity, which smoothes the �tness landscape and

facilitates convergence toward adapted structures.

5.2.2 Cumulative Adaptation

The combination of on the one hand continuous variations occurring in the

genotype (through genetic operators operating on a �ne-grain substratum),

and on the other hand the continuity between parents and o�spring pheno-

type (due to the continuity in the genotype-to-phenotype function), makes

cumulative adaptation possible through a selection process, i.e. individuals

are getting more and more adapted to the environmental constraints. This

ensures that solutions space is not explored through pure random search but

according to improving solutions.
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5.3 Completeness Issues

5.3.1 Power of Expression

The stack-based ATN building language we propose in the ATNoSFERES

model allows to build any ATN (we have implemented an algorithm to pro-

duce a bitstring from a speci�ed graph). It is possible to explore the whole

solution space.

Our approach also allows to �ne-tune the structures: this seems a good com-

promise with regards to [6].

5.3.2 Limited Search Operators Bias

Since any genetic operator is structure independent, by using our simple and

uniform model of gene expression, we ensure that we can put as few bias as

possible in the search operators: the exploration of the solution space can be

performed by generic, classical operators (mutations, crossing overs, muta-

tions/deletions, : : : .

Still, it might be necessary to choose a convenient genetic code (which in-

�uences the probability of occurence of each token). It did not appear as a

central issue in our works until now, but it is a point that deserves attention,

and will be experimented soon.

6 Conclusions and Perspectives

We have presented a new approach of morphogenic evolutionary computa-

tion, that uses an indirect encoding and also features the advantages of direct

encoding. This stack-based gene expression is inspired from biological gene

expression process and has interesting properties that we have illustrated

through simple experiments and discussed.

In current works we are more deeply investigating the model properties, e.g.

the adaptation of bit string length.

In future works, we plan to formalize and generalize the properties that a

structure building language should comply with in order to keep the desired

properties (especially, locality) independently from the nature of the struc-

ture being built (graphs, Petri nets, trees, : : : ).
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Figure 6: Evolution of the �tness and chromosome length (random insertions

and deletions, r = 1 %, p = 20 %)
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Figure 7: The �optimal� ATN (providing the highest �tness with the simplest

structure).
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Figure 8: An ATN built by natural selection, implementing the best behav-

ioral strategy with almost the simplest structure.
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Figure 9: An ATN built by natural selection, implementing the best behav-

ioral strategy.


