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Abstract

On a computer, the optimal number of iterations of a converging se-

quence can be determined dynamically using Discrete Stochastic Arith-

metic. Computations are performed until the di�erence between two suc-

cessive iterates is not signi�cant. If the sequence converges at least lin-

early, we can estimate the signi�cant digits of the approximation common

with the exact limit. This strategy can be used for the computation of

integrals with the trapezoidal or Simpson's method. A sequence is then

generated by halving the step value at each iteration, while the di�erence

between two successive iterates is a signi�cant value. The exact signi�cant

digits of the last iterate are those of the exact value of the integral, up

to one bit. Numerical algorithms involving several sequences, such as the

approximation of integrals on an in�nite interval, can also be dynamically

controlled.

Key words: converging sequences, numerical validation, quadrature methods,

trapezoidal method, Simpson's method, CESTAC method, Discrete Stochastic

Arithmetic.

1 Introduction

Many approximation methods involve the computation of a converging sequence.

The limit is then approximated by one of the iterates. It is often diÆcult to

determine the optimal iterate, i.e. the approximation for which the global er-

ror, consisting of the truncation error and the round-o� error, is minimal. In

section 2, we recall methods and concepts which enable to estimate round-o�

error propagation: the CESTAC method, the principles of stochastic arithmetic

and �nally Discrete Stochastic Arithmetic (DSA). The theorems presented in

section 3 enable to control both the truncation error and the round-o� error in

the computation of a converging sequence. We describe a strategy to compute

dynamically the optimal iterate of a converging sequence using DSA. Further-

more we can determine in the approximation obtained which exact signi�cant
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digits, i.e. not a�ected by round-o� errors, are common with the expected limit.

Under some assumptions on the speed of convergence of the sequence, we show

that the exact signi�cant bits of the result obtained are those of the limit, up

to one. In section 4, we present theoretical results established in stochastic

arithmetic and their application to the control of arithmetical operations on

sequences computed using DSA. In section 5, we show how the theorems estab-

lished in the previous sections can be combined to control sequences in which

each term is the limit of another sequence. We describe a strategy which can

be used for the computation of improper integrals. The last section presents

numerical experiments carried out using DSA.

2 Principles of stochastic arithmetic

2.1 The CESTAC method

The numerical quality of a computed result R can be measured by its number

of exact signi�cant digits, which is the number of signi�cant digits it has in

common with the exact result r, more precisely:

De�nition 1 The number of signi�cant digits in common between two real

numbers R and r is de�ned in RI by

� for R 6= r, CR;r = log10

���� R+ r

2(R� r)

����,
� 8r 2 RI ; Cr;r = +1.

Then jR� rj =
��R+r

2

�� 10�CR;r . For instance, if CR;r = 3, the relative di�erence

between R and r is of the order of 10�3, which means that R and r have three

signi�cant decimal digits in common.

Remark: the value of CR;r can seem surprising if we consider the decimal no-

tations of R and r. For example, if R = 2:4599976 and r = 2:4600012, then

CR;r � 5:8. The di�erence due to the sequences of \0" or \9" is illusive. The

signi�cant decimal digits of R and r become actually di�erent from the sixth

position.

The CESTAC (Contrôle et Estimation Stochastique des Arrondis de Calculs)

method, which has been developed by La Porte and Vignes [9, 11, 12], enables

one to estimate CR;r without any information about r, using a probabilistic

approach of round-o� errors.

We de�ne below the random rounding mode.

De�nition 2 Each real number x, which is not a 
oating-point number, is

bounded by two consecutive 
oating-point numbers: X� (rounded down) and X+

(rounded up). The random rounding mode de�nes the 
oating-point number X

representing x as being one of the two values X� or X+ with the probability 1=2.
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With this random rounding mode, the same program run several times provides

di�erent results, due to di�erent round-o� errors.

It has been proved [2] that a computed result R is modelized to the �rst order

in 2�p as:

R � Z = r +

nX
i=1

gi(d)2
�pzi (1)

where r is the exact result, gi(d) are coeÆcients depending exclusively on the

data and on the code, p is the number of bits in the mantissa and zi are inde-

pendent uniformly distributed random variables centered in [�1; 1].
From equation (1), we deduce that:

1. the mean value of the random variable R is the exact result r,

2. the distribution of R is a quasi-Gaussian distribution.

Then to determine the accuracy of R, Student's test can be used. Thus from N

samples Ri; i = 1; 2; :::; N , the number of decimal signi�cant digits common to

R and r can be estimated with the following equation.

CR = log10

 p
N
��R��

���

!
; (2)

where

R =
1

N

NX
i=1

Ri and �2 =
1

N � 1

NX
i=1

�
Ri �R

�2
: (3)

�� is the value of Student's distribution for N � 1 degrees of freedom and a

probability level 1� �. Thus the implementation of the CESTAC method in a

code providing a result R consists in:

� performing N times this code with the random rounding mode. We then

obtain N samples Ri of R

� choosing as the computed result the mean value R of Ri, i = 1; ::; N

� estimating with equation (2) the number of exact decimal signi�cant digits

of R.

In practiceN = 2 orN = 3 and � = 0:05: Note that forN = 2, then �� = 12:706

and for N = 3, then �� = 4:4303:

In order to validate the method, the theoretical study forces to be able to

estimate at any time the numerical quality of some intermediate results. This

leads to the synchronous implementation of the method, i.e. to the parallel

computation of the N samples Ri. In practice a real number becomes an N -

dimensional set and any operation on these N -dimensional sets is performed

element per element using the random rounding mode.
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2.2 Stochastic arithmetic

Stochastic arithmetic [4, 6, 12] is a modelization of the synchronous implemen-

tation of the CESTAC method. By using this implementation, so that the N

runs of a code take place in parallel, the N results of each arithmetical operation

can be considered as realizations of a Gaussian random variable centered on the

exact result. One can therefore de�ne a new number, called stochastic number,

and a new arithmetic, called stochastic arithmetic, applied to these numbers.

An equality concept and order relations, which take into account the number of

signi�cant digits of stochastic operands have also been de�ned.

A stochastic number X is denoted by
�
m;�2

�
, where m is the mean value of

X and � its standard deviation. Stochastic arithmetical operations (s+, s�,
s�, s=) correspond to terms to the �rst order in �

m
between two independent

Gaussian random variables.

De�nition 3 Let X1 =
�
m1; �

2
1

�
and X2 =

�
m2; �

2
2

�
. Stochastic arithmetical

operations on X1 and X2 are de�ned as:

X1 s+ X2 =
�
m1 +m2 ; �

2
1 + �22

�
(4)

X1 s� X2 =
�
m1 �m2 ; �

2
1 + �22

�
(5)

X1 s� X2 =
�
m1 �m2 ; m

2
2�

2
1 +m2

1�
2
2

�
(6)

X1 s= X2 =

 
m1=m2 ;

�
�1

m2

�2

+

�
m1�2

m2
2

�2
!
with m2 6= 0: (7)

If X =
�
m;�2

�
, �� exists (depending only on �) such that

P (X 2 [m� ���;m+ ���]) = 1� �; (8)

I�;X = [m� ���;m + ���] is the con�dence interval of m at (1� �). The

number of signi�cant digits common to all the elements of I�;X and to m is

lower-bounded by

C�;X = log10

�
jmj
���

�
: (9)

When N is a small value (2 or 3), which is the case in practice, the values

obtained with equations (2) and (9) are very close. This remark is important

for the use of the concept of stochastic arithmetic via the practical use of the

CESTAC method.

2.3 Discrete Stochastic Arithmetic

The synchronous implementation of the CESTAC method is essential to control

branching statements. Because of round-o� errors, if A and B are two computed

results and a and b the corresponding exact values,

a > b; A > B and A > B ; a > b:
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Many problems in scienti�c computing are due to this dis-correlation: unsat-

is�ed stopping criterion, in�nite loop in algorithmic geometry... Taking into

account the numerical quality of the operands in order relations enables to

solve these problems partially [3]. This requires a very important concept: the

computational zero, also named informatical zero [10].

De�nition 4 During the run of a code using the CESTAC method, an inter-

mediate or a �nal result R is a computational zero, denoted by @:0, if one of

the two following conditions holds:

� 8i; Ri = 0,

� CR � 0.

Any computed result R is a computational zero if either R = 0, R being signi�-

cant, or R is not signi�cant.

A computational zero is a value that cannot be di�erentiated from the mathe-

matical zero because of its round-o� error. From this concept, discrete stochastic

relations have been de�ned.

De�nition 5 Let X and Y be N-samples provided by the CESTAC method.

� Discrete stochastic equality denoted by ds= is de�ned as:

Xds= Y if X � Y = @:0

� Discrete stochastic inequalities denoted by ds> and ds� are de�ned as:

Xds> Y if X > Y and X � Y 6= @:0,

Xds� Y if X � Y or X � Y = @:0.

Discrete Stochastic Arithmetic (DSA) is the joint use on a computer of the

synchronous implementation of the CESTAC method, the concept of computa-

tional zero and the discrete stochastic relations. DSA enables to estimate the

impact of round-o� errors on any result of a scienti�c code and also to check

that no anomaly occurred during the run, especially in branching statements.

DSA is implemented in the CADNA library1.

3 A strategy for a dynamical control of converg-

ing sequences

When a numerical algorithm requires the evaluation of the limit I of a sequence

(In), this limit is approximated by one of the iterates. The number of iterations

performed depends on the convergence speed of the sequence, which can be ei-

ther logarithmic, linear or exponential. As the number of iterations increases,

the truncation error usually decreases, but the round-o� error increases. There-

fore the choice of the optimal iterate may be problematic. For sequences which

1URL address: http://www.lip6.fr/cadna/

5



converge at least linearly, the theorems presented in this section enable one by

comparing the signi�cant digits common to two successive iterates In and In+1
to determine the signi�cant digits common to In and the limit I . Furthermore

if round-o� errors can be estimated, the optimal iterate can be dynamically

determined and the number of signi�cant digits it has in common with the limit

I can be evaluated.

3.1 Sequences with a linear convergence

Let us consider two successive iterates of a sequence: In and In+1. The number

of signi�cant digits common to these iterates, CIn;In+1
, can be easily measured.

If the convergence speed of the sequence is linear, the following theorem enables

one to deduce the number of signi�cant digits common to In and the limit, CIn;I ,

from CIn;In+1
. This theorem has been established by taking into account the

truncation error on two successive iterates, but not the round-o� error occurring

during their computation.

Theorem 1 Let (In) be a sequence converging linearly to I, i.e. which satis�es

In � I = C�n + o(�n) where C 2 RI and 0 < � < 1, then

CIn;In+1
= CIn;I + log10

�
1

1� �

�
+ o (1) :

Proof:

In � I = C�n + o(�n) (10)

By using the same formula for In+1, one obtains

In � In+1 = C�n(1� �) + o(�n) (11)

From equation (10), we deduce

In

In � I
=

In

C�n (1 + o(1))
(12)

In

In � I
=

In

C�n
(1 + o(1)) (13)

Therefore
In

In � I
=

In

C�n
+ o

�
1

�n

�
(14)

Then
In + I

2(In � I)
=

In

In � I
� 1

2
=

In

C�n
+ o

�
1

�n

�
(15)

Similarly, from equation (11), we deduce

In + In+1

2(In � In+1)
=

In

In � In+1
� 1

2
=

In

C�n
1

1� �
+ o

�
1

�n

�
(16)
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From de�nition 1 and equation (15) we deduce

CIn;I = log10

���� In

C�n
(1 + o(1))

���� (17)

CIn;I = log10

���� In

C�n

����+ log10 j1 + o(1)j (18)

Therefore

CIn;I = log10

���� In

C�n

����+ o(1) (19)

Similarly, from de�nition 1 and equation (16) we deduce

CIn;In+1
= log10

���� In

C�n
1

1� �

����+ o (1) (20)

Finally

CIn;In+1
= CIn;I + log10

�
1

1� �

�
+ o (1) (21)

From the number of signi�cant digits in common between In and In+1, we can

deduce the number of signi�cant digits in common between In and the limit I .

If the convergence zone is reached, o (1) � 1: the last term in equation (21)

becomes negligible.

8 0 < � < 1, 9k 0 < � � 1 � 1
10k

and therefore 0 < log10

�
1

1��

�
� k. If the

convergence zone is reached, the signi�cant digits in common between In and

In+1 are also in common with I , up to k digits. The lower � is, the faster the

convergence of the sequence is and the lower k is.

DSA enables one to estimate the number of exact signi�cant digits of any com-

puted result, i.e. its signi�cant digits which are not a�ected by round-o� error

propagation. Let us consider the computation of the sequence (In) in DSA and

let us assume that the convergence zone is reached. If discrete stochastic equal-

ity is achieved for two successive iterates, i.e. In � In+1 = @:0, the di�erence

between In and In+1 is only due to round-o� errors. Further iterations are

useless: In+1 is the optimal iterate. In this case, the exact signi�cant digits of

In+1 are in common with In and they are also in common with I , up to k digits.

More concisely, if the sequence (In) is computed until the di�erence between

two successive iterates is not signi�cant, then the exact signi�cant digits of the

last iterate are those of I , up to k digits.

Remark: if 0 < � � 1
2
, 0 < log2

�
1

1��

�
� 1, then the signi�cant bits in common

between In and In+1 are also in common with I , up to one.
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3.2 Dynamical control of the trapezoidal or Simpson's

method

This strategy can be used for the computation of integrals with the trapezoidal

or Simpson's method. Indeed a sequence which converges linearly can be gen-

erated by halving the step value at each iteration.

Let f be a real function which is Ck over [a; b] where k � 2. Let In be the

approximation of I =
R b
a
f(x)dx computed using the trapezoidal method with

step h = b�a
2n

.

If f 0(a) 6= f 0(b), the development of the error up to order 4 is [1, 7, 8]:

In � I =
h2

12
[f 0(b)� f 0(a)] +O(h4) (22)

The sequence (In) satis�es In�I = C�n+o(�n), with C =
(b�a)2

12
[f 0(b)�f 0(a)]

and � = 1
4
. Therefore theorem 1 could apply.

As the sequence (In) actually satis�es In � I = C�n + O(�2n), the following

property has been established in [5]:

CIn;In+1
= CIn;I + log10

�
4

3

�
+O

�
1

4n

�
: (23)

Let f be a real function which is Ck over [a; b] where k � 4. Let In be the

approximation of I =
R b
a
f(x)dx computed using Simpson's method with step

h = b�a
2n

.

If f (3)(a) 6= f (3)(b), the development of the error up to order 6 is [1, 7, 8]:

In � I =
h4

180
[f (3)(b)� f (3)(a)] +O(h6): (24)

The sequence (In) satis�es In � I = C�n + o(�n), with C =
(b�a)4

180
[f (3)(b) �

f (3)(a)] and � = 1
16
. Therefore, as for the trapezoidal method, theorem 1 could

apply.

As the sequence (In) actually satis�es In � I = C�n + O(� 3
2
n), the following

property has been established in [5]:

CIn;In+1
= CIn;I + log10

�
16

15

�
+O

�
1

4n

�
: (25)

For both methods, if the convergence zone is reached, the signi�cant digits

common to In and In+1 are also common to I , the exact value of the integral,

up to one bit. If approximations In are computed until In � In+1 = @:0, the

exact signi�cant bits of the last approximation are those of I up to one.
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3.3 Sequences with an exponential convergence

The strategy presented for sequences with a linear convergence is also valid for

sequences with an exponential convergence. It is based on the following theorem.

Theorem 2 Let (In) be a sequence converging to I in an exponential way, i.e.

which satis�es In � I = C �p
n

+ o(�p
n

) where C 2 RI , 0 < � < 1 and p > 1,

then

CIn;In+1
= CIn;I + log10

�
1

1� �p
n(p�1)

�
+ o (1) :

Proof:

In � I = C �p
n

+ o(�p
n

) (26)

By using the same formula for In+1, one obtains

In � In+1 = C
�
�p

n

� �p
n+1
�
+ o(�p

n

) (27)

From equation (26), we deduce

In

In � I
=

In

C�p
n
(1 + o(1))

(28)

In

In � I
=

In

C�p
n (1 + o(1)) (29)

Therefore
In

In � I
=

In

C�p
n + o

�
1

�p
n

�
(30)

Then
In + I

2(In � I)
=

In

In � I
� 1

2
=

In

C�p
n + o

�
1

�p
n

�
(31)

Similarly, from equation (27), we deduce

In

In � In+1
=

In

C
�
�p

n � �p
n+1
�
(1 + o(1))

(32)

Therefore
In

In � In+1
=

In

C
�
�p

n � �p
n+1
� + o

�
1

�p
n

�
(33)

Then

In + In+1

2(In � In+1)
=

In

In � In+1
� 1

2
=

In

C
�
�p

n � �p
n+1
� + o

�
1

�p
n

�
(34)

From de�nition 1 and equation (31) we deduce

CIn;I = log10

���� In

C�p
n (1 + o(1))

���� (35)
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Therefore

CIn;I = log10

���� In

C�p
n

����+ o(1) (36)

Similarly, from de�nition 1 and equation (34) we deduce

CIn;In+1
= log10

���� In

C (�p
n � �p

n+1
)
(1 + o(1))

���� (37)

Therefore

CIn;In+1
= log10

���� In

C �p
n
(1� �p

n(p�1))

����+ o(1) (38)

Finally

CIn;In+1
= CIn;I + log10

�
1

1� �p
n(p�1)

�
+ o(1) (39)

If the convergence zone is reached, the decimal signi�cant digits in common

between In and In+1 are also common to the limit I , up to log10

�
1

1��p
n(p�1)

�
.

If 0 < � �Mn, with Mn = ( 9
10
)
( 1
pn(p�1)

)
, then 0 < log10

�
1

1��p
n(p�1)

�
� 1. The

signi�cant digits common to In and In+1 are also common to I , up to one.

As the number n of iterations increases, Mn also increases and the condition

that � must satisfy in order to have log10

�
1

1��p
n(p�1)

�
� 1 becomes less and

less strict. For example, if the sequence (In) has a quadratic convergence, which

is characterized by p = 2, then M1 > 0:94 and M5 > 0:99.

Similarly, as p increases, the speed of convergence increases and Mn also in-

creases.

Let us consider a sequence (In) with an exponential convergence computed using

DSA. Computations are performed until, in the convergence zone, In � In+1 =

@:0. If � � Mn, the number of exact signi�cant digits of the last iterate are

those of the limit I , up to one.

Remark: if the convergence zone is reached, the signi�cant bits in common

between In and In+1 are also common to the limit I , up to log2

�
1

1��p
n(p�1)

�
.

If 0 < � � 2
( 1
pn(1�p)

)
, then 0 < log2

�
1

1��p
n(p�1)

�
� 1. This condition on � is

easily satis�ed. Indeed in the case of a quadratic convergence (i.e. for p = 2) if

n = 5, 2
( 1
pn(1�p)

)
> 0:97.

4 Dynamical control of arithmetical operations

on converging sequences

Let us consider a numerical method which aims to approximate an exact value

x1. This method may consist for example in computing an iterate of a sequence
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(un) such that limn!1 un = x1. Even using an arithmetic with in�nite preci-

sion, the value obtained is not x1, but an approximation which is a�ected by

a truncation error. In this section, we compare the results obtained using such

numerical methods in stochastic arithmetic with the exact values they approxi-

mate. The theoretical results presented here have been established in stochastic

arithmetic and can be applied to computations performed using DSA.

Theorem 3 Let X1 be the approximation of an exact value x1 in stochastic

arithmetic. Let us assume that the exact signi�cant bits of X1, i.e not a�ected

by round-o� errors, are those of x1 up to p.

Similarly let X2 be an approximation obtained in stochastic arithmetic of an

exact value x2, such that its exact signi�cant bits are those of x2 up to q.

Let 
 be an arithmetical operator: 
 2 f+;�;�; =g and s
 the corresponding

stochastic operator s
 2 fs+ ; s� ; s� ; s=g. Then the exact signi�cant bits of

X1 s
 X2 are those of the exact value x1 
 x2, up to max(p; q).

Proof:

From equation (9), the number of exact signi�cant bits of X1 =
�
m1; �

2
1

�
, i.e.

not a�ected by round-o� errors, can be estimated by log2

�
jm1j

���1

�
. The number

of bits of X1 in common with the exact value x1 is therefore log2

�
jm1j

���1

�
� p =

log2

�
jm1j

2p���1

�
. To take into account both the truncation error and the round-o�

error on X1, one has to consider not the variance �21 , but (2
p�1)

2.

Similarly the number of bits of X2 =
�
m2; �

2
2

�
in common with the exact value

x2 is log2

�
jm2j

���2

�
� q = log2

�
jm2j

2q���2

�
.

From equations (4) and (9), the number of exact signi�cant bits of X1s+ X2

is log2

�
jm1+m2j

��
p
�21+�

2
2

�
. To take into account both the truncation error and the

round-o� error on X1s+ X2, one has to consider not the variance �21 + �22 ,

but (2p�1)
2 + (2q�2)

2. The number of bits of X1s+ X2 in common with the

exact value x1 + x2 is therefore log2

�
jm1+m2j

��
p
(2p�1)2+(2q�2)2

�
, which can be lower-

bounded by log2

�
jm1+m2j

��

p
�21+�

2
2

�
� max(p; q). Then the exact signi�cant bits of

X1s+X2 are those of x1 + x2, up to max(p; q).

As X1s�X2 = (m1 �m2; �
2
1 + �22), the proof for the subtraction is similar as

the one for the addition.

From equations (6) and (9), the number of exact signi�cant bits of X1s�X2 is

log2

�
jm1m2j

��

p
m2�

2
1+m1�

2
2

�
. To take into account both the truncation error and the

round-o� error on X1s�X2, one has to consider not the variance m2�
2
1 +m1�

2
2 ,

but 22pm2�
2
1 + 22qm1�

2
2 . The number of bits of X1s�X2 in common with the
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exact value x1�x2 is therefore log2
�

jm1m2j

��
p
22pm2�

2
1+2

2qm1�
2
2

�
, which can be lower-

bounded by log2

�
jm1m2j

��
p
m2�

2
1+m1�

2
2

�
�max(p; q). Then the exact signi�cant bits

of X1s�X2 are those of x1 � x2, up to max(p; q).

From equations (7) and (9), the number of exact signi�cant bits of X1s=X2 is

log2

0
@ j

m1
m2

j

��

r
(
�1
m2

)
2
+(

m1�2

m2
2

)2

1
A. To take into account both the truncation error and

the round-o� error on X1s=X2, one has to consider not the variance ( �1
m2

)
2
+

(m1�2
m2

2

)2, but ( 2
p�1
m2

)
2
+ ( 2

qm1�2
m2

2

)2. The number of bits of X1s=X2 in common

with the exact value x1=x2 is therefore log2

0
@ j

m1
m2

j

��

r
(
2p�1
m2

)
2
+(

2qm1�2

m2
2

)2

1
A, which can

be lower-bounded by log2

0
@ j

m1
m2

j

��

r
(
�1
m2

)
2
+(

m1�2

m2
2

)2

1
A � max(p; q). Then the exact

signi�cant bits of X1s=X2 are those of x1=x2, up to max(p; q).

From theorem 3, we deduce the following corollary.

Corollary 1 Let (Ik) be a sequence converging at least linearly to I and let (Jk)

be a sequence converging at least linearly to J .

Let us consider the computation of these sequences in stochastic arithmetic.

Let In be an iterate such that the exact signi�cant bits of In are in common with

I, up to p.

Let Jm be an iterate such that the exact signi�cant bits of Jm are in common

with J , up to q.

Let
 be an arithmetical operator and s
 the corresponding stochastic operator.

Then the exact signi�cant bits of In s
 Jm are those of the exact value I
 J ,

up to max(p; q).

This corollary can be used if the sequences (Ik) and (Jk) are computed using

DSA. From section 3, as the sequence (Ik) converges at least linearly to I , if it is

computed until the di�erence between two successive iterates is not signi�cant,

i.e. In�1 � In = @:0, then we can determine the value p such that the exact

signi�cant bits of In are in common with I , up to p. Similarly if the sequence

(Jk) is computed until Jm�1 � Jm = @:0, then we can determine the value

q such that the exact signi�cant bits of Jm are in common with J , up to q.

If an arithmetical operation is performed on In and Jm using DSA, the exact

signi�cant bits of the result obtained are those of the result of the same operation

performed on I and J , up to max(p; q).

Remark: according to section 3, if the convergence of the sequences (Ik) and

(Jk) is suÆciently fast, then p = q = 1. In this case, the exact signi�cant bits

12



of the result obtained are those provided by the same operation on the limits,

up to one.

More generally, in a numerical algorithm involving the computation of several

sequences, if each sequence is computed until the di�erence between two suc-

cessive iterates is not signi�cant, each limit is approximated by the optimal

iterate. According to section 3, if each sequence converges at least linearly, we

can evaluate the number of signi�cant digits common between the limit and its

approximation. If arithmetical operations are performed on these approxima-

tions, we can determine the signi�cant digits of the result obtained which are

common with the result of the same operations performed on the limits.

5 Dynamical control of combined sequences

This section shows how to approximate the limit of a sequence by its optimal

iterate, this iterate being itself the limit of another sequence. The theorems

presented in sections 3 and 4 can be combined to determine the number of digits

of the approximation obtained which are in common with the exact result.

In the strategies described in this section, small letters denote exact values and

capital letters the corresponding approximations computed using DSA.

5.1 A strategy to compute combined sequences

We consider a sequence in which each term um is the limit of another sequence.

More precisely, let (um) be a sequence converging at least linearly to u and, for

all m, let (um;n) be a sequence converging at least linearly to um.

For all m, let Um be the approximation of um computed using DSA. Um is

obtained by computing the sequence (um;n) until, in the convergence zone, the

di�erence between two successive iterates is not signi�cant.

As for all m, the sequence (um;n) converges at least linearly to um, according

to section 3, one can determine the value q such that the exact signi�cant bits

of Um are common to um, up to q.

Figure 1 represents the signi�cant bits of Um and Um+1 if the di�erence Um �
Um+1 is not signi�cant. In this case, the exact signi�cant bits of Um+1 are

common to Um and are also common to um and um+1, up to q.

As the sequence (um) converges at least linearly to u, one can determine the

value p such that the bits common to um and um+1 are common with u, up

to p.

Consequently if the di�erence Um�Um+1 is not signi�cant, the exact signi�cant

bits of Um+1 are common with u, up to p+ q.

5.2 Dynamical control of integrals on an in�nite domain

Let us consider the computation of an improper integral g =
R
1

0
�(x)dx.
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Um

bits common with um

Um+1

bits common with um+1

bits common with u p bits

q bits

q bits

exact signi�cant bits common to Um and Um+1

exact signi�cant bits

exact signi�cant bits

Figure 1: signi�cant bits of Um and Um+1

The in�nite interval of integration is partitioned into �nite intervals of length

L. Let fj =
R (j+1)L
jL

�(x)dx and gm =
Pm

j=0 fj , limm!1gm = g.

g can be numerically approximated by an iterate gm, m being suÆciently high.

The optimal number of iterates to compute can be determined dynamically

using DSA.

Let Fj;n be the approximation of fj computed using the trapezoidal or Simpson's

method with step L
2n
.

For all j, the sequence (Fj;n) is computed until the di�erence between two

successive iterates is not signi�cant. This is not achieved at the same iteration

of all values of j. Let nj be the iteration at which Fj;nj�1 � Fj;nj = @:0.

According to section 3, for all j, the signi�cant bits of Fj;nj are those of fj , up

to one. Let Gm =
Pm

j=0 Fj;nj . According to corollary 1, the signi�cant bits of

Gm are those of gm, up to one.

Figure 2 represents the signi�cant bits of Gm and Gm+1 if the di�erence Gm �
Gm+1 is not signi�cant. In this case, the exact signi�cant bits of Gm+1 are

common to Gm and are also common to gm and gm+1, up to one.

We assume that the sequence (gm) converges at least linearly to g. According

to section 3, if the convergence zone is reached, Cgm;gm+1
= Cgm;g + Æ where Æ

represents p bits. Therefore the bits common to gm and gm+1 are common with

g, up to p.

Consequently if the di�erence Gm�Gm+1 is not signi�cant, the exact signi�cant

bits of Gm+1 are common with g, up to p+ 1.

14



Gm

bits common with gm

Gm+1

bits common with gm+1

bits common with g p bits

exact signi�cant bits common to Gm and Gm+1

exact signi�cant bits

exact signi�cant bits

Figure 2: signi�cant bits of Gm and Gm+1

6 Numerical experiments

Numerical experiments have been carried out using DSA implemented in the

CADNA library. Two examples are presented: the computation of a de�nite

integral and the computation of an integral on an in�nite interval.

6.1 Computation of a de�nite integral

Let us consider the integral I =

Z 1

0

6x3 � 15x2 � 28x+ 22

9x2 + 12x+ 4
dx = 1.

I has been estimated with the trapezoidal and Simpson's methods using the

strategy described in section 3. Approximations In have been computed with

step 1
2n

until the di�erence In�In+1 is not signi�cant. From section 3.2, we can

guarantee that the exact signi�cant bits of the last iterate IN are in common

with the exact value of I , up to one.

Table 1 presents for both methods the approximations of I obtained in single

and double precision. The number of exact signi�cant digits of each result has

been estimated using DSA. For each sequence, the exact signi�cant digits of the

last iterate are reported in table 1.

method in single precision in double precision

trapezoidal I9 = 0:10000E + 01 I21 = 0:100000000000E+ 001

Simpson I8 = 0:100000E + 01 I13 = 0:1000000000000E+ 001

Table 1: Approximations of I

We can notice that the exact signi�cant digits of each approximation obtained
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are in common with I . The number of iterations requested for the stopping

criterion to be satis�ed depends of course on the precision chosen, but also

on the quadrature method used. Whatever the precision is, less iterations are

performed with Simpson's method than with the trapezoidal method. This is

due to the di�erent convergence speeds of the sequences computed. Indeed the

approximation of I is of order 2 with the trapezoidal method and of order 4

with Simpson's method. For each method, the error on the last iterate jIN � I j
is not signi�cant. Because of round-o� error propagation, the computer can not

distinguish IN from I .

6.2 Computation of an improper integral

The strategy described in section 5.2 is used to compute the improper integral

g =
R
1

0
e�ax dx = 1

a
, where a > 0.

Using the same notations as in section 5.2, let gm =
Pm

j=0 fj , where fj =R (j+1)L
jL

e�ax dx.

The approximations of the integrals fj are computed with Simpson's method

using DSA. For every j, a sequence is computed until the di�erence between

two successive iterates is not signi�cant.

As gm � g =
R
1

(m+1)L
e�ax dx = �m+1

a
, where � = e�aL, the sequence (gm)

converges linearly to g. Therefore theorem 1 can apply.

Let Gm be the approximation of gm computed using DSA. The sequence (Gm)

is computed until the di�erence between two successive iterates is not signi�-

cant. We denote by M the iteration at which GM�1 � GM = @:0. According

to section 5.2, the exact signi�cant bits of GM are in common with g, up to

log2(
1

1��
)+ 1. Therefore the exact signi�cant decimal digits of GM are in com-

mon with g up to C, where C = log10(
2

1��
).

Table 2 (respectively 3) presents for a = 1 (respectively a = 10�5) and di�erent

values of L the exact signi�cant decimal digits of the approximation GM .

The number of exact signi�cant digits of GM not in common with g is approx-

imated by C.

As L increases, the number M of integrals fj to be approximated decreases.

We notice that the exact signi�cant digits of GM are those of g up to dCe.

L C � M GM

10�2 2.3 2335 0.9999999999276E+000

10�1 1.3 284 0.99999999999953E+000

1 0.5 33 0.999999999999996E+000

10 0.3 4 0.99999999999999E+000

50 0.3 2 0.10000000000004E+001

Table 2: Results obtained with Simpson's method for a = 1
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L C � M GM

102 3.3 19136 0.999999995109E+005

103 2.3 2346 0.9999999999352E+005

104 1.3 279 0.99999999999923E+005

105 0.5 33 0.999999999999995E+005

106 0.3 5 0.99999999999999E+005

Table 3: Results obtained with Simpson's method for a = 10�5

7 Conclusion

Discrete Stochastic Arithmetic can be used to dynamically determine the opti-

mal iterate of a converging sequence. Furthermore, if the sequence converges at

least linearly, the number of signi�cant digits of this iterate common with the

limit can be estimated. This number depends on the speed of convergence of

the sequence.

If an arithmetical operation is performed on the optimal iterates of two se-

quences, we can determine the signi�cant digits of the computed result common

with the exact result of the same operation performed on the two limits. This

allows a dynamical control of numerical algorithms involving the computation

of several sequences. Integrals on an in�nite interval can be approximated by

computing several converging sequences. By controlling dynamically each se-

quence, we can determine the signi�cant digits of the approximation common

with the exact value of the integral.

The sequences examined in this paper all converge to a scalar value. A per-

spective to this work could be the numerical validation of sequences of vectors

involved for example in iterative methods for solving linear systems.
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