DLX TUTORIAL
January 20, 2000
This tutorial requires about 6 hours in batch mode on a Sparc Station

1 Introduction

Welcome to the ALLIANCE CAD system. This file contains a complete tutorial based on the design of the 32 bit
microprocessor DLX. This tutorial does not focus on the processor architecture. The goal is to present the available
CAD tools in the ALLIANCE 3.0 release (especially logic synthesis and the data path compiler). Beginners who are
not familiar with ALLIANCE should start using the ADDACCU tutorial or the AMD tutorial. Each ALLIANCE
tool can operate as a standalone program but in this tutorial the tools are used according to a precise design flow.
The starting point is a behavioural VHDL model. The output is a CIF file.

The tools used in the design are:

e asimut: VHDL compiler and simulator.
e dlx_asm : DLX assembler.

e syf : Finite State Machine compiler.
e logic : Logic synthesizer

e netoptim : Net list optimizer

e scr: Standard Cell placer and router.
e fpgen : Data path net list capture.

e dpr: Data path placer and router.

e genlib : Net list capture.

e bbr: Block to block router.

e ring : Core to pads router.

e lynx: Layout to net list extractor.

e lvx : Net list comparator.

e s2r: Symbolic to real layout converter.

You can get on-line information on any ALLIANCE tool using the command :

| man <tool name> |

DLXm is a 32 bit microprocessor with a micro-programmed internal architecture. The description of the DLX is
given by].L.Hennessy and D.A .Patterson in “Computer Architecture, A quantitative Approach”, Morgan Kaufman
Publishers, Inc. 1990.

In order to simplify the task of validating the chip, an entire CPU board has been described in VHDL.

Thus the simulations are done using small assembler programs which are stored in the CPU board’s external
memory. This tutorial shows you how to create the DLXm into four steps, which must be followed in order to
produce a valid chip.

e Step 1: Behavioural Specification and Validation

e Step 2: Gate Level net list generation and validation
e Step 3 : Physical place and route with extraction and validation

e Step 4 : Translation from symbolic layout to the target process

In order to build the chip, all source files are included with this tutorial (see Appendix).

You will use the ALLIANCE tools to validate these sources and to generate first the gate level net list, then the
physical layout of the DLXm. The final output is a CIF format physical layout file. This can be sent directly to a
manufacturer for fabrication.

All you have to do to build the chip is type the commands given in this tutorial. If you are feeling too lazy to
type these commands by hand, you can build the entire chip automatically using the command :

If you want to start again from scratch, you can type the command :

‘ > make clean ‘

which will remove all the generated files.

The fully automatic chip generation requires about 6 hours on a SPARC station. If you have less time, you
can also run separately the four main steps listed above, thanks to special entries in the makefile. These entries are
referenced all along this tutorial.

The ALLIANCE tools use UNIX environment variables. They are accessed by the UNIX command setenv. For
example:

> setenv MBK_IN_LO vst
> setenv MBK_OUT_LO vst
> setenv MBK_IN_PH ap
> setenv MBK_OUT_PH ap
> setenv MBK_WORK_LIB .
> setenv MBK_CATAL_NAME CATAL
> setenv MBK_CATA_LIB
$(ALLIANCE_TOP)/cells/scr:
$(ALLIANCE_TOP)/cells/bsg: $(ALLIANCE_TOP)/cells/rfg: $(ALLIANCE_TOP)/cells/rsa:

$(ALLIANCE_TOP)/cells/fitpath/fplib:
$(ALLIANCE_TOP)/cells/ring

MBK_IN_LO : Logical input file format (and filename extension).

MBK_OUT_LO : Logical output file format (and filename extension).

MBK_IN_PH : Physical input file format (and filename extension).

MBK_OUT_PH : Physical output file format (and filename extension).
MBK_CATAL_NAME : Name of the catalogue file in MBK_WORK_LIB directory.

MBK_CATA _LIB : Paths to the directories that are to be searched for read-only cell libraries.

MBK_WORK_LIB : Directory where are saved the output files.

You can get on-line information on ALLIANCE environment variables using the command :

man < envir >

Some of the path names may have to be modified, in order to correspond to your particular installation of
ALLIANCE. In this tutorial we will assume that the directory structure of the source files has not been altered.

In this tutorial, the commands which are inside [] are preset. If you make the DLXm from the beginning to
the end, you do not have to set again these environment variables. All operations should be executed in the root
directory.

2 Simulation method for design validation

2.1 Behavioural model
The specification of the chip which you are going to build is given in the file dlxm_chip.vbe in the form of a VHDL
behavioural description. This allows simulations to be performed immediately.

In order to simplify the task of validating the chip, an entire CPU board has been described in VHDL. The CPU
board interconnections are described in the file dlxm_cpu.vst using VHDL structural syntax. Each component is
described in a separate file using VHDL behavioural syntax :

e dlxm_dec.vbe : Address decoder.
sr64_la.vbe : RAM.

timer.vbe : timer for external interrupts.
e roms.vbe : Supervisor ROM.

e romu.vbe : User ROM.

2.2 Validation Technique

In order to test the chip, a large number of short assembly language programs have been written. The programs
were each designed to test one particular aspect of the chip (e.g. an instruction, or a register). Each works on the
same principle: a test is performed, if test is OK, the program branches to a fixed address (defined as good) and
stops with the following message :

ERROR : “ assert violation on cell dIxm_dec: ” ==== ok : simulation has ended with functional test good ===="
, if not, the program branches to another fixed address and stops with the following message :
ERROR : “ assert violation on cell dixm_dec : ” ==== ko : simulation has ended with functional test bad ===="

The programs are assembled using the command dlx_asm, which assembles the DLX mnemonics but, instead
of generating object code as output, it generates the VHDL behavioural description of a 256 byte ROM. It is therefore
used to produce the romu.vbe and roms.vbe files for the board.

2.3 Simulation

The VHDL simulator asimut can mix structural and behavioural descriptions : a special file, defined by the environ-
ment variable MBK_CATAL_NAME (see man catal), tells the simulator which behavioural models are to be taken as
leaf cells.

Simulation is used to check the initial behavioural description of the DLXm processor and the output results
for each phase . However as simulation is time greedy, simulation is done in the tutorial with a single assembly
program, to show the design flow and the tools as quickly as possible. Yet the reader must feel free to use all the
provided programs for simulation.

3 Interactive Design

3.1 Behavioural Specification

Before starting the chip design, remember that all operations should be executed in the root directory.

The circuit behaviour is described in the *.vbe files using the ALLIANCE VHDL subset (see man vhdl and man
vbe).

The assembly language program add000.u is used. To assemble it, do :

> setenv MBK_WORK_LIB.
> dlx_asm add000.u romu
> dlx_asm add000.s roms

e add000.u and add000.s are the chosen example of assembly source files.

e romu and roms are the target files (romu.vbe and roms.vbe).

You can now perform the simulation :

> setenv VH_BEHSFX vbe
> setenv MBK_MAXERR 10
> setenv VH_PATSFX pat
> setenv MBK_IN_LO vst
> setenv MBK_CATAL_NAME CATAL_CPU_CHIP
[> setenv MBK_WORK_LIB .]
> setenv MBK_CATA_LIB
$(ALLIANCE_TOP)/cells/sct:
$(ALLIANCE_TOP)/cells/bsg: $(ALLIANCE_TOP)/cells/rfg: $(ALLIANCE_TOP)/cells/rsa:

$(ALLIANCE_TOP)/cells/fitpath/fplib:./mclib:
$(ALLIANCE_TOP)/cells/ring
> asimut -11 -p 50 -bdd dlxm_cpu dlxm_cpu add000_chip

e -11: size of the label in the dlxm_cpu.pat and the add000_chip.pat files.
e -p 50 : simulation will use sets of 50 patterns (see man asimut)
e -bdd : simulation uses bdd representation
e dlxm_cpu : structural description of the board (dlxm_cpu.vst)
e dlxm_cpu : pattern input filename (dlxm_cpu.pat)
¢ add000_chip : result filename (add000_chip.pat)
You should get the message :

ERROR: “ assert violation on cell dIxm_dec: ” ==== ok : simulation has ended with functional test good ====
which means that the test has been performed correctly.

”

The Status Register and the Program Counter are initialized thanks to the RESET input on the board and
convenient assembly instructions in the superuser rom (see add000.s).

The result of the simulation is placed in the pat file called add000_chip.pat . You can take a look at this file
using your favorite viewer /editor.

The reader who is willing to do more simulation test should follow the same procedure :

select a new assembly program (user and supervisor) in the stock_asm directory and copy it into the root
directory

create a new romu.vbe and a new roms.vbe by assembling a source file.
run asimut

check the simulation result :
ERROR : “ assert violation on cell dlxm_dec: ” ==== ok : simulation has ended with functional test good

—_—=="

All the output files resulting from operations of the paragraph 3.1 can be written automatically using the target
functional of the Makefile by typing :

‘ > Make functional ‘

3.2

3.21

Structural Design

Design Hierarchy

In this step, the structural descriptions of the chip (dlxm.vst), and the core (core.vst) are used. The chip is described
as a core surrounded by pads. The core is divided into two structural blocks: control and data path, the control
block being also divided into two structural blocks : sequencer and status, each of which must be represented by its
own behavioural description. The following source files are provided :

3.2.2

dlxm_chip.vst : VHDL structural model of the dIxm chip instantiating core and pads.
dIxm_core.vst : VHDL structural model of the core instantiating the data path, and the control.

dIxm_ctl.vst.h : VHDL structural model of the control instantiating the sequencer and the status (the control
model (dlxm_ctl.vst being saved in the file dlxm_ctl.vst.h to prevent future erasing) .

dlxm_seq.fsm : VHDL finite state machine model of the sequencer.
dlxm_sts.vbe : VHDL behavioural model of the status.

dlxm_dpt.vbe : VHDL behavioural model of the data path.

Sequencer state assignment

The sequencer is written using a subset of VHDL specifically designed for the description of finite state machines.
You must therefore compile this into a VHDL data-flow behavioural model (vbe) using the ALLIANCE tool syf :

[> setenv MBK_WORK_LIB .]
> syf -s dlxm _seq -of dlxm_seq -scan -save

-s : uses a vertical encoding algorithm

dlxm_seq : fsm source file (dIxm_seq.fsm)

-of dlxm_seq : output behavioural description (dlxm_seq.vbe)
-scan : adds a scan-path to the state register.

-save : saves encoding result in dlxm_seq.cod file

3.2.3 Validation of the DLXm block view

You can then simulate the resulting model after having copied the structural description of the control in two blocks
dIxm_core.vst.h :

> cp dlxm_ctl.vst.h dlxm_ctl.vst
> chmod 644 dlxm_ctl.vst

[> setenv VH_BEHSFX vbe]

[> setenv MBK_MAXERR 10]

[> setenv VH_PATSEFX pat]

[> setenv MBK_IN_LO vst]

[> setenv MBK_WORK_LIB .]

[> setenv MBK_CATA LIB ...]

> setenv MBK_CATAL_NAME CATAL_CPU_BLOCKS

> asimut -11 -p 50 -bdd dlxm_cpu dlxm_cpu add000_blocks

e -11: size of the label in the dlxm_cpu.pat and the add000_blocks.pat files.
e -p 50 : simulation will use sets of 50 patterns (see man asimut)
e -bdd : simulation uses bdd representation
e dlxm_cpu : structural description of the board (dlxm_cpu.vst)
e dlxm_cpu : pattern input filename (dlxm_cpu.pat)
e add000_blocks : result filename (add000_blocks.pat)
You should get the message :

ERROR : “ assert violation on cell dlxm _dec: ” ==== ok : simulation has ended with functional test good ====
which means that the test has been performed correctly.

”

The CATAL_CPU_BLOCKS file tells asimut to use the behavioural models for the three blocks data path,
sequencer and status.

3.2.4 Data path compilation

The first stage in the synthesis of the structural description of the chip is the generation of the data path. The
structural description of the data path is given in the source file dlxm_dpt.c. This textual description is equivalent
to a schematic capture of the data path. This description uses a set of predefined macros (see man fpgen). You must
compile this using the ALLIANCE data path generator fpgen, you will thus use the provided subdirectory mclib
to store the generated operators:

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA_LIB ...]
[> setenv MBK_IN_LO vst]

> setenv MBK_OUT_LO vst

> setenv MBK_IN_PH ap

> setenv MBK_OUT_PH ap

> setenv FPGEN_LIB ./mclib
> fpgen dlxm_dpt

e dlxm_dpt: input filename (dlxm_dpt.c)

This generates a hierarchical VHDL net list of the data path dIxm_dpt.vst . The generated operators (vbe, ap
and vst formats) instantiated in dlxm_dpt.vst are stored with their associated CATAL into the subdirectory ./mclib
defined by the environment variable FPGEN_LIB.

3.2.5 Sequencer synthesis

A standard cell net list of the sequencer is synthesized by the logic synthesis tool logic from the behavioural de-
scription contained in dlxm_seq.vbe :

[> setenv MBK_IN_LO vst]

[> setenv MBK_OUT_LO vst]

[> setenv MBK_WORK_LIB .]

> setenv MBK_TARGET_LIB $(ALLIANCE_TOP)/cells/scr
> logic -0 dIxm_seq dlxm_seqo

> logic -s dlxm_seqo dlxm_seq

e -0 : activates the behavioural optimizer and creates dlxm_seqo.vbe

e -s : activates the standard cells mapper and creates dlxm_seq.vst

e dlxm seq : input behavioural description for logic behavioural optimiser (dlxm_seq.vbe)
e dIxm seqo : behavioural optimized description (dlxm_seqo.vbe)

e dlxm seq : output gate net list description by logic (dlxm_seq.vst)

This generates a VHDL gate net list dIxm_seq.vst using the standard cell library defined by the environment
variable MBK_TARGET_LIB.

3.2.6 Status synthesis

A standard cell net list of the status block is synthesized from the behavioural description contained in dlxm _sts.vbe.
This is done using logic as for the sequencer.

[> setenv MBK_IN_LO vst]

[> setenv MBK_OUT_LO vst]

[> setenv MBK_WORK_LIB.]

[> setenv MBK_TARGET_LIB $(ALLIANCE_TOP)/cells/scr]
> logic -o dlxm_sts dlxm_stso

> logic -s dlxm_stso dlxm_sts

e -0 : activates the behavioural optimizer and creates dlxm_stso.vbe

e -s : activates the standard cells mapper and creates dlxm_sts.vst

e dlxm_sts : input behavioural description for logic behavioural optimiser (dlxm_sts.vbe)
e dlxm_stso : behavioural optimized description (dlxm_stso.vbe)

o dlxmsts : output gate net list description by logic (dIxm_sts.vst)

This generates a VHDL gate net list dlxm_sts.vst using the standard cell library defined by the environment
variable MBK_TARGET_LIB.

3.2.7 Control block generation

The logic synthesizer does not take care of fanout constraints. In order to minimize delays you now use the AL-
LIANCE tool netoptim. This performs fan-out optimisation and buffering of a structural description in order to
minimise propagation delays of critical paths. netoptim operates on the hierarchical view dlxm_ctl.vst and flattens
it to the gate level, thus creating the gate-level dlxm_ctl.vst model (and erasing the hierarchical view dlxm_ctl.vst):

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA _LIB ...]
[> setenv MBK_IN_LO vst]

[> setenv MBK_OUT_LO vst]

> setenv MBK_VDD vdd

> setenv MBK_VSS vss

> netoptim -g dlxm_ctl dlxm_ctl

e -g: netoptim performs a global optimization
o dlxm_ctl : input structural description (dIxm_ctl.vst)

e dlxm_ctl : output optimised structural description (dlxm _ctl.vst) flattened to gate level.

3.2.8 DLXm structural view validation

We have now a complete gate-level net list of the processor. This stage can be validated using asimut :

[> setenv MBK_WORK_LIB .]

[> setenv MBK_CATA LIB ...]

[> setenv VH_BEHSFX vbe]

[> setenv MBK_MAXERR 10]

[> setenv VH_PATSFX pat]

[> setenv MBK_IN_LO vst]

> setenv MBK_CATAL_NAME CATAL_CPU_GATES

> asimut -11 -p 50 -bdd dlxm_cpu dlxm_cpu add000_gates

e -11: size of the label in the dlxm_cpu.pat and the add000_gates.pat files.
e -p 50 : simulation will use sets of 50 patterns (see man asimut)
e -bdd : simulation uses bdd representation
e dIxm_cpu : structural description of the board (dlxm_cpu.vst)
e dlxm_cpu : pattern input filename (dlxm_cpu.pat)
¢ add000_gates : result filename (add000_gates.pat)
You should get the message :

ERROR : “ assert violation on cell dlxm_dec: ” ==== ok : simulation has ended with functional test good ====
which means that the test has been performed correctly.

”

The CATAL_CPU_GATES file tells asimut to use the behavioural models for the gates and for the generated
blocks.

3.2.9 Design for testability
All registers, except the 32 word register file, are in the scan-path :

e data path : The structural description uses scanable registers.
e sequencer: SYF has been used with the option -scan that automatically uses scanable registers.

o status : The behavioural description explicitly describes scanable registers.

Here we check the scan path with the simulator asimut with a dedicated file that fills in the scan path and check
the scan output.

[> setenv VH_PATSFX pat]

[> setenv VH_BEHSFX vbe]

[> setenv MBK_MAXERR 10]

[> setenv VH_PATSFX patl

[> setenv MBK_IN_LO vst]

[> setenv MBK_CATAL_NAME CATAL_CPU_GATES]

[> setenv MBK_WORK_LIB .]

[> setenv MBK_CATA LIB ...]

> asimut -1 10 -p 50 -bdd dlxm_cpu dlxm_scan dlxm_scan_res

e -110: size of the label in the dlxm_scan.pat and the dlxm_scan_res.pat files.
e -p 50 : simulation will use sets of 50 patterns (see man asimut)

e -bdd : simulation uses bdd representation

e dlxm_cpu : structural description of the board (dlxm_cpu.vst)

e dlxm scan : pattern input filename (dlxm_scan.pat)

e dlxm_scan_res : result filename (dlxm_scan_res.pat)

The output files resulting from commands of the paragraph 3.2, can be created automatically using the target
structural of the Makefile by typing:

‘ > Make structural ‘

3.3 Physical Layout
To get the symbolic layout description of the chip, you will :

route the control block with the standard cells router scr

route the data path with the specialized router dpr

route the data path and the control together with bbr (block to block channel router)

route the core to the pads with the ring router
Each place and route step will be validated using the following method :

e extracting a net list from the symbolic layout file using lynx

e comparing input net list and extracted net list with lvx

3.3.1 Control block routing

You must now use scr (Standard Cell Router) to generate the physical layout of the control. We will use the AL-
LIANCE format for input and output symbolic layout by setting the appropriate environment variables :

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA _LIB ...]
[> setenv MBK_VDD vdd]

[> setenv MBK_VSS vss]

[> setenv MBK_IN_LO vst]

[> setenv MBK_OUT_LO vst]

[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_PH ap]

> scr-p -r -1 5 -1 3000 -a 5 dlxm _ctl

e -p: Automatic placement.

e -r: Perform routing.

e -1 5: Number of rows.

e -i 3000 : Number of iterations.

e -a 5: Number of vertical supplies (power and ground wires).

o dlxm _ctl : Input net list (dIxm_ctl.vst) and connector placement parameter file (dIxm_ctl.scr)

The router takes the net list specified in the file dIxm_ctl.vst and generates a physical layout in the file dIxm _ctl.ap

following the connector parameter file requirements.

In order to verify that no errors occured in the generation of the physical layout, we extract a net list from the
layout using the ALLIANCE tool lynx, and then compare the result with the original net list using lvx.

To avoid confusion between original and extracted net lists we use the al format to represent extracted net lists.
For lynx to generate its output in this format, you must set the appropriate environment variable :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA LIB ...]
[> setenv MBK_IN_PH ap]

> setenv MBK_OUT_LO al

> lynx dlxm_ctl dlxm _ctl

e dlxm _ctl : input file (symbolic layout) dlxm _ctl.ap

e dilxm_ctl : output file (extracted net list) dlxm_ctl.al

Then compare :

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA_LIB ...]
> lvx vst al dlxm_ctl dlxm_ctl

e vst and dlxm_ctl : input net list dlxm_ctl.vst

e al and dlxm_ctl : extracted net list dIxm_ctl.al

And you should get the reply “Net Lists are Identical”.

10

3.3.2 Routing the Data Path

The data path uses a special type of cell library which is designed to allow routing over the cells, thus saving a
considerable amount of space compared with standard-cell implementation. For this routing you must use the
ALLIANCE tool dpr (Data Path Router).

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA _LIB ...]

[> setenv MBK_VDD vdd]

[> setenv MBK_VSS vss]

[> setenv MBK_IN_LO vst]

[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_PH ap]

> dpr -0 -p -r dlxm_dpt dIxm_dpt

e -0: Placement optimizatiom.
e -p : Automatic placement .
e -r: Automatic routing.
o dlxm_dpt: Output net list (dIxm_dpt.ap).
e dlxm_dpt: Input net list (dIxm_dpt.vst) and Connector placement parameter file dixm_dpt.dpr.
The router takes the net list specified in the file dlxm_dpt.vst and generates a physical layout in the file
dlxm_dpt.ap following the connector parameter file requirements.

Now repeat the verification procedure for the data path. First the extraction :

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA _LIB ...]
[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_LO al]
> lynx dlxm_dpt dlxm_dpt

e dlxm_dpt: input file (symbolic layout) dlxm_dpt.ap

e dlxm_dpt: output file (extracted net list) dlxm_dpt.al

Then compare :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA LIB ...]
> lvx vst al dIxm_dpt dlxm_dpt

e vst and dlxm_dpt : input net list dlxm_dpt.vst

e al and dIxm_dpt: extracted net list dIxm_dpt.al

11

3.3.3 Routing the Core

You must now interconnect the control block and the data path in order to generate the core. You will use AL-
LIANCE tool bbr to route them together.

First of all, you generate a “placement” file, which tells bbr how the blocks are physically orientated with
respect to each other. The simplest way for you to do this is to use genlib with the source file dlxm_core.c, which is
provided:

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA_LIB ...]
> genlib dlxm _core

e dlxm_core : input file name dlxm_core.c

This generates the placement file dlxm_core.ap.

The file format environment variables remain the same as before, so to produce a routed core all you have to
dois:

[> setenv MBK_WORK_LIB.]

[> setenv MBK_CATA _LIB ...]

[> setenv MBK_IN_LO vst]

[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_PH ap]

> bbr dlxm_core -0 dlxm_core vdd 12 vss 12

e dlxm_core : Input net list dIxm_core.vst and placement file dIxm_core.ap.
e -0 : Output file dIxm_core.ap (erasing placement file).

e vdd 12 vss 12 : Width of power and ground wires.

You now have the file dlxm_core.ap containing the physical layout of the core.

Verification of the Core

Now you perform the same verification process at the core level :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA _LIB ...]
[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_LO al]
> lynx dlxm_core dlxm_core

e dlxm _core : input file (symbolic layout) dlxm_core.ap

e dIxm _core : output file (extracted net list) dIxm_core.al

Then compare :

[> setenv MBK_WORK_LIB.]
[> setenv MBK_CATA _LIB ...]
> lvx vst al dlxm_core dlxm_core

e vst and dlxm_core : input net list dlxm_core.vst

e al and dlxm_core : extracted net list dIxm_core.al

And again you should get the reply “Net Lists are Identical”.

12

3.3.4 Routing the Chip

The final stage in generating the physical layout of the chip is to route the core to the pads using ring. The pad
placement depends on external constraints (see man ring) and is therefore defined in the file dlxm_chip.rin.

Again the file format variables remain unchanged so you can now perform the routing :

[> setenv MBK_WORK_LIB .]

[> setenv MBK_CATAL_NAME CATAL
[> setenv MBK_CATA LIB ...]

[> setenv MBK_IN_LO vst]

[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_PH ap]

> ring dlxm_chip dlxm_chip

e dlxm_chip : input netlist dlxm_chip.vst and placement file dIxm_chip.rin

e dlxm_chip : output symbolic layout file name dlxm_chip.ap

Thus a physical layout of the chip is generated in the file dlxm_chip.ap.
Verification of the Chip

Finally you must verify at the chip level :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA LIB ...]
[> setenv MBK_IN_PH ap]

[> setenv MBK_OUT_LO all
> lynx dlxm_chip dlxm_chip

e dlxm _chip : input file (symbolic layout) dlxm_chip.ap

e dlxm_chip : output file (extracted net list) dIxm_chip.al

Then compare :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATA_LIB ...]
> lvx vst al dlxm_chip dlxm_chip

e vst and dlxm_chip : input net list dlxm_chip.vst

e al and dIxm_chip : extracted net list dIxm_chip.al

And if you get the reply “Net Lists are Identical” your entire chip has been correctly routed.

You can visualize the chip using graal. Use for example:

[> setenv MBK_CATA_LIB ...]
> graal dlxm_chip

The output files resulting from commands of the paragraph 3.3 can be created automatically using the target
physical of the Makefile by typing:

‘ > Make physical

13

3.4 The Final Touch

The last step is to translate the symbolic layout (coordinates in lambda units) into a physical layout for the target
CMOS process (two output formats are supported : CIF and GDSII). This task is done by s2r, which performs
symbolic to real expansion, gap filling, denotching, and instantiates preexisting layout cells (necessary for the pads).

You must first define an environment variable with the name of a file containing the parameters of the target
process (in our case a 1 micron process) and then specify the cif format :

[> setenv MBK_WORK_LIB .]
[> setenv MBK_CATAL_NAME CATAL_CPU_GATES]

[> setenv MBK_IN_PH ap]
> setenv RDS_TECHNO_NAME $(ALLIANCE_TOP)/etc/prol10.rds

> setenv RDS_OUT cif
> setenv RDS_IN cif

The variable RDS_IN is required to specify the format of preexisting layout cells.

Then to perform the conversion :

> s2r dlxm_chip dlxm_chip ‘

e dlxm_chip : input symbolic layout file (dlxm_chip.ap).
e dlxm_chip : output physical layout file (dlxm_chip.cif).

The output files resulting from commands of the paragraph 3.4 can be written automatically using the target
real of the Makefile by typing:

Congratulations! The chip is ready for the foundry.

14

DLX TUTORIAL - APPENDIX
January 20, 2000

You can find below all the source files for the DLX microprocessor.

functional specification

dlxm_cpu.vst : VHDL structural model of the board instantiating RAM, ROM, timer, decoder, dlxm.
sr64_1a.vbe, sr64_8a.vst and sr64_32a.vst : Behavioural and structural description for the RAM .
dlxm_dec.vbe : VHDL behavioural description of the address decoder.

timer.vbe : VHDL behavioural description of the timer.

dlxm_chip.vbe : VHDL behavioural description of the dlxm.

add000.u and add000.s : Short assembly language programs.

CATAL_CPU_CHIP : List of behavioural models required for a simulation using the behavioural model of
DLXm.

dIxm_cpu.pat : Pattern input file for testing various views of dlxm chip.

structural design

dlxm_chip.vst : VHDL structural model of the dlxm instantiating core and pads.

dlxm_core.vst : VHDL structural model of the core instantiating the data path and the control.
dIxm_ctl.vst.h : VHDL structural model of the control instantiating the sequencer and the status.
dIxm_seq.fsm : Finite State Machine description for sequencer.

dlxm_dpt.vbe : Behavioural description for data path.

CATAL_CPU_BLOCKS : List of behavioural models required for a simulation using behavioural descriptions
for data path, sequencer and status.

dIxm_dpt.c: Source code for data path generator.
Jmclib : Subdirectiry used by fpgen to store the generated data path operators.
dIxm_sts.vbe : Behavioural description for status and interrupts.

CATAL_CPU_GATES : List of behavioural models required for a simulation using structural descriptions for
data path, sequencer and status.

dIxm_scan.pat : Pattern input file for scan path simulation.

physical layout

dIxm_dpt.dpr: Placement file for data path block connectors (dpr tool)
dixm_ctl.scr : Placement file for control block connectors (scr tool)
dlxm_core.c : Placement file for control and data path (bbr tool)

dlxm_chip.rin : Placement file for dlxm pads (ring tool)

15

