TUTORIAL : AMD 2901

Welcome to the ALLIANCE CAD system.
The goal of this tutorial is to present a typical design-flow of a simple 4 bits
processor (AMD2901), using the ALLIANCE tools.

The tools used here are :

e asimut : VHDL compiler and simulator.
e genlib : Net-List capture.

e scr : Standard Cell placer and router.

e ring : Core to pads router.

e lynx : Symbolic layout extractor.

e lvx : Net-List comparator.

e druc : Design rule checker.

e graal : Graphic layout editor.

e yagle : Functional abstractor.

e proof : Formal proof between two behavioral descriptions.
e s2r : Symbolic to real layout converter.

e tas : Timing Analysis static.

At any time you can get information on any ALLIANCE tool using the com-
mand :

> man <tool name>

All the available documentation is described in the README file. This tu-
torial doesn’t contain a description of the AMD2901, but the methodology
used in ALLTIANCE to produce it. Nevertheless, you will find in the file
AMD?2901 _doc.ps.tar, the original data-sheet of the circuit. To uncompress
the sheets, use the UNIX command :

>tar xvf AMD2901 _doc.ps.tar
>uncompress AMD2901*.Z

A GIF format of the data-sheet is also available in the file AMD2901_doc.gif.tar.
The design-flow used in this tutorial is composed of five steps :

e Step 1 : Behavioural description (VHDL model) and simulation.

e Step 2 : Generation and validation of the structural description (gate
net-list).



Step 3 : Physical design layout (Place and route).

Step 4 : Extraction and verification.
e Step 5 : Timing analysis.
e Step 6 : Chip finishing.

In order to build the chip in about two hours, all the source files are provided
with this tutorial :

e amd.vbe : VHDL behavioural model.

pattern.pat : Simulation Patterns.

chip.c : Chip structural description.

e chip.rin : Pads placement (for ring).

e heart.scr : Connectors placement (for scr).
e chip.inf : Registers renaming (for desb).

You will use the ALLIANCE tools to validate these input files and to build
the physical layout. The output is a CIF layout file ready for the foundry.
To build the chip you can :

e - run the UNIX commands in the order indicated by this tutorial.

e - build automatically the entire AMD2901 CHIP using the command :

If you want to start again this example from the begining, you just have
to type :

> make clean
> make

All ALLTANCE tools use a set of UNIX environment variables. These
variables are set by the UNIX command “export”.

> MBK_WORK_LIB=.
> MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/rin

> export MBK_WORK_LIB MBK_CATA _LIB

e MBK_CATA_LIB : This variable defines all paths to the directories
containing the ALLIANCE predefined cell libraries.

e MBK_WORK_LIB : This variable defines the working directory : all
user files will be written in this directory.



Some of the path names have to be modified in order to correspond to your
particular installation of Alliance, in this tutorial we will assume that the di-
rectory structure of the sources files has not been altered In this tutorial, the
commands which are inside [ | are preset. If you stay in the same shell during
the making of the AMD2901, you don’t have to set again these environment
variables.

1 Behavioural specification

1.1 Behavioural model

The circuit behaviour is described in the amd.vbe file using the ALLIANCE
VHDL subset (see man vhdl and man vbe). You must run the VHDL compiler
to validate the VHDL file syntax.

[> MBK_WORK LIB=.]

[> MBK_CATA LIB=.:/$ALLIANCE _TOP /cells/sclib/prol10:/SALLIANCE_TOP /cells/rix
[> export MBK_CATA _LIB MBK_WORK_LIB]

> asimut -b -c amd

e amd is the filename of the behavioural description (amd.vbe).
e -b means that the file is a pure behavioural description.

e -c stands for compilation only (compilability is checked, no simulation is
performed).

1.2 Simulation patterns

As you have specified a formal specification, you have to define a set of simula-
tion patterns. The same patterns will be used to validate each design step from
specification to physical layout.

The file pattern.pat is given as an example.

1.3 Simulation

You have now a logical description of your circuit, and a list of patterns. You
can run the zero-delay VHDL simulator asimut. You have to set up some new
environment variables specific to asimut.

> VH_MAXERR=10
> export VH_MAXERR

¢ VH_MAXERR : The maximum number of errors accepted before asimut
stops simulation.

> VH_PATSFX=pat]
> export VH_PATSFX]

e VH_PATSFX the extension of simulation patterns file.



[> VH_.MAXERR=10]

[> VH_PATSFX=pat]

[> MBK_WORK LIB=.]

[> MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10:/SALLIANCE_TOP /cells
[> export MBK _CATA LIB VH_MAXERR VH PATSFX MBK_WORK _LIB]

> asimut -b amd pattern result_beh

e amd : is the filename of the description (amd.vbe).

e pattern : is the filename for the input patterns (pattern.pat).

e result_beh : is the filename for the resulting patterns (result_beh.pat).
e -b : means that the amd file is a pure behavioural description.

The input pattern file can provide the expected outputs. Any difference be-
tween predicted outputs in pattern.pat and simulation results will be reported
as commentary on the screen and in result_beh.pat. This output file may be

used again for an another simulation, since it has the same format as the input
file.

2 Structural Description

2.1 Structural Design

The aim of this step is to build the gate level schematic corresponding to the
behavioural specification.

We must instantiate and connect logical gates and pads, supplied in the
standard cell library ser and the pad library ring. To do this, ALLIANCE
doesn’t use a schematic editor but the procedural language genlib which is a
set of C functions (see man genlib).

The structural description of the AMD2901 follows a hierarchical ap-
proach.

e First, each functionnal block is described as a separate gate net-list. There
are five blocks : accu, alu, ram, muxe, muxout.

e The next hierarchical level is the heart that interconnects these five blocks
among each others.

e The final hierarchical level is the chip that connects the heart to the
pads.

The chip.c file uses the genlib language to describe these 7 hierarchical
blocs.
The ALLIANCE system accepts several external file formats for net-list

(EDIF, VHDL, SPICE, ALLIANCE, VLSI). Environment variables allow to set
the formats. The .vst extension corresponds to the structural VHDL.



> MBK_IN_LO=vst
> MBK_OUT_LO=vst
> export MBK_OUT_LO MBK_IN_LO

ATl net-list files created and used by genlib will now be structural VHDL.

[ > MBK_IN_LO=vst |
[ > MBK_OUT _LO=vst ]
[ > MBK_WORK _LIB=. ]
[ > MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10:/$SALLIANCE_TOP /cells/ri
[ > export MBK_CATA _LIB MBK_IN_LO MBK OUT_LO MBK WORK _LIB]
> genlib -v chip
The 7 files alu.vst accu.vst ram.vst muxe.vst muxout.vst heart.vst
chip.vst have been created.

2.2 Structural Model Simulation

The various net-list files we have created represent the structural description
that should be validated by simulation, using the same patterns as in step 1.

[ > MBK_IN_LO=vst ]
[ > VH_PATSFX=pat |
[ > VH.MAXERR=10 ]
[ > MBK_WORK_LIB=. ]
[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK_CATA_LIB MBK_IN_LO VH_PATSFX
VH_MAXERR MBK WORK_LIB |
> asimut chip pattern result_str

e chip is the structural input file (chip.vst).
e pattern : is the filename for the input patterns (pattern.pat).

e result_str : is filename for the resulting patterns (result_str.pat).

Note the -b option does not appear any more, since we now have a structural
model.

Any new error appearing will be reported in the result_str.pat file. You
can try to introduce a schematic error by modifying the chip.c file, running
genlib and asimut to see the errors.

3 Physical Design

Building the heart, and routing the heart to the pads are quite different jobs.
So we use different tools.



3.1 Routing the heart

Scr is a standard cell placing and routing tool.
Here again ALLIANCE accepts several external file formats for the sym-
bolic layout. Environment variables allow to set the formats.

> MBK_IN_PH=ap
> MBK_OUT_PH=ap
[ > export MBK_IN_PH MBK OUT_PH

The hierarchical net-list will be flattenned before routing.

[ > MBK_IN_PH=ap ]
[ > MBK OUT PH=ap |
[ > MBK_IN LO=vst |
[ > MBK_ WORK _LIB=. ]
[ > MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10:/$ALLIANCE_TOP /cells/ri
[ > export MBK_CATA _LIB MBK_IN_PH MBK OUT_PH
MBK_IN_LO MBK_WORK_LIB]
> scr -p -r heart

e heart is the input net-list (heart.vst ) and the connector placement
(heart.scr). The output layout will be heart.ap.

e -p automatic placement.
e -r routing required.

The symbolic layout file heart.ap has been created.

3.2 Heart verification

e DRC : Druc checks the symbolic layout rules (see man druc)

[ > MBK_IN_PH=ap |

[ > MBK_WORK _LIB=. |

[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /ce
> RDS_.TECHNO_NAME=$ALLIANCE_TOP /etc/cmos_7.rds

> RDS_IN=cif
> RDS_OUT=cif
[ > export MBK_CATA LIB MBK_IN_PH MBK WORK_LIB

RDS_TECHNO_NAME RDS_IN RDS_OUT)]
> druc heart

If necessary, druc generates an error file (core.err).

o Net-list extraction.

Lynx is a hierarchical extractor that provides a gate net-list.
In order to avoid name collision, we use another file format for extracted
net-list (.al format). This new format is used to support additional data



: extracted parasitic capacitances.

> MBK_OUT_LO=al
> export MBK_OUT_LO

Then we run the lynx extractor :

[ > MBK_OUT_LO=al |

[ > MBK_IN_PH=ap |

[ > MBK_WORK _LIB=. |

[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /ce
[ > export MBK_CATA LIB MBK_OUT_LO MBK_IN_PH MBK_WORK_LIB]

> lynx heart

The extracted net-list file heart.al is created at this level.

e Net-compare.

The next tool is the net-compare lvx that performs a netlist comparison
between the input net-list heart.vst and the extracted net-list heart.al,
after flattening to the gate level.

[ > MBK_WORK_LIB=. |

[ > MBK_CATA LIB=.:/$ALLIANCE _TOP /cells/sclib/prol10: /SALLIANCE_TOP /ce
[ > export MBK_CATA LIB MBK WORK LIB]

> lvx vst al heart heart -f

3.3 Routing the chip

The pad placement depends on external constraints. The file chip.rin defines
the pads placement constraints (see man ring).

[ > MBK_IN_LO=vst |
[ > MBK_IN_PH=ap ]
[ > MBK_OUT_PH=ap |
[ > MBK_WORK _LIB=. ]
[ > MBK_CATA LIB=.:/$ALLIANCE _TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK_CATA _LIB MBK_IN_LO
MBK_IN_PH MBK OUT_PH MBK_WORK LIB]
> ring chip chip

e chip The input files chip.vst and chip.rin (the same name chip must be
used for the two files).

e chip The output physical file chip.ap.

The symbolic layout file chip.ap has been created. At this point, you can
display the chip with the layout editor graal.
You can see the chip and the instantiated heart, using the graal commands to
go through the hierarchy levels.



[ > MBK_WORK_LIB=. |

[ > MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK CATA LIB MBK_WORK LIB]

> graal

4 Physical Validation

The ALLIANCE verification tools allow both flat and hierarchical verification.
We will use a hierarchical approach.

4.1 Chip verification

The same procedure used for the heart applies for the entire chip.

[ > MBK_IN_PH=ap ]
[ > MBK_WORK_LIB=. ]
[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > RDS_.TECHNO_NAME=$ALLIANCE_TOP /etc/cmos_7.rds]
[ > RDS_IN=cif]
[ > RDS_OUT=cif]
[ > export MBK_CATA _LIB MBK_IN_PH MBK_WORK _LIB
RDS_TECHNO _NAME RDS_IN RDS_OUT]
> druc chip

Eventually, druc generates an error file (chip.err).

[ > MBK OUT_LO=al ]

[ > MBK_IN_PH=ap ]

[ > MBK_WORK _LIB=. ]

[ > export MBK_CATA _LIB MBK_OUT_LO MBK_IN_PH]
> lynx chip

The extracted net-list file chip.al is created by this step (This net-list instan-
tiates the heart).

[ > MBK_WORK_LIB=. |

[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK_CATA_LIB MBK_WORK_LIB]

> lvx vst al chip chip

Both net-lists chip.vst and chip.al are flattened to the gate level by lvx before
comparison (see man catal).



4.2 Chip simulation

Finally you can check globally the extracted net-list by applying the original
patterns to the extracted net-list. Thanks to the multiformat approach the
simulator asimut accepts .al format as structural input description.

> MBK_IN_LO=al
> export MBK_IN_LO

Then you have to run asimut.

[ > MBK_IN_LO=al]
[ > VH_PATSFX=pat]
[ > VH.MAXERR=10]
[ > MBK_WORK_LIB=. ]
[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK_CATA_LIB MBK_IN_LO
VH_PATSFX VH_MAXERR MBK_WORK_LIB]
> asimut chip pattern res_pattern

To complete the validation of our chip, the functional abstraction followed by
the proof must be done.

4.3 Functionnal abstraction and formal proof

The functional abstraction of the transitor net-list is realized by the tool ya-
gle (see man yagle). yagle flattens the chip (chip.al) to obtain a transistor
level description, and abstract then a behavioral description (chip.vbe). To
keep the coherence of register names between the behavioral description given
by yagle (chip.vbe) and the initial behavioral description (amd.vbe), a file
describing the name’s transformation is required. This file is chip.inf.

[ > MBK_IN_LO=al |

[ > MBK_.WORK_LIB=. ]

[ > MBK_CATA _LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10: /SALLIANCE_TOP /cells/ri
[ > export MBK_CATA_LIB MBK_IN_LO MBK_WORK _LIB]

> yagle chip -i -v

e chip is the input layout (chip.al).
e -iread the chip.inf file.
e -v to vectorize the interface of behavioral description.

The VHDL DATA FLOW description as been generated : chip.vbe

Now you have the abstracted behavioral description (chip.vbe) and the
initial behavioral description (amd.vbe). With proof (see man proof), you
can check the formal equivalence between the two descriptions.



[ > MBK_WORK_LIB=. |
[ > export MBK_WORK _LIB]
> proof -d amd chip

e chip is the abstracted file (chip.vbe).
e amd is the initial behavioral description (amd.vbe).
e -d displays errors.

If you want to see an error you can change one line in the file amd.vbe.
For example, change the line 301 :
scout <= NOT accu(3) AND test_mode ;
and try proof again.

5 Timing analysis

With the extracted net list chip.al TAs analyses each path of the circuit taking
account of the various capacitances. These results are summarize in a file .ttv
In this file we can see the critical path and the correspnding time. So it is
possible to know the period of the chip

You will enter :

[ > MBK_IN_PH=ap ]

[ > MBK_IN_LO=al |

[ > MBK_ WORK _LIB=. ]

[ > MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10:/$ALLIANCE_TOP /cells/ri
[ > export MBK_IN_PH MBK_WORK_LIB MBK_CATA_LIB |

> tas chip

6 Chip finishing

Until now we used symbolic layout (all coordinates in lambda-units). We
should now convert them to real dimensions, creating the physical layout (two
output formats are supported : CIF and GDSII). This last step is done by s2r.
s2r performs symbolic to real expansion, gap filling, denotching and instantiates
preexisting physical cells (this is necessary for the pads).

You must define 3 new environment variables :

> RDS_TECHNO_NAME=/$ALLIANCE_TOP /etc/proll0.rds
> export RDS_TECHNO_NAME

The proll0.rds is the technology file that contains the parameters correspond-
ing to the target process. (In this case the target process is 1 micron.)
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> RDS_OUT= cif
> export RDS_OUT

Defines the output format.

> RDS_IN=cif
> export RDS_IN

Defines the input format for the preexisting layout cells (pads).
You will enter :

[ > MBK_IN_PH=ap |
[ > MBK_WORK_LIB=. ]
[ > MBK_CATA LIB=.:/$ALLIANCE_TOP /cells/sclib/prol10:/$ALLIANCE_TOP /cells /ri
[ > RDS_.TECHNO_NAME=/$ALLIANCE_TOP /etc/proll0.rds ]
[ > RDS_IN=cif |
[ > RDS_OUT=cif]
[ > export RDS_OUT MBK_IN_PH MBK_WORK_LIB
MBK_CATA_LIB RDS_TECHNO_NAME RDS_IN]
> s2r -¢ chip amd2901

e -c deletes connectors at the highest level of hierarchy.

You did it...
The file produced is amd2901.cif. It is ready for the foundry.
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