First steps in using Alliance
the addaccu tutorial

Abstract

This tutorial introduces the design flow to be used in the Alliance CAD framework for the
design and verification of a standard cells circuit, including the pads. Each step of the desgin
flow is supported by one or more specific tools, whose use is briefly explained.

This text is meant to be simple and comprehensive, and is to be used to get into the sys-
tem. Should something be unclear or wrong, please indicate this by sending an e-mail to
al I i ance-support @i p6. fr.

1 Introduction

In this tutorial, you will learn the practical use of some basic Alliance tools by building a very
simple circuit from scratch. It is recommended that you read the overview.ps file before pro-
ceeding, as it describes the main steps of the design conceptually.

Before we proceed to the tutorial, you must make sure that the Alliance tools are readilly
available when invoking them at the prompt. The prompt in represented in the following text by
the symbol :

| “fred/addaccu %-) I

In this system, fred is the user, addaccu is the current directory, and %-) is supposed to give
us courage!
Try issuing the following command to check that Alliance is correctly installed:

| “fred/addaccu %-) yagle I

If everything is working, you get the following result:

YAGLE 2.00
Usage . yagle [options] <filel> [file2]
Options : -i reads the .inf file
-v vectorises the vhdl description
-p=n n is the depth for functional analysis
-nc no detection of complex gates
-nl no latch detection
-fel transistor netlist detection
-elp use the technology file ‘.elp’
-d generates a .cns file
-b transistor orientation
-z functional analysis through HZ nodes
-0s only one vdd and vss in the vhdl description
-nh generates a hierarchical cone netlist
file2 is the vhdl file to be generated (default is filel)
-t display = execution trace

If it does not work, please abort the tutorial and fix the pathnames.

We will assume that the user is running a c-like shell, like csh or tcsh . If you run a sh-
like shell, please refer to your documentation.

Typically do:

“fred/addaccu %-) setenv ALLIANCE_TOP /usr/local/cad/alliance
“fred/addaccu %-) setenv PATH $ALLIANCE_TOP/bin:$PATH

Where we assume that Alliance has been installed under /usr/local/cad/alliance direc-
tory. In the sequel, we will assume that the $ALLIANCE_TOPvariable is properly set up.

All the tools used in this tutorial are documented at least with a manual page. Each manual
can be accessed using the man tool command. You may have to do a:

|“fred/addaccu %-) setenv. MANPATHSALLIANCE_TOP/man:$MANPATH |

in order to have the manual accessible.
The tutorial is organized around the following sections:

e Chip overview (page ??);

e Design flow (page ??);

e Execution environment set-up (page ??);
o Behavioral capture and simulation (page ??);
o Netlist capture (page ??);

e Core layout generation (page ??);

e Core layout verification (page ??);

o Core to pads routing (page ??);

e Chip visualization (page ??);

o Functional abstraction (page ??);

o Further verifications (page ??);

e Symbolic to real technology conversion (page ??).

\ cout
b[3:0 — |

sel s[3: 0]

a[3: 0]

]
« — o

Figure 1: Architecture of the addaccu circuit.

2 Chip overview

The picture in the Figure ?? shows the architecture of the small chip that will be our example all
along this tutorial. As you can see, the circuit is pretty small: it mostly consists in a four bit adder,
a four bit register, and a 2 to 1 four bit multiplexer.

Inputs are located on the left side of the picture, and outputs are located on the right side. We
did not represent the power supplies on this schematic, but you’ll need them in order for the chip
to work!

The circuit performs an addition between either the b[3:0] and a[3:0] inputs when sel is
set to 0, or between b[3:0] and the contents of the four bit register when sel is set to 1. The
content of the register is overwriten by the value of the outputs s[3:0] on each falling edge of
the clock, ck.

3 Design flow

You are now ready to actually design the chip and use the Alliance tools. The design flow for this
little example is composed of 5 main steps:

1. behavioral capture and simulation;
2. netlist capture and validation;

3. physical layout generation;

4. design validation;

5. symbolic to real conversion.

As you will see, points 2 and 3 must be performed for each level of hierarchy. In this example
we distinguish two levels of hierarchy: the core level and the chip level. At the core level, the leaf
cells of the design belong to the Alliance standard cells library. At the chip level, the previous
core and pads belonging to the Alliance pad library are used.

The Figure ?? below describes the circuit’s hierarchy.

addaccu

NS

Y

Figure 2: Hierarchical partitionning.

=))

4 Execution environment set-up

Before you start examining the first phase of the design methodology, you first have to set up an
execution environment for the Alliance tools.

If the Alliance installation is set up properly, most of the tools can be executed without prob-
lem. If the installation is only partial, or if you want to set a special feature of a tool, you will have
to set some environment variables up.

The environment variables upon the which each tool depends are documented in each tool
manual page. However, some variables are really useful, and are in part documented here.

4.1 Cell libraries path

The first thing to know for this circuit is the actual location of the standard-cell library. This library
is located into $ALLIANCE_TOP/cells/sclib . But indicating only one library is not enough,
and as you can see in doing als $ALLIANCE_TOP/cells , several libraries are available.

The other library of interest here is the pad library, located in $ALLIANCE_TOP/cells/ring

To set up the cell library path, the following command is required:

| “fred/addaccu %-) setenv MBK_CATA_LIB $ALLIANCE_TOP/cells/scr:$ALLIANCE_TOP/cell s/ring l
This setenv instructs Alliance tools to search its cells in /alliance/cells/scr and then
in /alliance/cells/ring , that respectively contains the standard cells and the pads.

4.2 User working directory

You must specify the directory where the files generated by an Alliance tool are to be located.
Please enter the following command:

| “fred/addaccu %-) setenv. MBK_WORK_LIB. I

In this case, the working directory is the current directory. This library is scanned before the
ones set in MBKCATALIB when a tool loads a cell, and the only one used for writing a cell. Note
that . is the default value of this variable, so it is not required to set it up usually.

4.3 File formats

One of the interesting features of Alliance is that different file formats can be used for both netlist
and layout view. However, in the design methodology we wish to promote, some formats are
recommended. The vst , structural VHDL, is dedicated to netlist specification. The al format is
dedicated to extracted layout representation. The ap format is the usual layout format.

So, prior to generate a specification netlist, you shall type:

| “fred/addaccu %-) setenv. MBK_OUT_LOvst I

But if you wish to extract a netlist from the layout then you'll do:

| “fred/addaccu %-) setenv. MBK_OUT_LQal I

5 Behavioral capture and simulation

When designing a chip, the first thing to do is to write its behavior, based on its functional spec-
ifications. In our example addaccu , we have to modelize an adder, a register and a multiplexer.
We also have to specify in the resulting behavior file that the adder may take as an input the result
of a previous calculation or a new input stimuli.

Modern behavioral descriptions are written using the VHDL language, the most promoted
and supported hardware description language.

Let us now edit the behavioral description of addaccu by issuing the following command:

| “fred/addaccu %-) vi addaccu.vbe I

The addaccu.vbe file contains the behavioral description of the circuit. Vbe stands for
VHDL behavioral description. Although this tutorial does no intend to explain the arcanes of
VHDL programming, it's worth noting some interesting points:

1. notice that the entity name, addaccu , identifies the circuit;

2. examine the circuit interface. You can recognize the terminals of the previous picture, plus
4 special terminals, known as supply terminals. The supply terminals are needed for the
last stage of the design, as the original behavioral description must be matched with an “ex-
tracted” behavior. If this does not make immediate sense to you, do not panic, everything

will be clear in a moment;

3. take a look to the functional architecture of addaccu . When examining it, pay attention to
the reg _bit register = names of the accumulator reg , as they will be used later in the
validation stage;

4. read carefully the functional description. With a little work, you can recognize the descrip-
tion of the multiplexer, the equations of the adder, and the accumulator. It is very important
to notice that the functional description of the circuit assumes that edge-triggered latches

are used.

Once you have carefully examined this file, close it and get back to the shell prompt, for the

VHDL compilation stage.

5.1 Behavior compilation

Once the behavioral description of the circuit is written, it is time for VHDL compilation.
You are now ready to compile addaccu.vbe . As we do not have written simulation patterns
yet, the only thing we can do is to test the syntax of the file we have just edited.

At the shell prompt level, please type:

|~fred/addaccu %-) asimut -b -c addaccu

This command instructs asimut to compile the behavioral file addaccu.vbe

means behavioral description, and -¢c means compilation only, i.e no simulation.

. Option -b

A SIMUlation Tool
Alliance CAD System 3.2, asimut

E-mail support: alliance-support@asim.lip6.fr

Initializing .

Searching addaccu

BEH : Compiling addaccu.vbe (Behaviour)
Making GEX ...

QPO QPOE@ CPOCPCEPRPCEEPRLO@EL PLEE@@

v2.01

Copyright (c) 1991-1997, ASIM/LIP6/UPMC

“fred/addaccu %-) asimut -b -c addaccu
@ @e@@ @ PERR@EEPE@Q@
@ @ @@ @@ @ @@ @
@@ @@ @ @ @ @@ @
@ @@@ QCO@EOQ0 PEREEPE@Q@ @@
@ @@ QCe@ QPO CO@e @@ @@ @ @@
@ @@ QCee@ @@ O 0@ @@ @@ @@ @@
@ @@ Q@ @@ 0@ 0@ @ @ @ @@
@QeeR@@e@ @@ 0@ @O0 Q0 @ 0@ @@ @@
@ @@ @@ @@ 0@ @@ Q@ @ 0@ @@ @@
@ @ @ @ @@ OO0 Q0 0@ 0@ @@@ @@

@EPEEO

Paris, France, Europe, Earth, Solar system, Miky Way, ...

Figure 3: Asimut compiling the behavioral specifications.

5.2 Behavioral simulation and validation

A behavioral description without simulation patterns is useless. In order to see if the behavior you
have just written is functionally correct, you must write simulation patterns and use the asimut

simulator function.

Simulation patterns are contained in a plain text file, addaccu.pat . For more informations
about the pat format you can read the appropriate on-line manual —man 5 pat — or read the
printed documentation.

To get acquainted with addaccu.pat , please issue the following command:

“fred/addaccu %-) vi addaccu.pat I

There are several interesting things here. First, you can recognize the circuit interface again.
Second, you can see that output terminals are now located at the end of the interface. Ordering
terminals is very important for pat files. The order you use to specify terminals greatly influences
the way you will have to write simulation patterns. It is important to notice that simulation
patterns contain both input and output values. The behavior must be checked using these values.
Comments are prefixed by a #, and are of much interest here.

Once you have understood the structure of this file, you are able to simulate the previous
behavioral description.

In order to simulate, please type:

|~fred/addaccu %-) asimut -b addaccu addaccu specifications l

to obtain:

“fred/addaccu %-) asimut -b addaccu addaccu specifications

@ @ee@ @ QEEPREEEE@Q@
@ @ @@ 0@ @ ee @
@ee @@ @ @ @ @@ e
@@e@ @@ QO@COEE QPEEEEE@ @@

@ @@ ©COCC@ e @O @@ @@ @ @@

@ @@ QEEP@ @@ 0@ Q@ @ @@ @@ @@

@ @@ Qe@ Q@ @@ @ Q@ @ @ @@

lelelelelel) @@ @@ @ Qe @ @@ @@ @@

@ @@ @@ @@ 0@ 0@ Q0@ @@ @ @@

@ Q@ @@ @ ©O@ Q@ Q0@ @@ @ @@
QEP@ Qe CCPREEPCEEPRO@OE CPEE@Ee@ @EEEEE@

A SIMUlation Tool

Alliance CAD System 3.2, asimut v2.01
Copyright (c) 1991-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

Paris, France, Europe, Earth, Solar system, Miky Way, ...
Initializing .
Searching addaccu
BEH : Compiling addaccu.vbe (Behaviour)

Making GEX ...

Searching pattern file : addaccu
Restoring

Linking

Hit----- processing pattern 0 ----- Hit#
Hit----- processing pattern 1 ----- Hit#
Ht----- processing pattern 2 ----- Hit#
HHtHf----- processing pattern 3 ----- it
HHtHf----- processing pattern 4 ----- it
HHtHf----- processing pattern 5 ----- it
Hit----- processing pattern 6 ----- Hit#

Figure 4: Asimut checking the behavior with a few functionnal test vectors.

Feel free to add new simulation vectors, as it’s a very good practice. You can also write obvi-
ously wrong patterns to see how asimut behaves when it encounters errors.

6 Netlist capture and validation

You are now about to capture the logical view of addaccu , commonly known as netlist. The
design methodology prevents the designer from building the entire netlist in one shot, including
pads. VLSI design is based on hierarchy and incremental approaches.

6.1 Netlist capture
The circuit netlist you have to write will be captured in two steps:

1. capture of the core netlist;

2. capture of the chip netlist, linking the core with pads.

The core netlist contains standard-cells describing the logical functions needed to design the
adder, the multiplexer and the accumulator, and the internal wires.
We do not use a schematic editor for netlist capture, but rather a textual approach.

| “fred/addaccu %-) vi core.c I

The core netlist is nothing more than a C file containing specific function calls for the creation
of VLSI objects. Notice that the include file genlib.h must systematically be included at the top
of genlib’s files.

The description of a netlist in C is mainly based on the DEELOFIG, LOCONnd LOINS func-
tions. DEF.LOFIG defines the name of the resulting netlist view, LOCONnstanciates a new termi-
nal in the currently opened figure, and LOINS instanciates pre-existing cells or blocks. For more
informations, please read the on-line manual associated with each function.

To compile and run the C file, you must use the genlib program.

You must specify the input format of cells that are instanciated in the genlib’s code.

Therefore enter the following command:

“fred/addaccu %-) setenv. MBK_IN_LO vst
“fred/addaccu %-) setenv. MBK_OUT_LOvst

These setenv define the input and output formats for the specification netlist.

vst stands for structural VHDL description. The design methodology assumes that user
defined netlists must use extension vst as we’ve already said. The al format is mostly used for
extracted netlist with specific informations like capacitances that cannot be coded in VHDL.

At last, you can execute the genlib program:

|~fred/addaccu %-) genlib -v core l

to get:

“fred/addaccu %-) setenv. MBK_IN_LO vst
“fred/addaccu %-) setenv. MBK_OUT_LOvst
“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr

“fred/addaccu %-) genlib -v core
QEE@ QEE@E@@ @ @@
@@ @@ @@ @QE@E@ @@
@@ @ @@ @ @@
@@ QQEPEERO@Q@ @@ @@e@
@@ @ @ ee@ @ @@ @EEE@ @@
@@ @Q@@@ED @@ @@ @@ @@ @@ @@ @
@@ QO CPCECECER @@ @@ @@ @@ @@
@@ @ Q@ @@ @@ @@ @@ @@ @@ @@

@@ @@ @@ @ @@ 0@ @@ @ @@ @@ o0
@@ @@ @@ e @@ @@ @ 0@ e
@@e@ clejelaelalelcaelclaeaaecclalalaaley

Procedural Generation Language
Alliance CAD System 3.2, genlib 3.3
Copyright (c) 1991-1998, ASIM/LIP6/UPMC

E-mail support: alliance-support@asim.lip6.fr

Generating the Makefile

Compiling,

Current execution environment

MBK_CATA_LIB : /users/soft5/newlabo/Solaris/cells/sclib
MBK_WORK_LIB

MBK_IN_LO : st

MBK_OUT_LO : st

MBK_IN_PH . ap

MBK_OUT_PH Toap

MBK_CATAL_NAME CATAL

Executing

Removing tmp files

Figure 5: Netlist core generation using genlib

You can now look in the current directory for a file named core.vst . This file contains the
resulting description of the core.

The addaccu.c file contains the actual chip netlist. You can edit it to see how pads are in-
stanciated.

Running the following command:

|"fred/addaccu %-) genlib -v addaccu I

produces:

10

“fred/addaccu %-) setenv. MBK_IN_LO vst
“fred/addaccu %-) setenv. MBK_OUT_LOvst

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
“fred/addaccu %-) genlib addaccu
QEE@ QEE@E@@ @ @@
@@ @@ @@ @QE@E@ @@
@@ @ @@ @ @@
@@ QQEPEERO@Q@ @@ @@e@
@@ @ @ ee@ @ @@ @EEE@ @@
@@ @Q@@@ED @@ @@ @@ @@ @@ @@ @
@@ QO CPCECECER @@ @@ @@ @@ @@
@@ @ Q@ @@ @@ @@ @@ @@ @@ @@

@@ @@ @@ @ @@ 0@ @@ @ @@ @@ oo
@@ @@ @@ e @@ @@ @ 0@ e
@@e@ clejelaelalelcaelclaeaaecclalalaaley

Procedural Generation Language

Alliance CAD System 3.2, genlib 3.3
Copyright (c) 1991-1998, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

Figure 6: Core to pad netlist generation using genlib

This creates addaccu.vst , the resulting netlist, in the current directory.

6.2 Simulation of the specification netlist

Once the complete netlist has been captured, we can simulate the whole chip with the previous
simulation patterns.

You can run asimut by entering the following command:

|~fred/addaccu %-) asimut addaccu addaccu schema I

It produces the output of Figure ?2.

The first addaccu stands for addaccu.vst . The second addaccu stands addaccu.pat ,the
pattern file with input and output values. schema stands for schema.pat , the generated list of
patterns.

Because option -b is not set and because MBKIN _LO contains vst , asimut simulates the
specification netlist we have captured with genlib

Errors during this execution mean that something went wrong between your current position
in the design flow and the behavioral simulation stage.

11

“fred/addaccu %-) setenv

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ringxx
“fred/addaccu %-) asimut addaccu addaccu schema
Warning 2 : consistency checks will be disabled
@ QEE@ @ clelelelelelelelele)
@ @ @@ @e@ @ @@ @
@ee @@ @ @ @ e @
@e@ @@ Q@R @PRREEE@ @@
@ @@ @REE@ QPP CO@PE @@ @@ @@ @@
@ @@ @EEE@ @@ 0@ Q@ @@ @@ @@ @@
@ @@ Q@ @@ 0@ 0@ @@ @ @ @@
QEEEEE@ @@ @@ 0@ 0@ @@ @@ @ @@
@ @@ @@ @@ @ 0@ 0@ @@ @@ @ @@
@ Q@ QPe@ @ 0@ 0@ 0@ @ e @@ @@
QREE@ QCOOE@ QCRPEOPECEERCEO@AC AEP@E@ @EREERE@@
A SIMUlation Tool
Alliance CAD System 3.2, asimut v2.01
Copyright (c) 1991-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr
Paris, France, Europe, Earth, Solar system, Miky Way,
Initializing
Searching addaccu
Compiling addaccu (Structural)
Flattening the root figure
Searching a2y ..
BEH : Compiling a2_y.vbe (Behaviour)
Making GEX ...
Searching pi_sp
BEH : Compiling pi_sp.vbe (Behaviour)
Making GEX ...
Searching pck_sp
BEH : Compiling pck_sp.vbe (Behaviour)
Making GEX ...
Searching pattern file : addaccu
Restoring
Linking
-~~~ processing pattern 0 ----- it
HHtH----- processing pattern 1 ----- it
HHtHf----- processing pattern 2 ----- HtH
Hit----- processing pattern 3 ----- HHit#
Ht----- processing pattern 4 ----- Hit#
H#it----- processing pattern 5 ----- Hit#
Ht----- processing pattern 6 ----- Hit#

MBK_IN_LO vst

Figure 7: Asimut checking the netlist description.

12

7 Core layout generation

Incremental design relies on hierarchy. Before you design the core to pads netlist, the circuit core
must be successfully built. In this example, the layout generation relies on:

1. standard-cells placement (automatic or manual);
2. automatic routing of standard-cells.

scr is a place and route tool that can produce automatically the layout view from a netlist
description.

As stated in the previous section, before you run scr , you must specify environment variables.
Needless to say that these variables will deal with physical aspects of the circuit.

First, you must specify the input layout format you use for the standard-cells. The Alliance
distribution only contains ap symbolic layout files so you must issue the following command:

|"fred/addaccu %-) setenv. MBK_IN_PH ap I

This command instructs scr to use the ap cell layout format as input. Remember that the
variable MBKCATALIB is still set, so Alliance tools know where to find cells.
Second, you must accordingly specify the output layout format. Again, the format is ap, so:

| “fred/addaccu %-) setenv. MBK_OUT_PHap I

This command instructs scr to use ap representation of cells as an output.
Everything is now ready for the place and route phase. The command is:

|"fred/addaccu %-) scr -p -r core core I

Option -p means automatic placement, and option -r means automatic routing.
Once scr has been executed, the core layout is completed.

13

“fred/addaccu %-) setenv. MBK_IN_LO vst

“fred/addaccu %-) setenv. MBK_IN_PH ap

“fred/addaccu %-) setenv. MBK_OUT_PHap

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr
“fred/addaccu %-) scr -p -r core

@ee@ @OeE@QEEEEEE@
@ @@ @@ 0@ @@ @@
@@ @ @@ @ @@ 0@
@@@ @@ @ @@ @

@eee@ @@ @@ @@
@@eE@ @@ @e@ee@
@e@eee@ @@ @@

@ @@e@ @@ @@

@@ @@ ee @ @@ @
@QPe @ 0@ 0@ e @
@ @@ QPP QEPEEEREE

Standard Cell router

Alliance CAD System 3.2, scr 5.2
Copyright () 1991-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

Loading logical view : core

Placing logical view : core

Loading SCP data base ...

Generating initial placement

25 cells 37 nets in 2 rows

Placement in process of treatment : 100%
49% saved in 03 s

Saving placement 100%

Checking consistency between logical and physical views
Loading SCRdata base ...

Deleting MBKdata base ...

Global routing

Channel routing

| Routing Channel : scr_p2

| Routing Channel : scr_p4

| Routing Channel : scr_p6

Making vertical power and ground wires
Saving layout : core

Figure 8: Placing and Routing the core netlist with scr .

Note that scr knows how to place and route only cells having a standard cell topology.

8 Core layout verification

Routers may have bugs, and produce shorts or open circuits. So serious checks must be made on
the produced layout. To check the layout, we use two Alliance tools, lynx and Ivx .

lynx is the Alliance netlist extractor. From a physical layout it extracts a netlist representation
of the circuit, in terms of blocks, gates or transistors. In our case, we want to extract the core netlist
at the gate level.

lvx is the Alliance netlist comparator. Its main function is to verify that an extracted netlist
corresponds to the specification netlist.

14

Hence, the design methodology is quite simple. We must extract the core core.ap with lynx
and check the resulting netlist with the original addaccu.vst file using Ivx .

8.1 Extraction of the core netlist
Now, back to practice. You have to extract the layout using lynx . Remember two things:

1. Alliance tools deeply rely on appropriate environment variables. For instance, you have to
specify the format the extracted netlist will be generated with.

2. in the usual design flow, extracted netlist files are written in al format.

So you must:

| “fred/addaccu %-) setenv. MBK_OUT_LGal I

to generate a extracted netlist file called core.al
The actual execution of lynx is quite easy. Just type:

|~fred/addaccu %-) lynx -v core I

and you get your extracted netlist in terms of interconnected standard cells.

15

“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) setenv. MBK_OUT_LQal
“fred/addaccu %-) setenv RDS_TECHNO_NAMElliance/etc/cmos_5.rds

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
“fred/addaccu %-) lynx -v core core
QE@EE@O@
@@
@@
@@ QLQOUED@O@Q@@ @Q@@Q@Q@
@@ @@ @ ©eE@ @ @ @
@@ @@ @ @@ 0@ @@
@@ Qe @ 0@ 0@ @@@
@@ @ee @@ @@ @@@

@@ @ @@ @@ @@ @ @@
@@ o @@ @@ 0@ @ o0
QEEPLeCEe®™ QRPO@EPOEPEERO
@@ @
@@@

Netlist extractor
Alliance CAD System 3.2, lynx 1.16

Copyright (c) 1993-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

---> Extracts symbolic figure core

---> Translate Mbk -> Rds
---> Build windows

<--- 108
---> Rectangles : 894
---> Figure size o (-50, -100)

(55250, 16600)

---> Cut transistors

<- 0
---> Build equis
< 37

---> Delete windows
---> Build signals

< 37
---> Build instances
<--- 29

---> Build transistors
< 0

---> Save netlist

Figure 9: Extracting a hierarchical netlist in terms of standard cells with lynx

16

8.2 Netlist cross-checking

Now it’s time for netlist verifications. Since lvx takes two netlist in input, the formats have to be
specified on the command line.

|~fred/addaccu %-) Ivx vst al core core I

lvx works somewhat differently from other tools. Its two former arguments are the formats
of the first netlist, here vst (for the original netlist) and al (for the extracted netlist). The two
following arguments are the names of the netlist. We have done our best to make these names
identical. Once again, remember that specification files are postfixed with vst and extracted files
with al .

“fred/addaccu %-) setenv MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
“fred/addaccu %-) Ivx wvst al core core -f

QPP PO CO@OPEEEE@

Alliance CAD System 3.2,
Copyright (c) 1992-1997,

wkk | oading and flattening core (vst)...
wakk L oading and flattening core (al)...
waxk Compare Terminals ...
waxk - 0.K. (0 sec)
*xkk Compare Instances ...
ks QK. (0 sec)
wkxk Compare Connections ...
waxk 0K, (0 sec)
===== Terminals ... 16
Instances 25
===== Connectors 150
wxxk Netlists are Identical. i (0 sec)

@@ @@ @ ee o
@@ @@ @ @@ @
@@ @e e @@e@

@@ @@ @ @@

@@ @@ @ @@

@@ @@ @ @e@

@@ @e@ @ @@
@@ @ @@@ @ @@
@@ @ @ @ @@

clalelelelelaleleele @@ @@

Gate Netlist Comparator

lvx 2.23
ASIM/LIP6/UPMC

E-mail support: alliance-support@asim.lip6.fr

Figure 10: Doing the specification netlist versus extracted netlist compaison with Ivx .

As aresult, you now have a correct al file for the circuit’s core. Its name is core.al . This file
may now be simulated with asimut , but this is only for cross checking.

17

Execution environment is set by issuing:

|~fred/addaccu %-) setenv. MBK_IN_LO al

because we want to use the extracted core.al file as input to asimut .
Then you can run asimut by entering the following command:

|~fred/addaccu %-) asimut core addaccu result

9 Core to pads routing

Having built and checked the core layout, you can run the core-to-pads router. Its function is to

locate pads appropriately around the core and to create wiring segments between pads and chip

terminals.

file. This file

Before we set up the execution environment, take a look at the addaccu.rin

instructs ring , the core to pads router, to place pads according to designer’s wishes. It also

instructs ring to use segments with reasonable width for power routing.

The syntax of this file is quite simple. The names mentioned here are pads’ instance names.

Run:

|~fred/addaccu %-) ring addaccu addaccu

18

“fred/addaccu %-) setenv. MBK_IN_LO vst
“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) setenv. MBK_OUT_PHap

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
“fred/addaccu %-) ring addaccu addaccu
Qeeee@ee @ @E@E@
@@ @@ @@ @@ @@
@@ @@ @ @@ @
@@ @@ Qo@eE@ @@

@@ @@ Qe @ @ @@

QEEEee@ @@ 0@ O00ee@ @@

@@ @@ @@ @ @@ e

@@ e@ ©C@ 0@ O0@ee @ @@

@@ e@ 0@ 0@ @ @@ @@

@@ @@ 0@ 0@ 0@ @@ @
QOPRERO@RPCC@RQEEE @@

PAD ring router

Alliance CAD System 3.2, ring 2.9
Copyright () 1991-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

reading netlists, layout views of core and pads.
consistency checks will be disabled

reading file of parameters, including the placements of pads.

making equipotential list.

making the first placement of pads.

filling data internal structures.

reading the connectors positions of the core.

computing the best placement of the pads.

reading the connectors positions of the pads.

routing deportation of connectors.

routing supply tracks.

routing equipotentials.

compressing channels.

saving in MBKdata structure.

lucky, no error.

Warning

O O OO0 O O OO0 0O O0OO0O OO DNOo

Figure 11: Ring routes the core to pad netlist.

Like for the core, the core to pad routing must be verified. Using the same approach leads to:

“fred/addaccu %-) setenv. MBK_OUT_LQal
“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) lynx -v addaccu
“fred/addaccu %-) Ivx wvst al addaccu

It is possible to check both core a core to pad routing at once also:

“fred/addaccu %-) setenv. MBK_OUT_LQal
“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) lynx -v -f addaccu

“fred/addaccu %-) Ivx vst al addaccu -f

Here the -f option indicate the tools to express the netlist in terms of leaf cells — either pads

19

or standard cells —. Obtaining a transistor netlist from the layout is possible using the -t option
of lynx , but this is more time and memory consuming, and fairly useless as we rely on correct
cells.

10 Chip layout visualization

At that point, you are able to see the actual layout by executing the symbolic layout editor graal
You can run the editor by issuing the following command:

|"fred/addaccu %-) graal -l addaccu I

Now, the screen should be filled with the graal window, and should contain the whole lay-
out. The graphical interface of graal is meant to be self explanatory.

11 Functional abstraction

yagle , a functional asbtractor that extracts a behavior from a transistor netlist can relieve the
designer from many headaches. From a transistor netlist,yagle finally outputs a VHDL file that
can be simulated.

The command is:

“fred/addaccu %-) setenv. MBK_IN_LO al
“fred/addaccu %-) yagle -i -v addaccu

20

“fred/addaccu %-)
“fred/addaccu %-)

setenv
yagle

MBK_IN_LO al
addaccue -i -v

@@ @

@ee@ @@ @ @

Alliance CAD System 3.2,
Copyright (c) 1994-1997,
E-mail support:

[YAG MES] Reading file ’'addaccue.inf’
[YAG MES] Loading the figure addaccue
[YAG MES] Transistor netlist checking
[YAG MES] Extracting CMOSduals

[YAG MES] Extracting bleeders

[YAG MES] Making gates

[YAG MES] Latches detection

[YAG MES] Making cells

[YAG MES] External connector verification
[YAG MES] Checking the yagle figure
[YAG MES] Building the behavioural
TOTAL DISASSEMBLY TIME

figure

transistor netlist
the VHDL Data Flow
COMPLETED

[YAG MES] Erasing the
[YAG MES] Generating
[YAG MES] Execution

[YAG WARO4]
[YAG WARO07]
[YAG WARO09]
See file

80 ftransistors are always off
80 transistors are not used
8 latches detected

more information

"addaccue.rep’ for

QEEPEEP@ ERE@ QERCO@Q@
@@ @ @@ @ @O
@@ @ @@ @@ @ 0@
@eeeee @
@ee @@ e@ @@

@@ 0@ Q00 CCEEEEEE@

@EE@
@@
@@
@e@ee@
@@ @ @
@@ @@ @@
Q@ CPEEEEEEO
@@ @@
@@ @@ @
@@ @@

@@ @ QQ@ENCERQ@ CO@ARREEREE@Q@
@@ @ @ @
@@@ @QE@@@

Yet Another Gate Level Extractor

yagle 2.01
ASIM/LIP6/UPMC

alliance-support@asim.lip6.fr

00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0
00m00s u:00m00.0 s:00m00.0

Figure 12: Desb abstract the extracted netlist into boolean equations.

Then, you can simulate the resulting behavior file by issuing;:

|~fred/addaccu %-) asimut -b addaccu addaccu

result I

Simulation of extracted behavior with asimut is not the only mean to see if the chip is correct.

The extracted behavior can also be used for formal proof.

In Alliance, formal proof is the ultimate way to validate your circuit.

Before you can use proof , the formal prover, you must get acquainted with some specific

concepts of the formal proof theory.
If you look at the extracted behavior, chip.vbe

21

, you can notice that yagle has found four

memorizing elements, specified asreg _bit register . In the formal proof, these four elements
must match the four edge-triggered latches of the former behavioral specification, because proof
can only compare combinatorial logic between external connectors and/or sequential elements.

If you examine the current directory, you will find a file called addaccu.inf

This file contains specific informations for yagle . It instructs yagle to rename the internal
node name of every latch core.l* by its corresponding name in the first behavior file. In the cell-
s/scr directory you can see that the name of the internal node of the used latch, ms.y.vbe , is
dffs.

The equivalent name in addaccu.vbe is reg.

When you run yagle with option -i , the program searches for the file chip.inf , builds the
gate netlist and replaces the node names by their equivalent names in the behavior file, in order
to make proof work.

Then, you can run proof , the formal prover:

|"fred/addaccu %-) proof -d -p addaccu addaccue I

22

“fred/addaccu %-) proof -d addaccue addaccu

clelejelelele) @@
@@ @@ @ @@
@@ @@ @@ @@

@@ QCRO@EE@ @@ @@@ @@
@@ @@ QPOCEE @ 0@ Q@ @@ CCEEEEEE@
QEEPEE@ @@ @@P@ @@ee e @@

@@ @@ @@ ©Cee 0@ @
@@ @@ @@ ©eee 0@ @
@@ @@ @@ ©Cee 0@ @
@@ @@ @@ @@ @@ @@ @@

QECEEEEe @@ @@@ QE@ QEEE@E@
Formal Proof
Alliance CAD System 3.2, proof 3.158

Copyright (c) 90-97, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

Environment

MBK_WORK_LIB
MBK_CATA_LIB

/labo/cells/grog

Files, Options and Parameters
First VHDL file addaccue.vbe

Second VHDL file addaccu.vbe

The auxiliary signals are erased

Errors are displayed

Compiling ’'addaccue’
Compiling 'addaccu’

Running abl ordonnancer on addaccue

Running AbI2Bdd on addaccue
--> final number of nodes = 664(404)

Running AbI2Bdd on addaccu

Formal proof with Ordered Binary Decision Diagrams between

".Jaddaccue’ and ’.Jaddaccu’

PRIMARY OUTPUT
AUXILIARY SIGNAL
REGISTER SIGNAL

EXTERNALBUS

INTERNAL BUS

Formal Proof : OK

PPPPPPPPPPPPPPPPPPPPPPPPITITIIIITIITO0000000000000 00000000 0000000f fffffff it

Figure 13: Doing a formal proof between the abstracted behavior and the specifications using
proof

Option -d displays the logical functions that do not match, and the -p option tells proof to

23

ignore the internal polarity of the flip-flops: we described our behavioral with a register

12 Further verifications

The last verification concerns design rules. Before the chip can actually be targetted on a process,
a symbolic design rule check — DRC — must be performed.

In Alliance, the design rule checker is druc .

You just have to type:

“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) setenv RDS_TECHNO_NAMElliance/etc/cmos_5.rds
“fred/addaccu %-) druc addaccu

The file pointed to by the RDSTECHNONAMEenvironement variable contains many techno-
logical information including the desription of the design rules.

24

“fred/addaccu %-) setenv. MBK_IN_PH ap
“fred/addaccu %-) setenv RDS_OUTcif
“fred/addaccu %-) setenv RDS_TECHNO_NAM£lliance/etc/cmos_5.rds

“fred/addaccu %-) setenv. MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
“fred/addaccu %-) druc addaccu

clelelalelcleleleeelelele) @e@ee@

@@ @@ @@ @@ @@ @@

@@ @ @@ @@ @@ @

@@ ©0@ Q@ 00 CPEEEEG@E@ @

@@ ©0@ @@ 0@ @@ @@

@@ 0@ EPEEeEe 0@ @@ @

@@ @ e @ 0@ @@

@@ @ @@ @ 0@ @@ee@

@@ @@ @@ @ @@ @@ @@ @

@@ @ 0@ 0@ @ eEe@ @ @
QPOPEPEOPEECEROE PEPE@ @@

Design Rule Checker

Alliance CAD System 3.2, druc 3.00
Copyright (c) 1993-1997, ASIM/LIP6/UPMC
E-mail support: alliance-support@asim.lip6.fr

Flatten DRCon: addaccu
Delete MBKfigure : addaccu
Load Flatten Rules : /usr/local/cad/alliance/etc/cmos_7.rds

Unify : addaccu

Create Ring : addaccu_rng
Merge Errorfiles:

Merge Error Instances:
instructionCourante ;50
End DRCon: addaccu
Saving the Error file figure
Done

0

File: addaccu.drc is empty: no errors detected.

Figure 14: Symbolic design rule checking using druc .

This layout level verification has been optimized for speed. So it is fast, even on large circuits,
but requires quite a few megs then.

13 Symbolic to real technology translation

The purpose of Alliance symbolic layout approach is to allow the designs to be targetted on
several technologies. The whole chip is conceived with symbolic cells.

In order to send the chip to a specified foundry, the designer must perform the symbolic to
real conversion. This stage is the last stage of the design methodology.

The only things you have to specify is the target technology and some environment variables.

The only target technology available in the distribution is prol10 , a fake 1.0 process. You can

25

choose it by setting the RDSTECHNONAMEenvironment variable.

| “fred/addaccu %-)setenv RDS_TECHNO_NAMEAlliance/etc/prol10.rds l

You also have to specify the format of the output file that will represent the foundry layout.
Alliance provides two distinct formats: gds and cif

| “fred/addaccu %-) setenv RDS_OUTcif I

This command instructs the converter to output the chip in the Caltech Intermediat Form.
This form is an ascii format, that can include connectors, whereas gds is binary and doesn’t
include connectors.

A tricky thing is that the pad part of the symbolic IO pads must be replaced by its “real”
equivalent. This is indeed the only technology dependant part of a circuit designed with our
symbolic approach.

So you also have to set the RDSIN environment variable, to indicate the format of the substi-
tution pad.

|"fred/addaccu %-) setenv RDS_IN cif I

At last, you run the symbolic to real converter, S2r .

|"fred/addaccu %-) s2r -cv addaccu I

Your chip is now ready for the foundry that provides the prol10 technology.

26

“fred/addaccu %-)
“fred/addaccu %-)
“fred/addaccu %-)
“fred/addaccu %-)
“fred/addaccu %-)
“fred/addaccu %-)

loading
loading
removing

o replacing
--> replace

setenv
setenv
setenv
setenv
setenv
s2r -v

Alliance
Copyright
E-mail

technology file
all level
symbolic
layout post-treating with connectors, with scotchs.
--> post-treating
rectangle
RDS_NWELL
RDS_NIMP .
RDS_PIMP .
RDS_ACTIV
RDS_POLY
RDS_ALU1
RDS_ALU2

Symbolic to Real layout

support:

MBK_IN_PH ap

MBK_CATA_LIB /alliance/cells/scr:/alliance/cells/ring
RDS_TECHNO_NAMEAlliance/etc/prol10.rds
RDS_OUTcif

RDS_IN cif
addaccu
@@@@
@ @@
@@ @@

QRPOPEEPE QCLO@O@

@@ @ @ 0@ eEEEeE

@@@ @ @@ o@

@e@e@ @ @@
@eee @ @@

@ QP @ 0 o

@@ 0@ CPLEPO@O

QOPEPEPLEECE@DQO

converter

CAD System 3.2, s2r 3.6
(c) 1991-1997, ASIM/LIP6/UPMC
alliance-support@asim.lip6.fr

Jusr/local/cad/alliance/etc/prol10_7.rds
of symbolic layout addaccu

data structure

model palo_sp

merging

black boxes

cell

--> Number of allocated bytes:

rectangles
scotchs = 3 really

padreal

o0 saving addaccu.cif
o memory allocation
--> required
--> required

informations

= 7318 really allocated =7
created = 3

341231

Figure 15: Translating the symbolic layout into process layout with s2r .

14 Conclusion

If you actually arrived here doing all the previous steps, congratulation!
You can see an automatic replay of this tutorial by executing the Makefile

27

in the current

directory by issuing the command:

| “fred/addaccu %-) make I

Note that the Makefile uses Bourne-shell commands.

If you plan to design a chip with Alliance, it is a good idea to use Makefile s to ensure the
consistency between the design and verifications of the differents views and hierarchies, but this
is another story.

If anything went wrong or if you have any question, you can contact us by sending a mail to
the support team of Alliance, located at alliance-support@lip6.fr

28

