Alliance CAD System V.R

e-mail: cao-vlsi@masi.ibp.fr

Tutorial for the
Data-Path Compiler

Jean-Paul CHAPUT
February 24, 1995

Contents

List of Figures

1 Introduction

This tutorial aims at teaching how to use Alliance CAD tools dedicated to the design of
data-paths . These tools are the followings :

FpGen : netlist capture using textual mode, thanks to a set of predefined C functions.
DPR : Placer/Router associated with the data-paths.

From this point on, the environment variable ALLIANCE_TOP represents the root di-
rectory where the Alliance package is located.

2 Data-Path basics

2.1 Structure of a data-path

data-path compiler are tools which are dedicated to the design of microproccessor operative
units. Inside a data-path the basic concept is no more the scalar cell (on 1 bit), but the operator
carrying out a vectorial treatment (on n bits).

From a logical point of view, an operator is made of a repetition of n cells more or less
identical, each of those executing a one bit treatment. It may also contain a cell dedicated to
the amplification of control signals. Physically, each cell is stacked vertically and fill one slice.
The last two slices are reserved to an amplification cell, if needed. It can be talked about either
operator or column, this last term receiving a physical acceptance.

A data-path is made of operators stacked horizontally. It can be represented as a bidi-
mentionnal table in which columns are called operators and rows slices.

Figure ?7? shows data-paths structure.

2.2 Controls and datas signals

In a data-path , signals associated with operator input/output buses are called datas signals.
They propagate horizontally through the data-path.

On the contrary, control signals are signals which command the operators, for instance,
the bus select of a multiplexer (ctri_sel of operator DP_MUX2CS). They propagate vertically inside
a column.

Figure 7? shows the difference between control terminals and data terminals.

10 tracks/Slice

feuiuwia L [enuiA

Operators

Figure 1: data-paths structure.

)
2]
o
k]
o
! L Ev3
uom o X—>o—+ >0 . noon H- H_v _MM_V _MM_V _ 44ad da
I I
wme xPo—+ o+ b 4 = = =
019Z 10 % W W i Jauuey) bBunnoy
] |
] T
- LAISIA e
I I
Co .
1 T
)] .
JOAOU 1)) — I I
I I
I I
noou Y X— X | deaav da
I_I I I
I 1 + + +
b
I I
o
T -
jos VT_VO‘LV?EVL, I . k_\/_VK_\/_Vk_\/_ Soexn 4a
A
I I
I | @ @
! e 3
1 ! | |
I |8 4
1 1 (] ©
| | = =
I I
o) © ~ R N - o
] |
sJoyng 10)sNIIS 2 , mmﬁn_ 10}S01IS 8

SIS

DP_MUX2CS

Control Terminal Pseudo Control Terminal

L3

L3

L3

L3

L3

L3

L3

Data Terminal

L3

Data Terminal

L3

L3

L3

L3

L3

L3

L3

N A

L3

Figure 2: Data terminals and control terminals.

Data signals are routed horizontally, over slices, thanks to 10 routing tracks (cf figure ?7?).
Remark :

Only data terminals can be set on any side of the data-path, using the .dpr file. Control
terminals always appear on the North side of the data-path, at a predefined place.

Data terminals sets on the North side of the data-path are also called Pseudo control
terminals.

2.3 Structural Parameters Width and Slice

In some cases we only wish to perform a treatment on a part of data bus. We have to use a
smaller scaled operator in which empty slices are to be found. In order to place cells inside the
column, we need two values :

Slice : The slice were the first cell is put in the column.
Width : Effective width of the operator.

Default values :

DEFAULT SLICE : Null
DEFAULT WIDTH : Full width of the data-path.
(set by the former DP_DEFLOFIG function call).

Slicel DP_MUX2CS
2]
2o
>
@
s |
g
% | 8 Y
N
7 Empty
6 |
T
\
5 | 3
H &
; ;
<
8 1 = 32
5|4 | 5| =
8 H = 5
g | z
Ky
g r 5
8|3 i &
g 8
2 Empty
o]
9]
§
1 Empty 8
(]
[8)
%)
0 Empty

Figure 3: Structural parameters Width and Slice .

3 First example : sample dpt

3.1 Presentation of the adder accumulator

The given example in the data-path tutorial is driven from the adder accumulator showed
in the addaccu tutorial.

Differences from addaccu tutorial :
1. Data buses width are set from 4 to 8 bits.

2. In order to show some special features of the data-path compiler, a zero detect has been
implemented.

3. The operator implementing sample register elements (DP_PDFF) obligatory provide a Write
ENable terminal and dual outputs g and ng. So we add a ctrl_wen terminal to the circuit
interface and a unused data-u signal which doesn’t appear on the interface (for ng).

4. As the former operator, the fast adder generator (DP_ADD2F) obligatory provide ncout and
nover outputs.

Figure 7?7 shows the whole architecture of the adder accumulator.

5 .

— 3 2 o <

] o <] 9] i~ Q

» c c N O s

_ _ _ _ _ _

° c © ° c ©
S X-----""-"-""“"-"HK-"K--"------ B SRR S
| - “ — X«

1
1
1
I
data_a[7:0] X
1
1
I
1
1
1
1
I 8
1
1
1
I

DP_ADD2F DP_NUL
data_b[7:0]

DP_MUX2CS DP_PDFF

1
1
I
1
1
1
I
1
1
1
:
ﬁ data_s[7:0]
1
I
1
1
1
1
I
1
1
1
I
1
1
1
I
1
1
1
1
I
1
1

Figure 4: Architecture of the adder accumulator.

3.2 Methodology

As we wish not to present the whole design methodology of a circuit but only the part
related to data-path, only a partial validation will be given.
Figure ?? describe the partial methodology.

Methology Schematic

Bourne Shell Commands

FPGEN_LIB

sample_dpt.c

sample_dpt.vst

sample_dpt.ap

sample_dpt_gates.al

LvX
(oK
\koJ

sample_dpt.inf

sample_dpt.al

sample_dpt.dpr sample_dpt.vbe

sample_dpt_desb.vbe

(oK
\koJ

export FPGEN LI B MB
export MBK_IN_PH MBK_ _PH

export MBK_WORK LI B MBK_CATA LI B
export MBK_CATAL_NAME
FPGEN_LIB=./ntlib

MBK_I N_LO=vst

MBK_QUT_LO=vst

MBK_I N_PH=ap

MBK_OUT_PH=ap

MBK_WORK_LI B=.

MBK_CATA_LI B=$TOP/ cel | s/ fitpath/fplib\
:$TOP/ cel | s/ rsa: $FPGEN_LI B

$ MBK_CATAL_NAME=CATAL

IN_LO NBK_OUT_LO

DR ARARARARN

$ fpgen -v sanpl e_dpt

©@

dpr -V -p -r sanpl e_dpt sanpl e_dpt

$ druc sanpl e_dpt

MBK_I N_LO=al
MBK_OUT_LC=al

@Bah

$ lynx -v -f sanpl e_dpt sanpl e_dpt_gates

©@

lvx vst fne sanpl e_dpt sanple_dpt_gates

$ lynx -v -t sanple_dpt sanpl e_dpt

$ desb sanpl e_dpt sanpl e_dpt_desb -v -i

©@

proof -d sanple_dpt sanpl e_dpt_desb

Figure 5: Partial methodology of validation.

3.3 Environment set-up

Before running any tool of the Alliance CAD system, some environment variables must be
set up!.

1. Input/output formats :

$ MBK_IN LD=vst

$ MBK_QUT LO=vst

$ MBK_IN PH=ap

$ MBK_OUT PH=ap

$ export MBK IN L.O MBK_ OUT_LO MBK_IN PH MBK OUT PH

2. Working directories :

$ MBK_WORK_LIB=.
$ FPGEN LIB=./mclib
$ export MBK_WORK_LIB FPGEN_LIB

3. Cell library paths :

$ MBK_CATA LIB=$ALLIANCE TOP/cells/fitpath/fplib:$ALLIANCE TOP/cells/rsa:$FPGEN LIB
$ export MBK_CATA LIB

3.4 FpGen : netlist capture

The data-path mnetlist is described thanks to a C source file which must contain the following
sections :

1. Header files to include :
#include <genlib.h>
#include <fpgen.h>
2. Opening the data-path model (netlist) :
main()
{
DP_DEFLOFIG("sample_dpt", 8, LSB_INDEX_ZERO);
DP_DEFLOFIG parameters:
"sample dpt" : model name of the data-path.

8 : data-path bus wide.
LSB_INDEX_ZERO : Always set to this value.

1Commands are given in Bourne Shell.

3. Terminal declarations :

/* Control terminals declarations. */

DP_LOCON("ctrl_sel" , IN , "ctrl_sel");
DP_LOCON("ctrl_ck" , IN , "ctrl_ck");
DP_LOCON("ctrl_wen" , IN , "ctrl_wen");

DP_LOCON("ctrl_ncout", O0UT, "ctrl_ncout");
DP_LOCON("ctrl_nover", OUT, "ctrl_nover");
DP_LOCON("ctrl_zero" , 0UT, "ctrl_zero");

/* Data terminals declarations. */

DP_LOCON("data_a[7:0]" , IN , "data_a[7:0]");
DP_LOCON("data_b[7:0]" , IN , "data_b[7:0]");
DP_LOCON("data_s[7:0]" , INOUT, "data_s[7:0]1");

/* Power supplies terminals. */
DP_LOCON("vdd", IN , "vdd");
DP_LOCON("vss", IN , "vss");

The first string is associated to a terminal model name and the second to the internal
signal name to which it is connected. The behavior of this function is similar to the LOCON
of GenLib.

4. Instanciation of the various data-path operators :

/* Multiplexer. x/

DP_MUX2CS("multiplexer", 8, O,
"ctrl_sel",
"data_b[7:0]",
"data_q[7:0]1",
"data_m[7:0]",

EOL);

/* Fast Adder. */

DP_ADD2F ("adder",
"data_a[7:0]",
"data_m[7:0]",
"ctrl_ncout",
"ctrl_nover",
"data_s[7:0]",
EOL);

/* Zero Detect. */

DP_NUL("zero", 8, O,
"data_s[7:0]",
"ctrl_zero",
EOL);

/* Register. */
DP_PDFF('"memory", 8, 0,
"ctrl_wen",
"ctrl_ck",
"data_s[7:0]",
"data_q[7:01",
"data_ul[7:0]", /* This bus is unused. */
EOL);

5. Complete the model and save to the disk :
DP_SAVLOFIG();

/* A good C program must always terminate by an "exit(0)". */
exit(0);
}

3.5 Generation of the netlist

After having writen the C source file which describe the netlist and correctly set up the
environment, we just have to compile and execute the former file. The FpGen script file will do
it for us, so lets type the command :

fpgen -v sample_dpt

10

Which normally gives you :

([ipc@locathost{xTermubinishy [[]

% fpgen -v sample_dpt

FPGEN_LIB

[gdclelelelly eeee @
aa 3 ee e
ag e e 3
ap eee aee ee eeeee eee ega
aa gea QAR Re e e eee a
[dddddd] eg e ee Geged e ee ee ag
ag ee aR Rrg @ ER QRERAAARARE RE a@
ag eg e ee @ ee Qe ee ag
e eg ee e ee e e e e
aa gea @p ee 2o ee er ee aa
epeoee eg fea [clcdclcy [clcdclcy [
ee
eeea

Fitpath Generation Language

Alliance CAD System 3.0, fpgen 1.02
Copyright {c) 93-95, MASI., CAD-VLSI Team
E-mail support: cao—vlsitnasi . ibp. fr

fpgen: Current MBK environment:

MBE_IN_LO : wst

MBE_OUT_LOD : wst

MBK_IN PH : ap

MBK_OUT_PH i ap

MBK_WORE LTIE : .

MBK_CATA_LIE : /labo/cells/fitpath/fplib
/labofcells/rsa
./mclib

MBE_CATAL_NAME : not set

MBK_VDD : not set

MBE_V¥S5 : not set

RDS_TECHNO_MAME : not set

fpgen: Fpben Macro-Functions library:

: . fmclib

Conpiling sawple dpt.c:Done.
Linking sample_dpt.o sdith FpGen and GenLib:Done.
Executing sample_dpt.

Output from sample dpt:
Execution completed.

Removing binary file sample_dpt:Done.
Removing history file sample dpt.frr:Done.
A |

Back to MBK_CATA_LIB and FPGEN_LIB

Most of the operators avalaible in FpGen are built using the leaf cell library
$ALLIANCE TOP/cells/fitpath/fplib. However, some operators as DP_ADD2F, requires addi-
tionnal leaf cell libraries. These dedicated libraries are noticed in the UNIX manual pages asso-
ciated with operators. In the case of DP_ADD2F the needed library is $ALLIANCE_TOP/cells/rsa.

So, MBK_CATA_LIB must contain :

$ALLIANCE_TOP/cells/fitpath/fplib:$ALLIANCE TOP/cells/rsa

On the other hand, FpGen creates not only the data-path netlist but also the various views

(layout , behavioral) of the operators These auxiliary views are stored in the library pointed out
by the FPGEN_LIB environment variable. In our case, we choose ./mclib.

11

3.6 Place and Route
To make data-path layout, run the place and route tool DPR. The command is :

dpr -v -p -r sample_dpt sample_dpt

DPR command line arguments? :

-v : Verbose mode.
-p : Activate the placement step.
-r sampledpt : Ask routing on netlist sample dpt.vst.

sample dpt : Name of the file that holds the place and routed layout.
This normally produces :

(= pc@locathost{RTermibinishy []

$ dpr -v -p -r sample_dpt sawple dpt

ag e ag ae ee ae

eg ee ee ee ee e

ee ap ee e ee an

eg ae eeeee [celelc]

ee e ee ee @@

[ae ee [ag

eg e eg eg e

ee an ee ee e
[Udddelelc] [Uddutelc] eeeea aee

Placer for Datapath Compilex

Alliance GAD System 3.0, dpr VER
Copyright {c) 94-94, MASI., CAD-VLSI Team
E-mail support: cao—vlsitnasi .ibp. fr

* Placement step.

Getting netlist.

Betting dpr file.
Building symbolic grid.
Ckecking slices heights.

°

oowm

Nb slices : 10.
¥b cols 4.

Creating colwm.

Creating glue logic blocs.
Checking alins correspondances.
Creating global phfig view.
Freeing syrholic grid.

* Placement done.

coow

°

* Routing step.

o Loading physical and logical views.
o Setting access types.

o Checking logical and physical correspondance.
o Making DPR data structure.

0 Global routing.

o Bit-slice synbolic routing.

o Multi-bit net synbolic routing.

o Channel routing.

o Saving physical figure sample_dpt.
o Total routing time: 13 seconds.
*IRnuI:i_m] step done.

External terminal placement, .dpr file

In addition to the netlist, DPR attempts to load an optional file which contains some
instruction about the way to place external data terminals 3. The .dpr file allows the designer
to choose on which side put the terminal, and for East and West sides, which slice and which
track .

2For a more detailed description of DPR command line arguments, please refer to the UNIX on line manual.
3For the definitions of data terminals and control terminals, please refer to § 77.

12

file sample_dpt.dpr used in our example :

Terminal : Side : Slice : Track
DP_LOCON ctrl_zero NORTH DEFAULT DEFAULT
#

#

Terminal : Side : Slice : Track

DP_LOCON data_al[7:0] WEST DEFAULT DEFAULT
DP_LOCON data_b[7:0] WEST DEFAULT DEFAULT
DP_LOCON data_s[7:0] EAST DEFAULT DEFAULT
#

#

Number of vertical power refreshment.

DP_POWER 1 50

Back to MBK_CATA_LIB

Place and route tool DPR uses the various views of the operators formerly stored by
FpGen inside the FPGEN_LIB library. This library access path must be present in MBK_CATA_LIB.
At the end, the complete MBK_CATA LIB is:
$ALLIANCE TOP/cells/fitpath/fplib:$ALLIANCE TOP/cells/rsa:$FPGEN LIB

3.7 Validation
3.7.1 Environnement set up and validation

All along the generation phasis we have used the netlist format .vst, which stands for
VHDL STructural. For the validation phasis, we will use the .al format. The .al format is
dedicated to the extractions steps because it holds, in addition to the logical informations (netlist),
some information driven from the layout, such as routing wire capacitances.

Setting the new netlist format :

$ MBK_IN LO=al
$ MBK_OUT_LO=al

Of course, the layout file format remains unchanged.

3.7.2 Routage Checking

The goal of this step is to ensure that the result of the routing phasis is correct. This will
be done in three steps :

1. Design rule checking, using the symbolic DRC tool DRuC.
2. Extration of the gate netlist from the layout using Lynx.

3. Checking coherency between the extracted metlist (.al format) and the reference netlist
(.vst format).

Hierarchy management

In some cases, the routing tool DPR is allowed to perform flattening in the layout view. As
a consequence, netlist extracted from the layout may have a different hierarchy than the reference
netlist. In order to process to the validations, we ask to the tools involved in the check to work
at a gate level.

13

DRuC : symbolic desing rules checking

$ druc sample dpt

$ druc sample_dpt

feeaeed feeaeed eegee @
ee ee ee ee e ee
e [e [ae [
ae ag ae ee eee ceee o@ @
ap ag ap ee ap [y
ae ag eeees ae ee e
e aa e pe e e Qar
ae ag ae et ae ee e
ae ee ee ee ae ee e @

ap ee ap ea ap eea ap 2
[clelcltlelcl ey aeaag [clelc) ageg @ eare
Design Rule Checker

Alliance GAD System 3.0, druc 2.00
Copyright (c) 1993, MASI, CAD-VLSI Team
E-mail support: cao-vlsifmasi.ibp.fr

Flatten DRC on: sample dpt
Delete MBE figure : sample_dpt
Load Flatten Rules : /labo/etc/cmos_d4.rds

Unify : sample dpt

Create Ring : sample_dpt_rng
Merge Errorfiles:

Merge Error Instances:
instructionGourante : 50
End IRC on: sanple_dpt
aving the Error file figure
one

0

ile: sample dpt.dvc is ewpty: no errors detected.
|

14

Lynx : netlist extraction

$ lynx -v -f sample dpt sample dpt_gates

$ lynx -v —f sawmple_dpt sample dpt_gates

eeeeed

ee

ae

ae [eeee feQ gee Reg Geee eee
ag ap e apa e an e
ae ae e e eg ee @
ae e e ee [pg
ae eg @ e [aee
ae [} eee e eg @ ee

ag a ’e e ee a ’e
GRafeeefer e @ Geae QRER fee eere
er @
ape
Netlist extractor
Alliance CAD System 3.0, 1ynx 1.10

Copyright (c) 1994, MASI, GAD-VLSI Team
E-mail support: cao-vlsi®nasi.ibp.fr

——>» Extracts fiqure sample dpt
-—> Flatten figure
Translate Mbk —»> Rds

Delete Mbk fiqure
Build windows

280
-—> Rectangles : 2075
---> Figure size : -10, -40 }

{ 4140, 6040)
Cut transistors

1}

Build equis

56

Delete windows

Build signals

56
Build instances
4

Build transistors
o

—--> Save netlist

<——— done !

15

LVX : netlist comparisons

$ lvx vst al sample dpt sample dpt gates -f

(= pc@locathost{XTermibinishy [4]

% lvx wst al sawmple_dpt sample dpt_gates
eeeeaa eeae [ee gees eeee

ee a e ap
[Udddelelelcl [} eee e
Gate Netlist Comparator
Alliance GAD tem 2.0 lvx 2.23

Sys -0,
Copyright {c) 1992-93, MASI, CAO-VLSI Team
E-mail support: cao—vlsitmasi .ibp.fr

*kkix Lopading sample_dpt {vst)...

#&xxx Loading sawple dpt gates (al)...
*kkik Compare Terminals® ...vvvvviainnsannss
HExEX (K. {0 sec)

*%44% Compare Instances
*kxxk K, {0 sec)

#asss Compare Comections
*kkkx 0 K, {0 sec)

Commectors

%x4% Netlists are Identical. **#* {0 sec)

2 |

3.7.3 Formal proof

The goal of this phasis is to ensure that the data-path we have designed here is consistent
with its specification. In our case, the specification is the VHDL behavioral view sample dpt.vbe.
Three steps are needed :

1. transistor netlist extraction from the layout with the Lynx tool.
2. Restoration of a behavioral view sample dpt_desb.vbe using the functional abstractor desb.

3. Formal proof between the behavioral model (sample_dpt.vbe) and the regenerated model
(sample_dpt_desb.vbe) using the formal proofer tool proof.

Register identification

The formal proof tool enforces that the memory elements of both behavioral views must have
the same names. As these names have changed in the layout, we must rename them. Fortunatly,
the functional abstractor desb allow us to do so, via an auxiliary file .inf.

The file sample_dpt.inf is supplied with the tutorial.

16

Lynx : transistor netlist extraction

$ lynx -v -t sample dpt sample dpt

$ lynx -v —f sawmple_dpt sample dpt_gates

eeeeed

ee

ae

ae [eeee feQ gee Reg Geee eee
ag ap e apa e an e
ae ae e e eg ee @
ae e e ee [pg
ae eg @ e [aee
ae [} eee e eg @ ee

ag a ’e e ee a ’e
GRafeeefer e @ Geae QRER fee eere
er @
ape
Netlist extractor
Alliance CAD System 3.0, 1ynx 1.10

Copyright (c) 1994, MASI, GAD-VLSI Team
E-mail support: cao-vlsi®nasi.ibp.fr

——>» Extracts fiqure sample dpt
-—> Flatten figure
Translate Mbk —»> Rds

Delete Mbk fiqure
Build windows

280
-—> Rectangles : 2075
---> Figure size : -10, -40 }

{ 4140, 6040)
Cut transistors

1}

Build equis

56

Delete windows

Build signals

56
Build instances
4

Build transistors
o

—--> Save netlist

<——— done !

17

DESB : Functional abstraction

$ desb sample dpt sample dpt._desb -v -i

% desh sample_dpt sample_dpt_desh

epa apa

ag ag

ag ag

ee aa areee RRARRE a@ pe

ee aoa 3 e ee e fee e
ae e Qpe ea eee aa re
ae @@ eefRRRets eeee e ee
ee ap e egee g ee
ae ap ee aa geg @@ ee

ee eaa ae e e ee a@ee e
re aEe repe @ RRARRR QQR RQ

Functional Abstractor
Alliance CAD System 2.0, desh 2.96
Copyright (c) 91-94, MAST, CAD-VLSI Team
E-mail support: cao-vlsiGnasi.ibp. fr

[MES] Reading file ‘sample dpt.inf’

[MES] Loading the figure DDw0ls w:00°00.6 s:00°00.0
[MES] Tramsistor metlist checking 00n00s w:00°00.0 s:00°00.0
[MES] Making gates 00w00s w:00°00.0 s:00°00.0
[MES] Cones/Pathes 164 ; 492 00n00s u:00°00.0 s:00°00.0
[MES] External commectors orientation 00w01s w:00°00.2 s:00°00.0
[MES] Dual gates detection 00w02s w:00°02.3 s:00°00.0
[MES] Latches detection 00n00s w:00°00.0 s:00°00.0
[MES] Functional analysis 00w01s w:00°00.8 s:00°00.0
[MES] Gates caracterisation 00n00s w:00°00.0 s:00°00.0
[MES] Master Slave detection 00w00s w:00°00.0 s:00°00.0
[MES] TOTAL DISASSEMBLING TIME 00055 w:00°03.7 s:00°00.2
[MES] Erasing the transistor netlist 00w00s w:00°00.0 s:00°00.0
[MES] Generating the Vhdl Data Flow 00n01s w:00°00.2 s:00°00.0

[MES] Execution COMPLETED

[WAR 9] 16 transistors are not used
See file ‘sample_dpt.dsbr’ for more information

A |

18

Proof : Formal proof

$ proof -d sample dpt sample dpt_desb

=]

% proof sanple_dpt sample_dpt_desh

[ddddaas e
ee eg e e
ag e eg ap
aa o 200 eee [clclcy eag ee
an ’e eEe AR ee e ee A QARREARARA
aeead ag e ee e ee aa ee
ar aa ee aR Re ar ee
ag e o e ee ag ee
ee g e e e ee eg
ap aa ee 2o ee aa ee

[ddddad [clcdclcy [clclcy eae aegeat

Formal Proof
Alliance GAD System 2.1, proof 2.02
Copyright {c) 90-94, MASI. CAD-VLSI Team
E-mail support: cao—vlsitnasi .ibp. fr

Enviromment

MBK_WORE. LIE =

#labo/cells/ fitpath/fplib: /1abo/cells/rsa: . fmclib
Files, Options and Parameters ==

First VHDL file sample_dpt.vbe

Second VHDL file = sample_dpt_desh.vbe

The auxiliary signals are erased

Conpiling ‘sample_dpt’ ...
Compiling *sample_dpt_desb’ ...

WARNING : data s 0 is considered as an output signal
WARNING : data s 1 is considered as an output signal
WARNTNG : data_s 2 is considered as an output signal
WARNING : 3 is considered as an output signal
WARNTNG . 4 is considered as an output signal
WARNING 1 5 5 is considered as an output signal
VARNTNG : data_s_6 is considered as an output signal
WARNING : data_s_7 is considered as an output signal
WARNING : data s 7 is considered as an output signal
WARNING : data_s_6 is considered as an output signal
WARNING : data s 5 is considered as an output signal
VARNING : data_s_d is considered as an output signal
WARNING 3 is considered as an output signal
WARNING 2 is considered as an output signal
WARNTNG : data_s_1 is considered as an output signal
WARNING : data s D is considered as an output signal

VARNING : ctrl nover is considered as an output signal

| roming abl ordamancer on *sawple_dpEiiiiiiiiiieei

4 Advanced features
This section aims to present you some advanced features of FpGen and DPR tools. In

the following examples, we do not describe the whole procedure given for sample_dpt. We will
limits ourselves to show differences or novelties from the former methodology.

19

4.1 Placement
4.1.1 Initial placement

The initial placement of data-path operators is made from left to rigth, following the order
of instanciation used in the file sample dpt.c. We have, starting from the left, the followings
operators :

1. Multiplexer generated by DP_MUX2CS.
2. Adder generated by DP_ADD2F.

3. Zero detect generated by DP_NUL.

4. D flip-flop generated by DP_PDFF.

Figure ?7? shows initial placement.

ctrl_ncout

ctrl_nover
ctrl_zero

1
|
1
1
1
1
1
U
1
1
1
1
1
1
1
1
1
1
|
1
X
1
1
I
—
1
1
1

DP_MUX2CS

DP_ADD2F
DP_NUL
DP_PDFF

1
1
1
1
1
1
1
1
1
1
1
1
|
1
| I X data_s[7:0]
1
1
1
1
1
1
1
1

Operatorsinstanciation order

Figure 6: Initial placement.

The order of instanciation of the operators in C source file is meaningful. A C
source file intended to FpGen/DPR that ignores it could produce non routable configurations.

To avoid this kind of problems, we just have to group together the instanciations of operators
strongly connected.

20

4.1.2 Placement optimization

In the case of complex data-path where the designer does not want to check precisely the
order of operators, placement optimizer inside the router tool DPR is avalaible. Roughly, the
placement optimizer swap operators trying to reduce the total length of routing wires. This option
is also interresting when the initial placement is a non routable configuration. The optimizer is
able to detect such configuration in which case it attempts to reduce the track density to make
possible routage.

File place_dpt.* gives an example of placement optimization.

Command to invoke DPR in optimization mode :

dpr -v -o -r -p place_dpt place._dpt

Arguments given to DPR* :

-0 : Activate the placement optimizer.

4.2 Designing customized operators

In this part we present the features allowing the user to design his own data-path operators.
To build his operators the user must resort to a dedicated leaf cell library : DPLib%. DPLib
offers the same functionnalities than the Standart Cell library SCLib.

From a methodological point of view, using customized operators is unfolding itself into two
distinct phases :
1. Making of the operator using one of the following three methods :
(a) Explicit building of a column using GenLib. The model name must received a "_us"
suffix.
(b) Synthesis of a block, using Logic. The model name must received a "_us" suffix.
(c) Buiding a sub-data-path using FpGen. The model name must not have a " us", "_c1"

or "_bk" suffix.

2. Instanciation of the newly created operator inside the current data-path thanks to the
DP_IMPORT function.

4.2.1 Environnement set up

We must add to MBK_CATA LIB the access path to the DPLib library :

$ MBK_CATA_LIB=$ALLIANCE.TOP/cells/fitpath/dplib/ecpd10

$ MBK_CATA LIB=$MBK CATA LIB:$ALLIANCE TOP/cells/fitpath/fplib
$ MBK_CATA_LIB=$MBK_CATA_LIB:$ALLIANCE_TOP/cells/rsa

$ MBK CATA LIB=$MBK CATA LIB:$FPGEN LIB

$ export MBK_CATA LIB

4.2.2 Single Column Operator

As an example, let us replace the zero detect provided by FpGen (DP_NUL macro-function),
by a designer build column.

The diagram of the zero detect we are going to build is shown in figure ??. The files
usercol_dpt.* gives an example of implementation.

4For a more detailed description of DPR. command line arguments, please refer to the UNIX on line manual.
50n line manual of DPLib : man dplib, on line manuals of cells : man ni_dp, man ms.dp, ...

21

Slice| Instance User Operator :
"nul_us'

7 — Empty Slice
i0[7]

6 no2_6 I:DH
io[6]

5 | na25 ﬂ
i0[5]

4 | no2_4 I}H
i0[4] -

3 no2 3 :D)—x
i0[3]

2 no2 2 I}H
i0[2] -

1 na2_1 ﬂ
i0[1]

0 | no2o DUH
i0[0]

Figure 7: Zero detect diagram.

22

zero

Description of zero detect using GenLib language :
static void mkZeroDetect()
{
DEF_LOFIG("nul_us");

LOCON("iO[7:0]", IN , "i0[7:0]1");

LOCON("zero" , 0UT, "zero");
LOCON("vdd" ,IN , "ydd");
LOCON('"vss" , IN , "vss");

LOINS("no2_dp", "no2_0", "iO[O]", "iO[1]", "z2_0", "vdd", "vss", OL)
LOINS("no2_dp", "no2_2", "iO[2]", "iO[3]", "z2_1", "vdd", "vss", OL)
LOINS("no2_dp", "no2_4", "iO[4]", "iO[5]", "=z2_2", "vdd", "vss", OL);
LOINS("no2_dp", "no2_6", "io[6]", "io[7]", "z2_3", "vdd", "vss", OL)

LOINS("na2_dp", "na2_1", "z2_0", "z2_1", "z4_0Q", "vdd", "vss", OL);
LOINS("na2_dp", "na2_5", "z2_2", "z2_3", "z4_1i", "vydd", "vss", OL);

LOINS("no2_dp", "no2_3", "z4_ 0", "z4_1", "zero", "vdd", "vss", OL);

SAVE_LOFIGQ);

As we can see, instance names of the zero detect must conform to a specific syntax.
The semantic of this syntax is that the suffix of the instance name indicates to the DPR
placement stage on which slice to set each instance. This agreement is recalled on the
figure 77?.

23

Modification of the C function describing the data-path netlist :

main()

{
/* Generate the Zero Detect Column. */
mkZeroDetect () ;

/* Open a new Data-Path figure. */
DP_DEFLOFIG("usercol_dpt", 8, LSB_INDEX_ZERO);

/* Interface description. */

/% .. x/
/* Data-Path netlist description. */
/* Multiplexer ... */
/* Fast Adder ... x*/
/* Zero Detect. x/
DP_IMPORT("nul_us",
"zero",

"data_s[7:0]",
"ctrl_zero",
EOL);

/* Register ... x/

/* Terminate the netlist description, and save on disk. */
DP_SAVLOFIGQ);

exit (0);

Remark :

The FpGen and GenLib languages are made so that only one netlist is taken in the course
of the description proccess. On the other hand, to instanciate the model of zero detect with
DP_IMPORT, this model must be defined before. As a conclusion, we must call the mkZeroDetect
function before the call to DP_DEFLOFIG.

The sequence of commands invoked to generate and check this example is the same as the
one used in sample dpt.

24

4.2.3 Logical synthesis of an operator

In this section we are going to replace the fast adder provided by DP_ADD2F by a block
generated by logical synthesis. The files associated with this example are named synthese_dpt. *.

Behavioral description of the adder :

ENTITY adder_us IS

PORT(
a : in BIT_VECTOR(7 downto 0);
b : in BIT_VECTOR(7 downto 0);
cout_n : out BIT;
over_n : out BIT;
s : out BIT_VECTOR(7 downto 0);
vdd : in BIT;
vss : in BIT
);

END adder_us;
ARCHITECTURE behavior_data_flow OF adder_us IS

SIGNAL cry : BIT_VECTOR(8 downto 0);

BEGIN
cry(0) <= ’07;
cry(8 downto 1) <= (a and b)
or (a and cry(7 downto 0))
or (b and cry(7 downto 0));
s <= a xor b xor cry(7 downto 0);

over_n <= not cry(7);
cout_n <= not cry(8);

ASSERT((vdd = ’1’) and (vss = ’0°))
REPORT "Power supply is missing on adder_us"
SEVERITY WARNING;
END behavior_data_flow;

Remark :

As the terminal ordering is meaningful for instanciation with DP_IMPORT, we adopt for the
interface of adder_us the same order as the one used in the operator provided by DP_ADD2F®.

Environment set up for logical synthesis :

$ MBK_TARGET LIB=$ALLIANCE_TOP/cells/fitpath/dplib/ecpd10

$ MBK_NAME LOG=""
$ export MBK TARGET LIB MBK NAME L0OG

8For curious people, this operator is named "add2f_8x8x01_bk".

25

Logic : Optimization of behavioral equations.

$ logic -o adder us adder_us_opt

eareeR @
e [clclcy
e @
ae aee [dddded e
e aa ee ae ee Qeee ae ee
ea ea ee @ eg e ea @
e ag ee @ 3 ag ae
ea ea ee eep ea ea
e [l ee ae ag ae @
e e ee eg eeeeed ap ee ee
QARRRRRRRR eag ea eRe prEean eee
@
eepeg
Logic Synthesis
Alliance CAD System 3.0, logic 3.01

Copyright (c) 90-93, MASI, CAD-VLSI Team
E-mail support:

cao-vlsiGnasi.ibp. fr

Enviromment

MBK_WOEK_LIB
MBK_CATA_LIB
:/labo/cells/rsa:

VHOL file

output file
Parameter file
Mode

Optimization mode
Optiwmization level

/el

Flabo/cells/ fitpath/dplib/ecpdl: s1abo/cells/ fitpathy fplib
ib

Files, Options and Parameters
adder_us.vbhe

adder_us_opt.vbe

defanlt.lax

Global optimization

2

Conpiling ‘adder_us’

Runing abl ordommancer on °adder us’
Rumning Abl2Bdd on ‘adder us'...
——-» Final mmber of nodes = 108(70)

Ruming Global Optimizer on *adder_us' ...

Number of latches
Maximw logical depth
Maximm delay

Total mmber of literals
Muiber of reduced literals

INITIAL COST
317
75
1]

25
8.500

26

Logic : Logical synthesis of the netlist starting from previously optimized behavioral description.

$ logic -s adder us_ opt adder_us

e aee feeesed eee

e an ’e @ QpR EeEe ag ea

e ag ee @ ae ag ae @

e aa ee @ 3 aa e

e ag o [l ag ae

e [ee o ap e @

2o e ap ee aERRAR aa ae ea
[ddddaaedddg aee ag aee feaeee eee

e’
ceead

Logic Synthesis

Alliance CAD System 3.0, logic 3.01
Copyright (c) SIJ 93, MASL. CAD-VLSI Teaw
E-mail support cao—vlsitnasi . ibp. fr

Enviromment

MBE_WORE_LIB

MBE_CATA_LIB
}la]m/[:ells}rsa

MBE_TARGET.

output file
Parameter file
Mode

Dptimization mode

Optimization level

; ,;labnfl:ells/fitpath/dpli.b/el:pdl[l :/Laboy/cells/fitpath/fplib
L fmeli

/labo/cells/fitpath/dplib/ecpdl0
vst

vst

Files, Options and Parametecrs
adder_us_opt.vhe

adder_us.vst

defanlt.lax

Mapping standard cell

2

Compiling *adder_us_. .
Fuming Standard cell Mappmq

t

Nuwiber of latches

Maximm delay

Total mwber of literals
Number of reduced literals

Maxiwm logical depth

]:NITI}\L GOST
0

Conpiling library *
cell

“ery_dp’

Ge:neratmg Exper:t Sys

flahujcells/fltpath,'rlpl]]]/ecpr]ll]

27

Modification of the C function describing the data-path netlist :

main()

{

/* Open a new Data-Path figure. */
DP_DEFLOFIG("synthese_dpt", 8, LSB_INDEX_ZERO);

/* Interface description. */

/x ... %/

/* Data-Path netlist description. */

/* Multiplexer ...

*/

/* Synthetized Adder. */
DP_IMPORT("adder_us",
"adder",

"data_
"data_
"ctrl_
"ctrl_
"data_

EOL);

/* Zero Detect ...

/* Register ...

/* Terminate the
DP_SAVLOFIG(Q);

exit (0);

a[7:0]",
m[7:0]",
ncout",
nover",

s[7:0]",

*/
*/

netlist description, and save on disk.

Further commands are the same as for sample_dpt.

28

*/

4.2.4 Hierarchical design : sub-data-path

As an illustration of the hierarchical design capabilities, we have reshape the netlist of the
adder accumulator. In this new netlist, the adder (DP_ADD2F) and the zero detect have been put
together to make a sub-data-path which we call alu_dpt.

Diagram of figure ?? shows modifications done to the hierarchy. Files related to this example
are named "hierarchy.dpt.*".

g ¢ °
(5] (=} (9]
S5 ™ 5 &
= = = 3 <]
5 B 5 g 2 g
S o5 0N
S © ©
data_a[7:0] data_a[7:0]
data_s[7:0]
data_b[7:0] data_s[7:0] data_b[7:0]
- alu_dpt
_ 3 £ 9 S
[} 5} s} 5} x Q
U,‘ CI CI N‘ UI 3‘
E E § B B 3
ffffffffffffffffffffffffffffffffff X--%--------
- - -

DP_IMPORT

data_b[7:0]

DP_MUX2CS

DP_PDFF

data_q

I
I
I
|
I
data_a[7:0] g
I
I
I
1
I
I
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

x‘ data_s[7:0]
Figure 8: netlist hierarchy.

29

Description of the sub-data-path :

static void mkSubDP()

{
/* Open the ALU part of the Data-Path. */
DP_DEFLOFIG("alu_dpt", 8, LSB_INDEX_ZERO);

/* Interface description. */

/* Control terminals declarations. */

DP_LOCON("ctrl_ncout", 0UT, "ctrl_ncout");
DP_LOCON("ctrl_nover", 0UT, "ctrl_nover");
DP_LOCON("ctrl_zero" , 0UT, "ctrl_zero");

/* Data terminals declarations. */

DP_LOCON("data_al[7:0]" , IN , "data_al[7:0]1");
DP_LOCON("data_b[7:0]" , IN , "data_b[7:0]1");
DP_LOCON("data_s[7:0]" , INOUT, "data_s[7:0]");
/* Power supplies terminals. */

DP_LOCON("vdd", IN , "vdd");

DP_LOCON("vss", IN , "vss");

/* Data-Path netlist description. */

/* Fast Adder. */

DP_ADD2F("adder",
"data_al[7:0]",
"data_b[7:0]",
"ctrl_ncout",
"ctrl_nover",
"data_s[7:0]1",
EOL);

/* Zero Detect. */

DP_NUL("zero", 8, O,
"data_s[7:0]",
"ctrl_zero",
EOL);

/* Terminate the netlist description, and save on disk.
DP_SAVLOFIGQ) ;

30

Modification of the C function describing the data-path netlist :

main()

{
/* Generate the Zero Detect Column. */
mkSubDP () ;

/* Open a new Data-Path figure. */
DP_DEFLOFIG("hierarchy_dpt", 8, LSB_INDEX_ZERO);

/* Interface description. */

/x ... %/

/* Data-Path netlist description. */
/* Multiplexer ... */

/* Sub-Data-Path. x/

DP_IMPORT("alu_dpt",
"alu",
"ctrl_ncout",
"ctrl_nover",
"ctrl_zero",
"data_al[7:0]",
"data_m[7:0]",
"data_s[7:0]",
EOL);

/* Register ... x/

/* Terminate the netlist description, and save on disk. */
DP_SAVLOFIG();

exit (0);

Modification of the .dpr file, add the following lines :

Model Name : Iterations : Height : CPC
DP_GLUE adder_us 5000 8 2

The placement of glue logic blocks is automatically performed by the router DPR.
The DP_GLUE command of the .dpr allows a control on the way this placement will be done.
Parameters meanings :

Iterations gives the number of iteration the placement algorithm will do.
Height height of the block (in slices).

CPC Number of cells per slice (inside a column). The greater the number, the smaller
the surface used for the block, on the other hand the routing becomes more difficult.
A good value is generally around 2-3.

31

Placement of glue logic blocks is systemetically performed at each call of the router
DPR. As the placement of blocks coming from logical synthesis can take a long time, and
in the case where we do several successive routing, we can prevent DPR to place the block
at each routing phasis. The router will use the placement generated at a former iteration.
To prevent DPR to place a block, just add in the .dpr :

Model Name
DP_KEEP adder_us

Further command are the same as for sample_dpt.

Remark :

By the time the DP_DEFLOFIG function saves the netlist on disk, this netlistis automati-
cally flattened at ”operator” level. In our example, the sub-data-path "alu dpt" included inside
"hierarchy dpt" will be flattened when the whole data-path will be terminated.

This behavior is needed by the fact that the router DPR is not able to manage the hierar-
chy. It only can route a netlist made of operators.

For the sake of clarity regarding the description of the netlist we have chosen to adopt a
hierarchical concept at FpGen level.

32

A Files provided with the tutorial

Summary of the five examples :

| fichiers | exemple |
sample_dpt first exemple
place dpt placement optimization
usercol_dpt customized column
synthesis_dpt syntesized block
hierarchy dpt hierarchical design

File associated to each example :

| extention |

type of file |

.sh
.C
.dpr
.inf

script in Bourne Shell
C source file for FpGen

auxiliary file for DPR

auxiliary file for desb

In addition to the five shell scripts, a Makefile is also provided.

33

