
ALLIANCE TUTORIAL
Pierre & Marie Curie University

2001 - 2004

PART 1
Simulation

Frederic AK Kai-shing LAM
Modified by LJ



PART 1 VHDL Modeling and simulation

The purpose of this tutorial is to provide a quick turn of some AL-
LIANCE tools, developed at the LIP6 laboratory of Pierre and Marie
Curie University.

The tutorial is composed of 3 main parts independent from each other:

• VHDL modeling and simulation
• Logical synthesis
• Place and route

Before going further you must ensure that all the environment vari-
ables are properly set (source alcenv.sh or alcenv.csh file) and that the
Alliance tools are available when invoking them at the shell prompt.

All the tools used in this tutorial are documented at least with a man-
ual page.

ALLIANCE TUTORIAL 2



PART 1 VHDL Modeling and simulation

Contents

1 Behavioral VHDL
1.1 Introduction
1.2 Behavioral Description
1.3 Stimuli format
1.4 Simulation
1.5 Simulation with Delay

2 Structural VHDL
2.1 Introduction
2.2 Stimuli Generation
2.3 Structural View
2.4 Structural view and validation of each block
2.5 Simulation and validation of the addaccu on 2 hierarchical levels

ALLIANCE TUTORIAL 3



PART 1 VHDL Modeling and simulation

PART 1 :
VHDL modeling and simulation

All the files used in this part are located in the
/tutorial/simulation/src directory.
This directory contains two subdirectories and one Makefile :

• The Makefile allows you to validate automatically the entire simu-
lation part

• addaccu_beh = the behavioral description (Register Transfert Level)

– Makefile to validate automatically the entire behavioral descrip-
tion

– addaccu.vbe is the behavioral description of addaccu
– patterns.pat is the simulation patterns for addaccu
– addaccu_dly.vbe is the behavioral description of addaccu with

delay
– patterns_dly.pat is the simulation patterns for addaccu with de-

lay
– addaccu4.vhdl is the behavioral description of addaccu using

standard VHDL subset

• addaccu_struct = the structural view

– Makefile to validate automatically the entire structural view
– pat_new.c is the vectors generation file
– addaccu.vbe is the behavioral description of addaccu
– mux.vbe is the behavioral description of multiplexer
– accu.vbe is the behavioral description of accumulator

– alu.vbe is the behavioral description of adder
– addaccu.vst is the structural view of addaccu
– mux.vst is the structural view of multiplexer
– accu.vst is the structural view of accumulator

ALLIANCE TUTORIAL 4



PART 1 VHDL Modeling and simulation

– alu.vst is the structural view of adder

The ALLIANCE tools used are :

• vasy : VHDL analyzer and convertor.
• asimut : VHDL Compiler and Simulator.
• genpat : Procedural generator of stimuli.

You can obtain the detailed informations on an any ALLIANCE tool
by typing the command :
> man <tool name>

To validate the behavioral and the structural description you can :

• run the UNIX commands in the order indicated by this tutorial.

• validate automatically the entire behavioral (or structural) descrip-
tion using the command :

> make

If you want to start again this validation from the beginning, you just
have to type :

> make clean
> make

ALLIANCE TUTORIAL 5



PART 1 VHDL Modeling and simulation

1 Behavioral VHDL

1.1 Introduction

The goal of this part is to write then to simulate the behavior of a very
small circuit : An accumulating adder which we will call addaccu.

The description of the behavior of addaccu will be made in Behav-
ioral VHDL (DATAFLOW).

1.2 Behavioral Description

The behavioral description of a circuit consists on a set of boolean func-
tions calculating the outputs according to the inputs with the use of pos-
sible internal signals ; in our case, a signal which connects the output
of the accumulator to the entry of the multiplexer (reg_out), another
which connects the output of the multiplexer to the entry of the adder
(mux_out) and finally a signal for carry (carry).

At first, you must write the file of behavioral description of addaccu.
This description must be of type : without delay (without After clause).

This file will have the extension ".vbe" which is the usual extension
to indicate a VHDL behavioral file (Vhdl BEhaviour description). This
description will have three distinct parts:

• Block 1 : The 4 bits adder.
• Block 2 : The 4 bits multiplexer.
• Block 3 : The 4 bits accumulator.

The circuit has the following interface:

• a 4 bits input bus a.
• a 4 bits input bus b.
• a 4 bits output bus S.
• a clock input signal ck.
• a control input signal sel.
• two alimentation inputs signals VDD and VSS.

ALLIANCE TUTORIAL 6



PART 1 VHDL Modeling and simulation

a

b

ck

sel s

reg_out

mux_out

4

4

4

4

4

Figure 1: accumulating adder

1. mux is a 4 bits multiplexer 1 among 2
mux truth table :
sel = 0 => mux_out = a
sel = 1 => mux_out = reg_out

2. alu is a 4 bits adder
s = b + mux_out

3. accu is a register (flip-flop)
ck = 0 => reg_out = reg_out
ck = 1 => reg_out = reg_out
ck : 0->1 => reg_out = s

Then you must validate your description while compiling with ASIMUT.
> asimut -b -c <file name>

• file name is the file name of your behavioral description without
extension (addaccu).

• -b option to indicate that the description is purely behavioral.
• -c option to compile without simulating.

ALLIANCE TUTORIAL 7



PART 1 VHDL Modeling and simulation

If you do not wish to use the environment variables positioned by
default, other environment variables can be used by ASIMUT.

> MBK_WORK_LIB = .
> MBK_CATA_LIB = .
> MBK_CATAL_NAME = CATAL
> MBK_IN_LO = VST

under Bash :

> export var = value

under standard Bourne Shell :

> var = value
> export var

under C Shell :

> setenv var value

The meaning of these variables is to be discovered in the man of
ASIMUT tool.

1.3 Description with Standard VHDL subset

Alliance tools use a very particular and restricted VHDL subset (vbe
and vst file format).

If you want to describe the behavior of your circuit (at Register Trans-
fert Level) with a more common VHDL subset you can use VASY to
automatically convert your VHDL descriptions in Alliance subset.

The file addaccu4.vhdl is a description of the addaccu circuit, using
classical VHDL subset (with process statements, IEEE 1164 VHDL types,
aritmetic operators etc ...)

ALLIANCE TUTORIAL 8



PART 1 VHDL Modeling and simulation

You can convert this description to the .vbe file format using VASY :
> vasy -Vao addaccu4.vhdl

You can then compile and simulate the generated file addaccu4.vbe
using asimut exactly as it has been done with the addaccu.vbe file.

1.4 Stimuli of test

Once the behavioral description compiled successfully (without any er-
ror), to validate your description you must write a file of nonexhaustive
but intelligent vectors of test.

Therefore you must write a file patterns.pat which contains a dozen
vectors of test. These vectors of test make it possible to check that the
adder makes the additions well with or without carry propagation , that
the multiplexer gives the good operand to the input of the adder fol-
lowing the value of sel signal and finally, that the accumulator correctly
memorizes the output value of the adder.

In order not to have signals overlapping temporally (phenomenon of
" glitch "), you will use a clock with very high period (tck = 100ns) com-
pared to the propagation times. The clock must respect the following
rate: 1 low state of 50 ns, then 1 high state of 50 ns, etc...

If the PAT syntax does not appear to you obvious, have a look to the
man giving the patterns files format : PAT format.
> man 5 pat

The 5 refers here to the class of handbooks for files formats.

• man 1 : User Commands.
• man 2,3 : Libraries.
• man 5 : Files format.
• man 7 : Environment variables.

1.5 Simulation

Now you only have to simulate your addaccu with your vectors of tests,
without any delay in order to check very quickly that the results on the

ALLIANCE TUTORIAL 9



PART 1 VHDL Modeling and simulation

outputs are well those which you wait.
> asimut -b addaccu patterns result_vbe

• addaccu : file name of the behavioral description (addaccu.vbe).
• pattern : file name of the vectors (pattern.pat).
• result_vbe : file name of the patterns result (result_vbe.pat).
• -b : option to indicate a purely behavioral description.

The file of resulting vectors must be seriously analyzed to check the
results of simulation. It is possible to use the graphical pattern viewer
xpat to analyze the results of the simulation.

1.6 Delays

The behavioral description written previously includes only zero-delay
concurrent assignements. It is however possible to specify propagation
times by using AFTER clauses, because the operations in a real circuit
are not done instantaneously. For more details, do refer to the man for
VBE files format.

You must modify your behavioral description to add delays :

• For the adder : 4 ns.
• For the multiplexer : 2 ns.
• For the accumulator : 3 ns.

The installation of the delay for the accumulator requires an inter-
mediate signal reg because you cannot put delay on a signal of register
type. In the test vectors file, it is necessary to put the option spy on the
signals with delays so that we can see these delays. In the contrary case,
these signals are sampled only at the times of the clock-edge.

Then you must validate this modified behavioral description while
simulating with asimut .
> asimut -b addaccu_dly patterns_dly result_dly

The results obtained (result_dly.pat) must be different from those ob-
tained without AFTER clauses (result_vbe.pat). To understand why, it is

ALLIANCE TUTORIAL 10



PART 1 VHDL Modeling and simulation

necessary to deeply analyze the temporal behavior of your circuit. The
step of 50 ns used for the test vectors does not really make possible to
observe the true temporal behavior of your circuit. You can spy on all
the transitions from an internal signal or an output by specifying this
characteristic while declaring in the file of test vectors (option spy , for
more details, consult the man for patterns files format).

ALLIANCE TUTORIAL 11



PART 1 VHDL Modeling and simulation

2 Structural VHDL

2.1 Introduction

The goal of this part is to write then to simulate in a hierarchical way the
structural view of the circuit presented in first part of this Tutorial. The
circuit will be describe in two levels of hierarchy :

• The first level will write the circuit like the instanciation of three
blocks.

• The second level will write each of the three blocks in term of ele-
mentary gates of the standard library.

Structural description of addaccu will be made in STRUCTURAL
VHDL .

This part contains five distinct steps:

• step 1 : Generation of the complete set of vectors and validation of
the addaccu.

• step 2 : VHDL structural description of the addaccu.
• step 3 : Simulation and validation of the structural addaccu on a

hierarchical level.
• step 4 : structural description and validation of each block.
• step 5 : Simulation and validation of the structural addaccu on 2

hierarchical levels.

2.2 Stimuli Generation

Normally, the behavioral description has been successfully compiled,
and validated with some hand made vectors. Now you must create a
file of test vectors more consequent (a hundred clock-edges).

However, the writing of the stimuli file directly is a tiresome work.
The tool genpat enables you to undertake this work in a procedural
way. The language genpat is a subset of " C " functions. For more in-
formations on genpat and the functions of the associated library do not
hesitate to use the command:
> man genpat

ALLIANCE TUTORIAL 12



PART 1 VHDL Modeling and simulation

Moreover, each basic function from genpat has its man, the functions
are in capital letters, as by example:
> man AFFECT

Here are some suggestions for your file of vectors generation :

• Write a function independent of the management of the clock. This
clock will be synchronized on 2 times: a low state of 50 ns followed
by a high state of 50 ns.

• All the inputs of the circuit must be positioned in the first vector.
• Initialize the accumulating register with the function INIT.

Once your file pat_new.c is written you must compile it. The follow-
ing commands make it possible to compile the file of procedural descrip-
tion and to generate the file of vectors pat_new.pat.
> genpat pat_new

If no error has occurred, the file pat_new.pat is now created. You only
have to simulate your behavioral addaccu with this new set of vectors
> asimut -b -zerodelay addaccu pat_new res_new

The -zerodelay option states here that you wish a purely boolean sim-
ulation (without considering the propagation times). You obtain then a
file of vectors (res_new.pat) result.

This file will be useful to you for the validation of the next stages

2.3 Structural View

The objective here is to realize a hierarchy on one level by making so that
the structural view of the accumulating adder addaccu.vst instancies the
behavioral description of the 3 basic components, the adder alu.vbe, the
multiplexer mux.vbe and the accumulator accu.vbe.
Initially you must write the structural description file of addaccu. This
file will have the extension " vst " which is the usual extension to indicate
a VHDL structural file (Vhdl Structural view). This view will contain
the instanciation of three independent blocks:

ALLIANCE TUTORIAL 13



PART 1 VHDL Modeling and simulation

Block 1 : The 4 bits adder.
Block 2 : The 4 bits Multiplexer.
Block 3 : The 4 bits accumulator.

You must create a CATAL file containing the identifier of each block
followed by the attribute ’C’ indicating that it is a basic element of the
hierarchy. This shows you the importance of the CATAL file which
forces the simulator asimut to use the behavioral sight of the compo-
nents which are listed. You have to set the environment variable MBK_IN_LO:

> MBK_IN_LO = vst
> export MBK_IN_LO

The meaning of all the usable variables is to be discovered in the man
of asimut tool.

Lastly, validate your structural description while compiling with
asimut .
> asimut -c addaccu

Then simulate your circuit with the vectors file obtained previously
(the res_new.pat file obtained by simulation zero-delay of the behavioral
description).
> asimut -zerodelay -nores addaccu res_new

The -nores option states here that you do not wait a result file. When
you do not have any more error of simulation you will have to create the
structural view of each of the 3 blocks.

2.4 Structural view and validation of each block

Now you have to pass to a hierarchy on 2 levels. So it is necessary to
write a structural view .vst for each basic component of the accumulat-
ing adder and to test one by one replacing the behavioral description
of the basic components of the accumulating adder by their structural
views by modifying the CATAL file (by removing the component name
).

ALLIANCE TUTORIAL 14



PART 1 VHDL Modeling and simulation

Each block (alu, accu, mux) must now be described like an intercon-
nection of elementary gates. The gates which are to instanciate will be
chosen among those available in the library of standard cells SXLIB .
For the functionality of the various cells and their interface, the sxlib
man is available. The behavioral description of each cell is present in
/alliance/cells/sxlib .

You must set the environment variable MBK_CATA_LIB to be able
to reach these cells.
> MBK_CATA_LIB=/alliance/cells/sxlib
> export MBK_CATA_LIB

For each block adopt following methodology to replace the behav-
ioral description of the block by its structural view:

• Write the structural view of the block (vst) .
• Compile this block (asimut -c <block_name>) to validate its syntax
• Remove its identifier from the CATAL file.
• Simulate circuit addaccu again:

> asimut -zerodelay -nores addaccu res_new

2.5 Simulation and validation of the addaccu on 2 hierarchical levels

Now you only have to simulate your addaccu described in a hierarchical
way (in which the basic elements are the library cells).

• Erase the CATAL file, which is not necessary any more, the library
of cells standards having its own catalogue.

• Simulate again the addaccu circuit

> asimut addaccu pat_new res_dly

Thus you will have replaced the behavioral description of the three
blocks by their structural view.

ALLIANCE TUTORIAL 15



PART 1 VHDL Modeling and simulation

• You can again simulate the addaccu circuit in order to observe its
temporal behavior precisely (each cell of the standard library has
a given propagation time). You will use the spy option for the
internal signals and the outputs.

> asimut addaccu pat_new res_dly

ALLIANCE TUTORIAL 16


