TRIPPLE DOS - release notes (v 0.48).

	This document describes some working principles of Tripple DOS to make easier understanding some of its features (present and future). Several technical issues usually interesting only to low-level programmers are also covered: without them it would be impossible to understand the rest. Some other issues are intended for programmers and may not be of much interest to everybody.

In the text below "task" is equivalent to "session"; Tripple DOS switches tasks as complete virtual machines, without getting into exactly what program is running. This is so-called "preemptive multitasking". It is different for example, from the task switching that DOSSHELL provides. (DOSSHELL may be run inside a single task under Tripple DOS. Will have to test this opportunity).

1. DOS is designed to work on x86 CPUs operating in Real Mode. It was the only mode of operation of 8086 CPU; all later models include it for (almost) full binary compatibility. The most important characteristics of real mode are: 1M of memory, segment:offset addressing style with physical address = segment * 16 + offset, and no memory protection between different programs.

80386 and later CPUs introduced "virtual-8086" or V86 emulation mode. The addressing style in V86 mode is as in real mode but privilege mode is the least privileged. All system events are reported to system monitor that runs in the most privileged CPU mode. Paging system allows translation of any 32-bit linear address to any 32-bit physical address. All that together provide enough means to create a multitasking model for V86 tasks, or build in support for V86 tasks into a multitasking OS.

2. Tripple DOS uses all that means to do its work. It starts as a regular DOS program in Real Mode (necessary; if you try to run it in V86 mode it will report an error and refuse to run). The original environment in which Tripple DOS started serves as a master copy of DOS. When a new task is started, Tripple DOS copies the master copy to the new task, creating two identical copies. The process resembles forking new processes on UNIX OSes. Then it terminates in the new task, leaving a copy of original DOS as it was before Tripple DOS was started. The new task since then lives on its own.

All tasks reside in separate address spaces (virtual machines, as they are usually called). Anything that one task does will not affect other tasks. Also, V86 mode is the least privileged; that is, at the same cost Tripple DOS gives much better crash protection than original DOS (which is not protected at all). There are, of course, Tripple DOS'es own bugs that may lead to a system crash (Tripple DOS is also software).

This leads to some interesting opportunities. For example, if a user prefers Norton Commander shell over Command.COM shell, (s)he may start Tripple DOS from Norton Commander. Every new task since then will start with NC shell (which may be terminated in every session without affecting the others).

Another funny feature is independence of files buffers in different sessions. Because different DOS sessions have their own copies of disk buffers, changes made to files in one of them do not immediately get known to the others. E.g. if a file is created in one task, it will take some time until another task would see it.

3. Tripple DOS supports saving and restoring of video state. All modes available on standard VGA are supported (this includes text, 2 color, 4 color, 16 color and some 256 color graphics modes, including so-called "mode X"). Unfortunately, some video cards that claim VGA compatibility are not VGA-compatible on register level (Tripple DOS does state switching on this level). Tripple DOS may not work correctly with such cards.

Extended SuperVGA modes meanwhile are not supported, even though occasionally some modes on some cards may work correctly.

4. Tripple DOS maintains open files list for each task and handles some file sharing. That is, if some file was opened in one task, it is only possible to open it read-only in another task. It's not an extremely useful feature; it may solve only some very brutal interference. For instance, if the same file is opened by text editors in two different tasks, they both may write to it, causing incorrect results. This happens because text editors (and most other programs) open files only when they want to write to them (when you command it "Save"). All the other time a file is held in text editor's memory buffer.

5. Tripple DOS may not interoperate correctly with programs that had allocated extended memory before Tripple DOS was started. HIMEM.SYS works in Real Mode and still provides extended memory. Thus Tripple DOS is not prevented from being started, but once started it claims all physical memory higher than 1M. Please don't start such programs before Tripple DOS. Their data in extended memory may get corrupted. Tripple DOS now provides extended (XMS) memory itself, so you may run such programs in sessions.

Loading programs that use High Memory (between 1M and 1M + 64K), however, will work correctly with Tripple DOS. For instance, you may load DOS high (and DOS will be in high memory in every session).

Some programs may still work incorrectly under extended memory provided by Tripple DOS. Such programs may, for example, assume that HIMEM.SYS is present (like MEM.EXE from DOS 7 does). Or else they may assume that any program provides XMS interface fully equivalent with HIMEM.SYS. Tripple DOS provides extended memory in in accordance to XMS 3.0, not to HIMEM.SYS! Some functions implemented in HIMEM.SYS are not implemented in Tripple DOS and are reported as such, as specified in XMS 3.0. Future versions of Tripple DOS may include some of these functions.

Expanded (EMS) memory is not provided.

DPMI server (compliant to DPMI specification 0.9) is in work.

6. Tripple DOS virtualizes some devices. Most effort was spent on correct sharing of common devices found in a typical DOS machine: keyboard, display, integrated peripherials, disks. Mouse is not correcty handled (yet).

Programmable interval timer (PIT) runs at 0.001(s) rate; a session may install its own virtual timer with no higher rate than 0.001 (s). If a program attempts to reprogram timer to a higher rate, it will be rounded to 0.001 (s). Settings in one task (session) don't affect settings of the others'.

Programmable interrupt controller (PIC) is virtualized. If a task disables interrupts, it will not receive them, but this will not affect other tasks.

DMA is virtualized; however currently it is tested to work only with floppy disks.

All other devices are not properly synchronized yet. Any task may access the hardware directly and interrupts are reported to the task that is currently running. This is subject to fixes in the closest releases.

If you run a single task, such problems won't occur.

7. Tasks are switched automatically every 0.01 (s). No priority handling is meanwhile done; all tasks get equal time slices. However, Tripple DOS tracks some idle cases for tasks (that may for instance wait for a key press). Such tasks will not get time until their designated event arrives (a key is pressed). Instead, the time will be handed over to non-idle tasks that may do something useful.

8. Here are headlines of my To-Do list for Tripple DOS; they appear in order of my preferences (may change from time to time). Of course, bug reports may get a higher preference than all of that. Unfortunately I can't guarantee any due date for these features; they will be released when they are done. Note that your reports may add to this list or change its priorities!

ToDo - list for Tripple-DOS project

===================================

(o) bring DPMI to a working level, at least with some

common heavy applications (GCC, WCC, BCC, TASM, etc).

(o) Devices arbitration. Devices are divided to categories:

 a) shared devices

 b) owned devices

 c) unknown devices

 Devices from category (a) are shared between all tasks and possibly main

executive. They are most likely interactive devices. Devices from category (b)

are assumed to the task that first started to use them. Other tasks will not

be given access to them until owner task terminates (doesn't use device for

some amount of time? let user tell it to system in some other means?). Tasks

from category (c) are not arbitrated at all. (User must be given means to

tell the system about tasks from category (c) so that they could be moved to

categories (b) or (a).

(o) Start new tasks as copy-on-write rather than copied.

(o) Write basic user interface

(o) Redesign the scheduler to allow arbitrary time sharing for the user

(o) Disk caching into memory on sector level (user defines cache size) for not

heavily loaded system.

(o) Virtual memory for heavily loaded systems. (?)

==

Tripple DOS is copyright (c) Vadim Drubetsky AKA Black Phantom 1998-2001

All other mentioned trademarks belong to their respective owners.

