
LibEvent Programmers Manual

David F. Skoll
Roaring Penguin Software Inc.

September 30, 2002

1 Introduction

Many UNIX programs are event-driven. They spend most of their time waiting
for an event, such as input from a file descriptor, expiration of a timer, or a
signal, and then react to that event.
The standard UNIX mechanisms for writing event-driven programs are the se-
lect and poll system calls, which wait for input on a set of file descriptors,
optionally with a timeout.
While select and poll can be used to write event-driven programs, their calling
interface is awkward and their level of abstraction too low. LibEvent is built
around select, but provides a more pleasant interface for programmers.
LibEvent provides the following mechanisms:

• Events, which trigger under user-specified conditions, such as readabil-
ity/writability of a file descriptor or expiration of a timer.

• Synchronous signal-handling, which is the ability to defer signal-handling
to a safe point in the event-handling loop.

• Syncronous child cleanup, which lets you defer calls to wait or waitpid
to a safe point in the event-handling loop.

2 Overview

Figure 1 indicates the overall flow of programs using LibEvent.

1. Call Event CreateSelector once to create an Event Selector. This is an
object which manages event dispatch.

2. Open file descriptors as required, and call Event CreateHandler to cre-
ate Event Handlers for each descriptor of interest. You can call Event CreateTimerHandler
to create timers which are not associated with file descriptors.

1



Event_AddHandler
Event_AddHandler

Event_AddTimerHandler.
.
.

Event_HandleEvent

Event_CreateSelector

Figure 1: LibEvent Flow

2



3. Call Event HandleEvent in a loop. Presumably, some event will cause
the program to exit out of the infinite loop (unless the program is designed
never to exit.)

To use LibEvent, you should #include the file libevent/event.h

3 Types

LibEvent defines the following types:

• EventSelector – a container object which manages event handlers.

• EventHandler – an object which triggers a callback function when an event
occurs.

• EventCallbackFunc – a prototype for the callback function called by an
EventHandler .

4 Basic Functions

This section describes the basic LibEvent functions. Each function is described
in the following format:

type name(type1 arg1, type2 arg2)

Description: A brief description of the function. type is the type of the return
value and name is the name of the function.

Returns: What the function returns

Arguments:

• arg1 – A description of the first argument.

• arg2 – A description of the second argument, etc.

4.1 Event Selector Creation and Destruction

EventSelector * Event CreateSelector(void)

Description: Creates an EventSelector object and returns a pointer to it. An
EventSelector is an object which keeps track of event handlers. You should
treat it as an opaque type.

Returns: A pointer to the EventSelector , or NULL if out of memory.

3



Arguments:

None.

void Event DestroySelector(EventSelector *es)

Description: Destroys an EventSelector and all associated event handlers.

Returns: Nothing.

Arguments:

• es – the EventSelector to destroy.

4.2 Event Handler Creation and Destruction

An EventHandler is an opaque object which contains information about an
event. An event may be triggered by one or more of three things:

1. A file descriptor becomes readable. That is, select for readability would
return.

2. A file descriptor becomes writeable.

3. A timeout elapses.

When an event triggers, it calls an event callback function. An event callback
function looks like this:

void functionName(EventSelector *es,
int fd,
unsigned int flags,
void *data)

Description: Called when an event handler triggers.

Returns: Nothing

Arguments:

• es – the EventSelector to which the event handler belongs.

• fd – the file descriptor (if any) associated with the event.

• flags – a bitmask of one or more of the following values:

– EVENT FLAG READABLE – the descriptor is readable.

4



– EVENT FLAG WRITEABLE – the descriptor is writeable.

– EVENT FLAG TIMEOUT – a timeout triggered.

• data – an opaque pointer which was passed into Event AddHandler.

EventHandler * Event AddHandler(EventSelector *es,
int fd,
unsigned int flags,
EventCallbackFunc fn,
void *data)

Description: Creates an EventHandler to handle an event.

Returns: An allocated EventHandler , or NULL if out of memory.

Arguments:

• es – the event selector.

• fd – the file descriptor to watch. fd must be a legal file descriptor for use
inside select.

• flags – a bitmask whose value is one of EVENT FLAG READABLE, EVENT FLAG WRITEABLE
or EVENT FLAG READABLE | EVENT FLAG WRITEABLE. flags specifies the
condition(s) under which to trigger the event.

• fn – the callback function to invoke when the event triggers.

• data – a pointer which is passed unchanged as the last parameter of fn
when the event triggers.

EventHandler * Event AddTimerHandler(EventSelector *es,
struct timeval t,
EventCallbackFunc fn,
void *data)

Description: Creates an EventHandler to handle a timeout. After the time-
out elapses, the callback function is called once only, and then the Even-
tHandler is automatically destroyed.

Returns: An allocated EventHandler , or NULL if out of memory.

Arguments:

• es – the event selector.

• t – the time after which to trigger the event. t specifies how long after
the current time to trigger the event.

5



• fn – the callback function to invoke when the event triggers. A timer han-
dler function is always called with its flags set to EVENT FLAG TIMER | EVENT FLAG TIMEOUT.

• data – a pointer which is passed unchanged as the last parameter of fn
when the event triggers.

EventHandler * Event AddHandlerWithTimeout(EventSelector *es,
int fd,
unsigned int flags,
struct timeval t,
EventCallbackFunc fn,
void *data)

Description: Creates an EventHandler to handle an event. The event is called
when a file descriptor is ready or a timeout elapses. This function may be
viewed as a combination of Event AddHandler and Event AddTimerHandler.

Returns: An allocated EventHandler , or NULL if out of memory.

Arguments:

• es – the event selector.

• fd – the file descriptor to watch. fd must be a legal file descriptor for use
inside select.

• flags – a bitmask whose value is one of EVENT FLAG READABLE, EVENT FLAG WRITEABLE
or EVENT FLAG READABLE | EVENT FLAG WRITEABLE. flags specifies the
condition(s) under which to trigger the event.

• t – the time after which to trigger the event. If the event is triggered be-
cause of a timeout, the callback function’s flags has the EVENT FLAG TIMEOUT
bit set.

• fn – the callback function to invoke when the event triggers.

• data – a pointer which is passed unchanged as the last parameter of fn
when the event triggers.

int Event DelHandler(EventSelector *es,
EventHandler *eh)

Description: Deletes an EventHandler and frees its memory. A handler may
be deleted from inside a handler callback; LibEvent defers the actual deal-
location of resources to a safe time.

Returns: 0 if the handler was found and deleted, non-zero otherwise. A non-
zero return value indicates a critical internal error.

6



Arguments:

• es – the event selector which contains eh.

• eh – the event handler to delete.

4.3 Event Handler Access Functions

The functions in this section access or modify fields in the EventHandler struc-
ture. You should never access or modify fields in an EventHandler except with
these functions.

void Event ChangeTimeout(EventHandler *eh,
struct timeval t)

Description: Changes the timeout of eh to be t seconds from now. If eh was
not created with Event AddTimerHandler or Event AddHandlerWithTimeout,
then this function has no effect.

Returns: Nothing

Arguments:

• eh – the EventHandler whose timeout is to be modified.

• t – new value of timeout, relative to current time.

EventCallbackFunc Event GetCallback(EventHandler *eh)

Description: Returns the callback function associated with eh.

Returns: A pointer to the callback function associated with eh.

Arguments:

• eh – the EventHandler whose callback pointer is desired.

void * Event GetData(EventHandler *eh)

Description: Returns the data associated with eh (the data argument to the
. . . AddHandler. . . function.)

Returns: The data pointer associated with eh.

Arguments:

7



• eh – the EventHandler whose data pointer is desired.

void Event SetCallbackAndData(EventHandler *eh,
EventCallbackFunc fn,
void *data)

Description: Sets the callback function and data associated with eh.

Returns: Nothing.

Arguments:

• eh – the EventHandler whose callback function and data pointer are to
be set.

• fn – the new value for the callback function.

• data – the new value for the data pointer.

5 Signal Handling

In UNIX, signals can arrive asynchronously, and a signal-handler function may
be called at an unsafe time, leading to race conditions. LibEvent has a mechanism
to call a handler function during Event HandleEvent so that the handler is
dispatched just like any other event handler. In this way, the signal handler
knows that it is safe to access shared data without interference from another
thread of control.
LibEvent implements this synchronous signal handling by setting up a UNIX
pipe, and writing to the write-end inside the asynchronous handler. The read
end then becomes ready for reading, and triggers a normal event. LibEvent
encapsulates all the details for you in two functions.

int Event HandleSignal(EventSelector *es,
int sig,
void (*handler)(int sig))

Description: Arranges for the function handler to be called when signal sig
is received. sig is typically a constant from signal.h, such as SIGHUP,
SIGINT, etc. The handler function is not called in the context of a UNIX
signal handler; rather, it is called soon after the signal has been received
as part of the normal Event HandleEvent loop.

As a side-effect of calling this function, a UNIX signal handler is estab-
lished for sig. Any existing signal disposition is forgotten. If sig is
SIGCHLD, then the SA NOCLDSTOP flag is set in the struct sigaction
passed to the low-level sigaction function.

8



Returns: 0 on success; -1 on failure. Failure is usually due to a UNIX system
call failing or a lack of memory.

Arguments:

• es – the event selector.

• sig – the signal we wish to handle.

• handler – the function to call. It is passed a single argument—the signal
which is being handled.

int Event HandleChildExit(EventSelector *es,
pid t pid,
void (*handler)(pid t pid, int status, void *data),
void *data)

Description: Arranges for handler to be called when the child process with
process-ID pid exits. pid must be the return value of a successful call to
fork.

When the process with process-ID pid exits, LibEvent catches the SIGCHILD
signal and at some point in the event-handling loop, calls handler with
three arguments: pid is the process-ID of the process which terminated.
status is the exit status as returned by the waitpid system call. And
data is passed unchanged from the call to Event HandleChildExit.

Returns: 0 on success; -1 on failure. Failure is the result of lack of memory or
the failure of a UNIX system call.

Arguments:

• es – the event selector.

• pid – process-ID of the child process.

• handler – the function to call when the process exits.

• data – a pointer which is passed unchanged to handler when the process
exits.

6 Stream-Oriented Functions

The functions presented in the previous sections are appropriate for simple
events, especially those associated with datagram sockets. A higher level of
abstraction is required for stream-oriented descriptors. It would be nice for
LibEvent to invoke a callback function when a certain number of bytes or a

9



specific delimiter have been read from a stream, or when an entire buffer’s
worth of data has been written to a stream.
The functions in this section all (unfortunately) have the string Tcp in their
names, because they were originally used with TCP sockets. However, they
may be used with any stream-oriented sockets, including UNIX-domain sockets.
All of the stream-oriented functions are built on the simpler event functions
described previously. They simply add an extra layer of convenience. To use
the stream-oriented functions, #include the file libevent/event tcp.h.

7 Stream-Oriented Data Types

The stream-oriented functions use the following publicly-accessible type:

• EventTcpState – an opaque object which records the state of stream-
oriented event handlers.

8 Stream-Oriented Functions

The stream-oriented functions may be broken into two main groups: Connection
establishment, and data transfer.

8.1 Connection Establishment

EventHandler * EventTcp CreateAcceptor(EventSelector *es,
int fd,
EventTcpAcceptFunc f)

Description: Creates an event handler to accept incoming connections on the
listening descriptor fd. Each time an incomming connection is accepted,
the function f is called.

Returns: An EventHandler on success; NULL on failure.

Arguments:

• es – the event selector.

• fd – a listening socket (i.e., one for which the listen(2) system call has
been called.)

• f – a function which is called each time an incoming connection is accepted.
The function f should look like this:

void f(EventSelector *es, int fd)

In this case, es is the EventSelector , and fd is the new file descriptor
returned by accept(2).

10



void EventTcp Connect(EventSelector *es,
int fd,
struct sockaddr const *addr,
socklen t addrlen,
EventTcpConnectFunc f,
int timeout,
void *data)

Description: Attempts to connect the socket fd to addr using the connect(2)
system call.

Returns: Nothing. See below for error-handling notes.

Arguments:

• es – the event selector.

• fd – a socket which is suitable for passing to connect(2).

• addr – the server address to connect to.

• addrlen – the length of the server address. The three parameters fd,
addr and addrlen are passed directly to connect(2).

• f – A function which is called when the connection succeeds (or if an error
occurs.) The function f looks like this:

void f(EventSelector *es, int fd, int flag, void *data)

The parameters of f have the following meaning:

– es – the event selector.

– fd – the descriptor.

– flag – a flag indicating what happened. It may contain one of the
following values:

∗ EVENT TCP FLAG IOERROR – the connect system call failed.
∗ EVENT TCP FLAG COMPLETE – the connect system call succeeded

and the descriptor is now connected.
∗ EVENT TCP FLAG TIMEOUT – the connect system call did not

complete within the specified timeout.

– data – a copy of the data given to EventTcp Connect.

• timeout – a timeout value in seconds. If connect does not complete with-
ing timeout seconds, the f is called with a flag of EVENT TCP FLAG TIMEOUT.

• data – an opaque pointer passed unchanged to f.

11



8.2 Data Transfer

There are two stream-oriented functions for data transfer: One for reading and
one for writing.

EventTcpState * EventTcp ReadBuf(EventSelector *es,
int fd,
int len,
int delim,
EventTcpIOFinishedFunc f,
int timeout,
void *data)

Description: Arranges events to read up to len characters from the file de-
scriptor fd. If delim is non-negative, reading stops when the characters
delim is encountered. After len characters have been read (or delim has
been encountered), or after timeout seconds have elapsed, the function f
is called.

Returns: An EventTcpState object on success; NULL on failure. Failure is
usually due to failure of a UNIX system call or lack of memory.

Arguments:

• es – the event selector.

• fd – the descriptor to read from.

• len – the maximum number of bytes to read.

• delim – if negative, reading continues until exactly len bytes have been
read or the operation times out. If non-negative, reading stops when len
bytes have been read or the characters delim is encountered, whichever
comes first. Note that supplying a non-negative delim causes LibEvent to
invoke the read(2) system call for each character ; if you are expecting
large amounts of data before the delimiter, this could be inefficient.

• f – a function which is called when reading has finished, an error occurs,
or the operation times out. The function f looks like this:

void f(EventSelector *es, int fd, char *int buf, int len, int flag, void *data)

The arguments passed to f are:

– es – the event selector.

– fd – the file descriptor that was passed to EventTcp ReadBuf. If
no more activity on fd is required, then you should close it inside f.

12



– buf – a dynamically-allocated buffer holding the data which were
read from fd. Do not free this buffer; LibEvent will take care of it.
Do not store the pointer value; if you need a copy of the data, you
must copy the whole buffer.

– len – the number of bytes actually read from fd.

– flag – a flag indicating what happened. It can have one of four
values:

∗ EVENT TCP FLAG COMPLETE – the operation completed success-
fully.

∗ EVENT TCP FLAG IOERROR – an error occurred during a read(2)
or some other system call.

∗ EVENT TCP FLAG EOF – EOF was detected before all bytes were
read. Nevertheless, len and buf have valid contents.

∗ EVENT TCP FLAG TIMEOUT – the operation timed out before all
bytes were read. Nevertheless, len and buf have valid contents.

– data – a copy of the data pointer passed to EventTcp ReadBuf.

• timeout – if positive, LibEvent times the operation out after timeout
seconds.

• data – an opaque pointer which is passed as-is to f.

EventTcpState * EventTcp WriteBuf(EventSelector *es,
int fd,
char *buf,
int len,
EventTcpIOFinishedFunc f,
int timeout,
void *data)

Description: Arranges events to write len characters from the buffer buf to
the file descriptor fd. After len characters have been written, an error
occurs, or timeout seconds have elapsed, the function f is called.

Returns: An EventTcpState object on success; NULL on failure. Failure is
usually due to failure of a UNIX system call or lack of memory.

Arguments:

• es – the event selector.

• fd – the descriptor to write to.

• buf – buffer containing characters to write. EventTcp WriteBuf allo-
cates its own private copy of the buffer; you may free or reuse the buffer
once EventTcp WriteBuf returns.

13



• len – the number of bytes to write.

• f – a function which is called when reading has finished, an error occurs, or
the operation times out. The function f is as described in EventTcp ReadBuf.
As a special case, you may supply NULL as the value for f. In this case,
EventTcp WriteBuf calls close(2) on the descriptor fd once writing
has finished or timed out, or if an error occurs.

• timeout – if positive, LibEvent times the operation out after timeout
seconds.

• data – an opaque pointer which is passed as-is to f.

14


	Introduction
	Overview
	Types
	Basic Functions
	Event Selector Creation and Destruction
	Event Handler Creation and Destruction
	Event Handler Access Functions

	Signal Handling
	Stream-Oriented Functions
	Stream-Oriented Data Types
	Stream-Oriented Functions
	Connection Establishment
	Data Transfer


