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Chapter 1

Introduction

PVS stands for “Prototype Verification System,” and as the name suggests, it is a
prototype environment for specification and verification. This document is a refer-
ence manual for the commands employed in constructing proofs using the PVS proof
checker. The PVS System Guide [11] should be consulted for information on how to
use the system to develop specifications and proofs. The PVS Language Reference [10]
describes the language of PVS.

The primary purpose of PVS is to provide formal support for conceptualization
and debugging in the early stages of the lifecycle of the design of a hardware or soft-
ware system. In these stages, both the requirements and designs are expressed in
abstract terms that are not necessarily executable. We find that the best way to ana-
lyze such an abstract specifications is by attempting proofs of desirable consequences
of the specification. Our own experience with PVS in this regard has been that such
attempted proofs of putative theorems very quickly highlight even subtle errors and
infelicities. These would be costly to detect and correct at later stages of the design
lifecycle.

The primary emphasis in the PVS proof checker is on supporting the construction
of readable proofs. The automation underlying PVS serves to ensure that the pro-
cess of verification yields human insights that can be easily communicated to other
humans, and encapsulated for future verifications. PVS therefore pays a lot of atten-
tion to simplifying the process of developing, debugging, maintaining, and presenting
proofs. In order to make proofs easier to develop, the PVS proof checker provides
a collection of powerful proof commands to carry out propositional, equality, and
arithmetic reasoning with the use of definitions and lemmas. These proof commands
can be combined to form proof strategies. To make proofs easier to debug, the PVS
proof checker permits proof steps to be undone, and it also allows the specification to
be modified during the course of a proof. To support proof maintenance, PVS allows
proofs (and partial proofs) to be edited and rerun. Currently, the proofs generated
by PVS can be made presentable but they still fall short of being humanly readable.
The readability of proofs will be one focus of future enhancements to PVS.

1



2 Introduction

PVS is meant to provide effective theorem proving support for a richly expressive
specification language. This is unusual because systems that support expressive spec-
ification languages usually only have modest deductive support and, conversely, the
highly mechanized theorem provers are generally associated with fairly restricted spec-
ification notations. For example, the powerful Boyer-Moore theorem prover [4] uses
a constructive, untyped, quantifier-free first order logic as its specification language.
On the other hand, “proof assistants” for Z and VDM (such as Mural [1]) provide
attractive mouse-and-windows interfaces for natural deduction but lack the machin-
ery needed to automate the tedious aspects of proof construction. The combination
of an expressive logic and a powerful theorem proving capability in PVS hinges on a
careful integration between the typechecker and the proof checker. The typechecker
exploits the deductive power of the proof checker to automatically discharge proof
obligations generated by the typechecker. These proof obligations, termed type cor-
rectness conditions (or TCCs), arise for instance, when a term is typechecked against
an expected predicate subtype. Such proof obligations can also arise as subgoals dur-
ing proof checking since the typechecker is frequently invoked to check user-supplied
expressions and quantifier instantiations.

PVS’ combination of direct control by the user for the higher levels of proof
development, and powerful automation for the lower levels, is also somewhat unusual.
On the whole, PVS provides more automation than a low-level proof checker (such as
LCF [7], HOL [8], Nuprl [5], Automath [6]), and more control than a highly automatic
theorem prover (such as Otter [9] or Nqthm [3, 4]). Compared with thoroughly
automated theorem provers such as Nqthm, PVS’s deductive component may be
considered a proof checker—but it seems like a theorem prover to those accustomed to
systems such as HOL which provide limited automation. We reflect this ambivalence
by sometime referring to PVS as a theorem prover, and sometimes as a proof checker.
The PVS proof checker is somewhat in the spirit to the IMPLY prover of Bledsoe and
his colleagues [2].

While there are clearly many avenues for further improvement of the PVS system,
the combination of a highly expressive specification language and a powerful inter-
active proof checking capability already yields a productive verification environment.
There are a number of examples, both big and small, that support this observation.
A list of applications of PVS and a bibliography of PVS related reports and papers
is maintained at the PVS web site at http://pvs.csl.sri.com/.

1.1 PVS Proof Display and Construction

We give a brief overview of the sequent-style proof representation used in PVS since
this is needed to understand the effect of the PVS proof commands. The PVS proof
checker is interactive, but also supports a batch mode in which proofs can be easily
rerun. The prover maintains a proof tree, and it is the goal of the user to construct

http://pvs.csl.sri.com/


1.1 PVS Proof Display and Construction 3

a proof tree which is complete, in the sense that all of the leaves are recognized as
true. Each node of the proof tree is a proof goal that follows from its offspring nodes
by means of a proof step. Each proof goal is a sequent consisting of a sequence of
formulas called antecedents and a sequence of formulas called consequents. In PVS,
such a sequent is displayed as

{-1} A1

{-2} A2

[-3] A3
...

———-
{1} B1

[2] B2

{3} B3
...

where the Ai and Bj are PVS formulas collectively referred to as sequent formulas :
the Ai are the antecedents and the Bj are the consequents; the row of dashes serves
to separate the antecedents from the consequents.1 The sequence of antecedents or
consequents (but not both) may be empty. The intuitive interpretation of a sequent
is that the conjunction of the antecedents implies the disjunction of the consequents,
i.e., (A1 ∧ A2 ∧ A3 . . .) ⊃ (B1 ∨ B2 ∨ B3 . . .). The proof tree starts off with a root
node of the form ` A, where A is the theorem to be proved. PVS proof steps build
a proof tree by adding subtrees to leaf nodes as directed by the proof commands. It
is easy to see that a sequent is true if any antecedent is the same as any consequent,
if any antecedent is false, or if any consequent is true. Other sequents can also be
recognized as true, using more powerful inferences that will be described later. Once
a sequent is recognized as true, that branch of the proof tree is terminated. The goal
is to build a proof tree whose branches have all been terminated in this way.

At any time in a PVS proof, attention is focussed on some sequent that is a leaf
node in the current proof tree—this is the sequent that is displayed by the PVS
prover while awaiting the user’s command. The numbers in brackets, e.g., [-3], and
braces, e.g., {3}, before each formula in the displayed sequent are used to name the
corresponding formulas. The formula numbers in square brackets (e.g., [-3] above)
indicate formulas that are unchanged in a subgoal from the parent goal whereas the
numbers in braces (e.g., {2} in the example above), serve to highlight those formulas
that are either new or different from those of the parent sequent.

PVS interactive commands allow the user to shift the focus (using the postpone

command) to a sibling of the current sequent (if any), or to abandon (using the fail

or undo command) a portion of the proof containing the current sequent in order to

1In written text, sequents may also be written as A1, A2, A3, . . . ` B1, B2, B3, . . .



4 Introduction

return to some ancestor node representing an earlier point in the proof. PVS proof
steps cause a subtree of sequents to “grow” from the current sequent, and shift the
focus to one of the leaves of the new subtree. For example, one proof step (called
split in PVS) takes a sequent of the form

Γ ` A ∧B

(where Γ is any sequence of formulas) and creates the pair of child sequents

Γ ` A and Γ ` B

(i.e., in order to prove a conjunction, it is sufficient to prove each of the conjuncts
separately).

A PVS proof command when applied to a sequent provides the means to construct
proof trees. These commands can be used to introduce lemmas, expand definitions,
apply decision procedures, eliminate quantifiers, and so on; they affect the proof tree,
and are saved when the proof is saved. Proof commands may be invoked directly by
the user, or as the result of executing a strategy. We refer to the action resulting
from a proof command as a proof step or a proof rule and often use these terms
interchangeably.

The proof commands that really define the PVS logic are called the primitive
rules ; they either recognize the current sequent as true and terminate that branch
of the proof tree, or they add one or more child nodes to the current sequent and
transfer the focus to one of these children. PVS strategies are combinations of proof-
steps that can, in principle, add a subtree of any depth to the current node (i.e., the
step may invoke substeps and so on). On the other hand, those proof steps called
defined rules (which can be the result of invoking strategies with the apply control
strategy) silently prune those branches of the subtrees which they generate that are
recognized as true, and collapse all remaining interior nodes, so that the subtree
actually generated has depth zero (i.e., the sequent is recognized as true and this
branch of the proof terminates) or one (i.e., it simply adds children to the current
node).

As mentioned earlier, some of the individual proof steps in the PVS prover are
extremely sophisticated and make heavy use of arithmetic and equality decision proce-
dures. Various properties of function, record, and tuple types, and abstract datatypes,
are also built into the operation of the PVS prover. The interplay between type in-
formation (from the specification) and inference is also mechanized in a significant
way by PVS. For example, if the function definition

factorial(n): recursive nat = if n = 0 then 1 else n× factorial(n− 1) endif

is used to expand the term factorial(i + 1), where i is of type nat, the PVS prover
will retrieve the type predicate for nat, namely

(λn:n ≥ 0),
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instantiate it with i and call the arithmetic decision procedures to deduce that i+1 6=
0, and thereby select just the relevant branch of the definition to produce the result

(i+ 1)× factorial(i+ 1− 1).

Though there are only a few proof commands in PVS, many of these commands
are quite powerful and flexible. It is wise to experiment with all of the commands in
order to more thoroughly understand how they work, and to employ the more powerful
commands whenever possible. As with any automated reasoning system, the form
of the specification can significantly affect the ease or difficulty of the accompanying
proofs. The specifier must demonstrate good taste in writing abstract specifications,
using definitions to name useful concepts, employing types, subtypes, and abstract
datatypes appropriately, and in stating lemmas in their most useful forms. In a system
like PVS, it is quite easy to carry out a less than elegant proof; the user must exercise
enough discipline to structure proofs so that they are less cluttered, easy to read, and
can be robustly rerun in the face of minor changes. It is also important to introduce
useful lemmas as they arise in the proof, and define strategies to encapsulate patterns
of proof steps.

The remainder of this chapter summarizes how interactive PVS proof attempts
are initiated and terminated. Chapter 2 contains a small example proof to illustrate
how the PVS proof checker is used. Chapter 3 gives a brief overview of the logi-
cal underpinnings of PVS. Chapter 4 describes the syntax of the proof commands.
Chapter 5 is a guide to the PVS proof strategy language and also gives examples of
proof strategies and derived inferences rules.

1.2 Interaction Basics

The following paragraphs summarizes how proof attempts are initiated, abandoned,
or interrupted, and how help information can be obtained. Full details are presented
in the PVS user guide [11].

Initiating a Proof Attempt A proof session is initiated from within an Emacs
buffer containing a PVS specification by using the Emacs command M-x pr with the
cursor at the formula that is to be proved. If the formula has already been proved, the
user is asked whether the proof attempt should proceed. If a proof or partial proof
for the relevant formula already exists, then the user is asked if this proof should be
rerun. The Emacs command M-x xpr can be used to initiate a proof that generates
a Tcl/Tk display of the proof structure as it is being developed.
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Exiting a Proof Attempt In the proof sessions shown below, all user input is
displayed in boldface. The proof commands follow the Rule? prompt and the re-
maining text is generated by PVS. A proof attempt can be abandoned by typing q

or quit at the prompt. At the end of a successful or abandoned proof attempt, the
user is queried as to whether the resulting partial proof should be saved. The timing
characteristics are displayed at the end. The saved partial proof can be rerun in a
subsequent attempt so that the unfinished parts of the proof can be completed.

Getting Help There are several ways of getting helpful information about the
proof checking commands. The easiest way is to invoke M-x help-pvs-prover or
M-x x-prover-commands. See page 25 for more details.

Interrupting Proofs The proof checker can be interrupted when it is working on
a command by typing C-c C-c. This places the system at a Lisp break. Typing
(restore) at the break returns the system to the Rule? prompt corresponding to
the last interaction.



Chapter 2

An Example Proof

We consider a simple proof using induction to show that when given two functions f
and g on the natural numbers, the sum of the first n values of f and g is the same as
the sum of the first n values of the function (LAMBDA n: f(n) + g(n)). The theory
sum below defines the summation operator sum and states the desired theorem as
sum plus.

In the first proof attempt described below, sum plus is proved using simple, low-
level inference steps, and in the second proof attempt, the same theorem is proved by
invoking a single high-level proof strategy.

Once the proof is initiated1, the main goal is displayed in the *pvs* buffer followed
by a Rule? prompt. The user commands are typed in at this prompt. The first
command, skolem!, introduces Skolem constants f!1, g!1, and n!1 for the universally
quantified variables in the theorem. The second command, lemma, introduces the
induction scheme for natural numbers nat induction as an antecedent formula. This
induction scheme is proved as a lemma in the theory naturalnumbers in the PVS
prelude.2

1See the previous chapter or the System Guide [11] for details on how to initiate proof attempts.
2The lemma name can also be given in its full form naturalnumbers.nat induction if the theory

name is needed for disambiguation. See the PVS language manual [10] for more details of how name
resolution is performed.

7



8 An Example Proof

sum: THEORY
BEGIN

n: VAR nat
f, g: VAR [nat -> nat]

sum(f, n): RECURSIVE nat =
(IF n = 0

THEN 0
ELSE f(n-1) + sum(f, n - 1)

ENDIF)
MEASURE n

sum_plus: LEMMA
sum((lambda n: f(n) + g(n)), n)
= sum(f, n) + sum(g, n)

square(n): nat = n*n

sum_of_squares: LEMMA
6 * sum(square, n+1) = n * (n + 1) * (2*n + 1)

cube(n): nat = n*n*n

sum_of_cubes: LEMMA
4 * sum(cube, n+1) = n*n*(n+1)*(n+1)

END sum

Figure 2.1: sum
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sum_plus :

|-------
{1} (FORALL (f: [nat -> nat], g: [nat -> nat], n: nat):

sum((LAMBDA (n: nat): f(n) + g(n)), n) = sum(f, n) + sum(g, n))

Rule? (skolem!)
Skolemizing,
this simplifies to:
sum_plus :

|-------
{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)

= sum(f!1, n!1) + sum(g!1, n!1)

Rule? (lemma "nat_induction")
Applying nat_induction where
this simplifies to:
sum_plus :

{-1} (FORALL (p: pred[nat]):
(p(0) AND (FORALL (j: nat): p(j) IMPLIES p(j + 1)))

IMPLIES (FORALL (i: nat): p(i)))
|-------

[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
= sum(f!1, n!1) + sum(g!1, n!1)

The next step is to instantiate the induction scheme with a suitable induction
predicate. This instantiation is supplied manually using the inst command.

Rule? (inst - "(LAMBDA n: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!1, n))")

Instantiating the top quantifier in - with the terms:
(LAMBDA n: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)

= sum(f!1, n) + sum(g!1, n)),
this simplifies to:

The effect of inst command is to generate a subgoal where the universally quantified
variable p has been replaced by the given induction predicate.
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sum_plus :

{-1} ((LAMBDA n:
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)

= sum(f!1, n) + sum(g!1, n))(0)
AND

(FORALL (j: nat):
(LAMBDA n:

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!1, n))(j)

IMPLIES
(LAMBDA n:

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!1, n))(j

+ 1)))
IMPLIES

(FORALL (i: nat):
(LAMBDA n:

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n)
= sum(f!1, n) + sum(g!1, n))(i))

|-------
[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)

= sum(f!1, n!1) + sum(g!1, n!1)

The resulting instantiated induction scheme now contains several redexes that are
beta-reduced by means of the beta command as shown below.

Rule? (beta)
Applying beta-reduction,
this simplifies to:
sum_plus :

{-1} (sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0) = sum(f!1, 0) + sum(g!1, 0)
AND

(FORALL (j: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j)

= sum(f!1, j) + sum(g!1, j)
IMPLIES sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j + 1)
= sum(f!1, j + 1) + sum(g!1, j + 1)))

IMPLIES
(FORALL (i: nat):

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), i)
= sum(f!1, i) + sum(g!1, i))

|-------
[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)

= sum(f!1, n!1) + sum(g!1, n!1)

Apply the conjunctive splitting command split to the goal yields three subgoals.
The first goal is to demonstrate that the conclusion of the instantiated induction
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scheme implies the original conjecture following the introduction of Skolem constants.
The second subgoal is the base case, and the third subgoal is the induction step. The
first subgoal is easily proved by using the heuristic instantiation command inst?.

Rule? (split)
Splitting conjunctions,
this yields 3 subgoals:
sum_plus.1 :

{-1} (FORALL (i: nat):
sum((LAMBDA (n: nat): f!1(n) + g!1(n)), i) = sum(f!1, i) + sum(g!1, i))

|-------
[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)

= sum(f!1, n!1) + sum(g!1, n!1)

Rule? (inst?)
Found substitution:
i gets n!1,
Using template: sum((LAMBDA (n: nat): f!1(n) + g!1(n)), i) =

sum(f!1, i) + sum(g!1, i)
Instantiating quantified variables,

This completes the proof of sum_plus.1.

The second subgoal, the base case, contains an irrelevant formula numbered 2

which was only needed for the first subgoal proved above. This formula can be
suppressed with the hide command. The hidden formulas can be examined using the
Emacs command M-x show-hidden-formulas, and revealed or reintroduced into the
sequent using the reveal command.

sum_plus.2 :

|-------
{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0) = sum(f!1, 0) + sum(g!1, 0)
[2] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)

= sum(f!1, n!1) + sum(g!1, n!1)

Rule? (hide 2)
Hiding formulas: 2,
this simplifies to:
sum_plus.2 :

|-------
[1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0) = sum(f!1, 0) + sum(g!1, 0)

We are then left with the formula numbered 1 which is easily proved by expanding
the definition of sum using the expand command. Notice that this command uses the
PVS decision procedures to simplify the definition of sum and to reduce the equality
to TRUE.
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Rule? (expand "sum")
Expanding the definition of sum,
this simplifies to:
sum_plus.2 :

|-------
{1} TRUE

which is trivially true.

The remaining subgoal is the induction step. It too contains the irrelevant formula
numbered 2 that is again suppressed using the hide command.

sum_plus.3 :

|-------
{1} (FORALL (j: nat):

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j) = sum(f!1, j) + sum(g!1, j)
IMPLIES sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j + 1)
= sum(f!1, j + 1) + sum(g!1, j + 1))

[2] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
= sum(f!1, n!1) + sum(g!1, n!1)

Rule? (hide 2)
Hiding formulas: 2,
this simplifies to:
sum_plus.3 :

|-------
[1] (FORALL (j: nat):

sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j) = sum(f!1, j) + sum(g!1, j)
IMPLIES sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j + 1)
= sum(f!1, j + 1) + sum(g!1, j + 1))

Applying the skosimp command, which is a compound of the skolem! and flatten

commands, the resulting simplified sequent contains an antecedent formula, the in-
duction hypothesis, and a consequent formula, the induction conclusion.

Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
sum_plus.3 :

{-1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1)
= sum(f!1, j!1) + sum(g!1, j!1)

|-------
{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1 + 1)

= sum(f!1, j!1 + 1) + sum(g!1, j!1 + 1)
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If we apply the expand command selectively to expand those occurrences of sum on
the consequent side, we get a sequent that is tautologously true. Notice, once again,
that the expand command makes significant use of type information within the PVS
decision procedures in order to simplify not only the expanded definition of sum but
also the resulting equality between arithmetic expressions.

Rule? (expand "sum" +)
Expanding the definition of sum,
this simplifies to:
sum_plus.3 :

[-1] sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1)
= sum(f!1, j!1) + sum(g!1, j!1)

|-------
{1} sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1)

= sum(f!1, j!1) + sum(g!1, j!1)

which is trivially true.

This completes the proof of sum_plus.3.

Q.E.D.

Run time = 0.79 secs.
Real time = 38.10 secs.

This successfully completes the proof attempt. The CPU time and wallclock time
for the proof attempt are displayed above.

2.1 The Example Proof Redone

PVS has a language in which proof strategies can be written. The essence of the above
proof can actually be captured as a strategy. The strategy induct-and-rewrite!

invokes induction according to the scheme appropriate to the given induction variable
and then completes the proof by expanding the functions used in the theorem and
applying heuristic instantiation and the decision procedures.
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sum_plus :

|-------
{1} (FORALL (f: [nat -> nat], g: [nat -> nat], n: nat):

sum((LAMBDA (n: nat): f(n) + g(n)), n) = sum(f, n) + sum(g, n))

Rule? (induct-and-rewrite! "n")
sum rewrites sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 0)

to 0
sum rewrites sum(f!1, 0)

to 0
sum rewrites sum(g!1, 0)

to 0
sum rewrites sum((LAMBDA (n: nat): f!1(n) + g!1(n)), 1 + j!1)

to f!1(j!1) + g!1(j!1) + sum((LAMBDA (n: nat): f!1(n) + g!1(n)), j!1)
sum rewrites sum(f!1, 1 + j!1)

to f!1(j!1) + sum(f!1, j!1)
sum rewrites sum(g!1, 1 + j!1)

to g!1(j!1) + sum(g!1, j!1)
By induction on n and rewriting,
Q.E.D.

Run time = 0.85 secs.
Real time = 6.47 secs.

Such high-level strategies might not always succeed. When a strategy fails to
complete a proof, it is possible to continue proving the resulting subgoals inter-
actively using further proof commands, or to backtrack (using undo) in order to
try alternative proof commands. When a strategy is invoked with a $ suffix, e.g.,
induct-and-rewrite!$, the strategy is executed so that the expanded internal steps
are visible. This mode of strategy invocation provides more information and is useful
when debugging.

The Emacs command M-x show-last-proof can be used to get a sum-
mary of the most recently completed proof. Note that the Emacs commands
M-x add-declaration and M-x modify-declaration can be used to alter the spec-
ification even while a proof is progress. Since these commands can affect the validity
of a proof so proofs should always be rerun in order to check their validity. During
the course of a proof, the Emacs command M-x ancestry displays the sequence of
goals leading back to the root goal of the proof, M-x siblings displays the sibling
subgoals of the current goal, M-x show-hidden displays the hidden formulas of the
current sequent, and M-x show-auto-rewrites displays those rewrite rules that are
automatically applied.



Chapter 3

The Logic of PVS

While using the PVS proof checker, it is useful to be aware of the rules underlying
the PVS logic. The proof rules presented here form the theoretical basis for PVS but
are not the ones that are directly implemented in the system. There is, of course, a
great deal more to building an effective proof checker than merely codifying the proof
rules.

The following sections present the notation used throughout this document, then
the logical rules. Note that to be complete we should include the type rules; these
will be included in a later version of this document.

3.1 Notation

PVS employs a sequent calculus. We have already introduced the notions of sequent,
antecedent, and consequent. In the following, we will use the Greek letters Γ and ∆
to represent (finite) sequences of formulas, and latin letters A, B, and C to represent
individual formulas. As usual, these can have indices. Inference rules are of the form

Γ1 ` ∆1 · · · Γn ` ∆n

Γ ` ∆
R.

This says that if we are given a leaf of a proof tree of the form Γ ` ∆, then by
applying the rule named R, we may obtain a tree with n new leaves.

In the following, we will be using the usual logical notation for the connectives,
quantifiers, etc. The following table relates them to those used in PVS.

15
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¬ NOT

∧ AND, &
∨ OR

⊃ IMPLIES, =>
⇐⇒ IFF, <=>
∀ FORALL

∃ EXISTS

λ LAMBDA

Note that an expression of the form A WHEN B is equivalent to B ⊃ A, and hence
such expressions will not be explicitly mentioned in the rules. A PVS IF expression
of the form

IF A THEN B ELSIF C THEN D ELSE E ENDIF

will be abbreviated below as IF(A,B, IF(C,D,E))

3.2 The Structural Rules

The structural rules permit the sequent to be rearranged or weakened via the intro-
duction of new sequent formulas into the conclusion. All of the structural rules can
be expressed in terms of the single powerful weakening rule shown below. It allows
a weaker statement to be derived from a stronger one by adding either antecedent
formulas or consequent formulas. The relation Γ1 ⊆ Γ2 holds between two lists when
all the formulas in Γ1 occur in the list Γ2.

Γ1 ` ∆1

Γ2 ` ∆2
W if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

Both the Contraction and Exchange rules shown below are absorbed by the above
Weakening rule. The Contraction rule allows multiple occurrences of the same se-
quent formula to be replaced by a single occurrence.

A,A,Γ ` ∆

A,Γ ` ∆
C `

Γ ` A,A,∆
Γ ` A,∆ ` C

The Exchange rule asserts that the order of the formulas in the antecedent and
the consequent parts of the sequent is immaterial. It can be stated as

Γ1, B,A,Γ2 ` ∆

Γ1, A,B,Γ2 ` ∆
X `

Γ ` ∆1, B,A,∆2

Γ ` ∆1, A,B,∆2
` X
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3.3 The Propositional Rules

The rules about conjunction, disjunction, implication, and negation are quite straight-
forward. The propositional axiom rule requires the notion of two formulas A and B
being syntactically equivalent modulo the renaming of bound variables. Thus, the
syntactic equivalence: (∀x, y: (λz: f(y, z))(x) < y) ≡ (∀z, x: (λy: f(x, y))(z) < x),
holds. The Propositional Axiom rule is then given as:

Γ, A ` B,∆
Ax where A ≡ B

The Cut rule can be seen as a mechanism for introducing a case-split into a proof
of a sequent Γ ` ∆ to yield the subgoals Γ, A ` ∆ and Γ ` A,∆, which can be seen
as assuming A along one branch and ¬A along the other.

Γ, A ` ∆ Γ ` A,∆
Γ ` ∆

Cut

There are two rules for each of the propositional connectives of conjunction (∧),
disjunction (∨), implication (⊃), and negation (¬), corresponding to the antecedent
and consequent occurrences of these connectives.

A,B,Γ ` ∆

A ∧B,Γ ` ∆
∧ `

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ ` ∧

A,Γ ` ∆ B,Γ ` ∆

A ∨B,Γ ` ∆
∨ `

Γ ` A,B,∆
Γ ` A ∨B,∆ ` ∨

B,Γ ` ∆ Γ ` A,∆
A ⊃ B,Γ ` ∆

⊃`
Γ, A ` B,∆

Γ ` A ⊃ B,∆
`⊃

Γ ` A,∆
Γ,¬A ` ∆

¬ `
Γ, A ` ∆

Γ ` ¬A,∆ ` ¬

3.4 The Equality Rules

The rules for equality can be stated as below. The rules of transitivity and symmetry
for equality can be derived from these rules. The notation A[e] is used to highlight
one or more occurrences of e in the formula A. The notation ∆[e] similarly highlights
occurrences of e in ∆.

Γ ` a = b,∆
Refl if a ≡ b

a = b,Γ[b] ` ∆[b]

a = b,Γ[a] ` ∆[a]
Repl



18 The Logic of PVS

3.5 The Quantifier Rules

The quantifier rules are stated below. The notation A{x ← t} represents the result
of substituting the term t for all the free occurrences of x in A with the possible
renaming of bound variables in A to avoid capturing any free variables in t. In the
` ∀ and ∃ ` rules, a must be a new constant that does not occur in the conclusion
sequent.

Γ, A{x← t} ` ∆

Γ, (∀x:A) ` ∆
∀ `

Γ ` A{x← a},∆
Γ ` (∀x:A),∆

` ∀

Γ, A{x← a} ` ∆

Γ, (∃x:A) ` ∆
∃ `

Γ ` A{x← t},∆
Γ ` (∃x:A),∆

` ∃

3.6 Rules for IF

It is extremely useful to have the branching operation IF in the language for expressing
conditional expressions. For each type α, there is an IF operation with the signature
[bool, α, α → α]. The transformation of A[e] to A[b] represents the replacement of
the highlighted occurrences of e in A by b. Note that for the IF ↑ ` and ` IF ↑ rules,
the A in B[IF(A, b, c)] must not contain any free variable occurrences that are bound
in B[IF(A, b, c)]. The inference rules for IF are:

Γ, IF(A,B[b], B[c]) ` ∆

Γ, B[IF(A, b, c)] ` ∆
IF ↑ `

Γ ` IF(A,B[b], B[c]),∆

Γ ` B[IF(A, b, c)],∆
` IF ↑

Γ, A,B ` ∆ Γ,¬A,C ` ∆

Γ, IF(A,B,C) ` ∆
IF `

Γ, A ` B,∆ Γ,¬A ` C,∆
Γ ` IF(A,B,C),∆

` IF

The PVS proof checker is founded on the sequent calculus rules described above,
but the actual proof construction steps provided by PVS are very different. We will
point out those commands which relate to the rules given above in the notes section
of the command description.



Chapter 4

The PVS Proof Commands

The sequent calculus inference rules displayed in Chapter 3 for the basis for the
proof commands used to construct proofs with PVS. The PVS proof commands are
however significantly more powerful than these simple inference rules so as to make
proof construction process more illuminating and less tedious. Proof commands can
be typed in by the user at the Rule? prompt or they can be automatically applied
by PVS as part of a proof strategy. A PVS proof command when applied to a goal
sequent either

1. Succeeds in proving the goal sequent

2. Generates one or more subgoal sequents

3. Does nothing, which provides crucial control information to the strategy mech-
anism

4. Signals a failure that is propagated up the proof tree in order to control proof
search

5. Postpones proof construction on the current goal sequent, transferring focus to
the next remaining subgoal.

For example, in the list of commands below, a command like bddsimp succeeds in
proving goal sequents that are just propositionally true, whereas the case command
typically generates two or more subgoals. The skip command does nothing, but
many other commands can also have no effect on the state of the proof particularly
when the arguments to the command cause the parser or typechecker to signal errors.
The fail command is the only command that signals failure. Failure is used to either
backtrack or to abandon a proof. The postpone command is the only command that
causes the current subgoal to be postponed.

The commands implemented by the PVS proof checker can be classified as:

19
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1. Help: help.

2. Annotation: comment, label, unlabel, and with-labels.

3. Control: fail, postpone, quit, rewrite-msg-off, rewrite-msg-on,
set-print-depth, set-print-length, set-print-lines, skip, skip-msg,
trace, track-rewrite, undo, untrace, and untrack-rewrite.

4. Structural rules: copy, delete, hide, hide-all-but, and reveal.

5. Propositional rules: bddsimp, case, case*, flatten, flatten-disjunct, iff,
lift-if, prop, propax, split, and merge-fnums.

6. Quantifier rules:

(a) Existential: inst, instantiate, instantiate-one, inst-cp, inst?, and
quant?.

(b) Universal: detuple-boundvars, skolem, skolem-typepred, skolem!,
skosimp, skosimp*, generalize, and generalize-skolem-constants.

7. Equality rules: beta, case-replace, name, name-replace, name-replace*,
replace, replace*, and same-name.

8. Rules for using definitions and lemmas:

(a) Definition expansion: expand, and expand*.

(b) Using lemmas: forward-chain, lemma, use and use*.

(c) Rewriting with definitions/lemmas: rewrite, rewrite-lemma, and
rewrite-with-fnum.

9. Extensionality rules: apply-eta, apply-extensionality,
decompose-equality, eta, extensionality, replace-eta, and
replace-extensionality.

10. Induction rules: induct, induct-and-rewrite, induct-and-rewrite!,
induct-and-simplify, measure-induct, measure-induct+,
measure-induct-and-simplify, name-induct-and-rewrite, rule-induct,
rule-induct-step, simple-induct, and simple-measure-induct.

11. Rules for simplification using decision procedures and rewriting: assert,
bash, both-sides, do-rewrite, ground, grind, record, reduce, simplify,
simplify-with-rewrites and smash.
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12. Installation and Removal of rewrite rules: auto-rewrite, auto-rewrite!,
auto-rewrite!!, auto-rewrite-defs, auto-rewrite-explicit,
auto-rewrite-theories, auto-rewrite-theory,
auto-rewrite-theory-with-importings, install-rewrites,
stop-rewrite, and stop-rewrite-theory.

13. Making type constraints explicit: typepred, and typepred!.

14. Model Checking: model-check, and musimp.

15. Converting a strategy to a rule: apply.

16. Strategies: branch, checkpoint, else, if, just-install-proof, let,
query*, quote, repeat, repeat*, rerun, spread, spread!, spread@, then,
then*, then@, time, try, and try-branch

4.1 Formal and Actual Parameters of Rules

Each of the proof commands takes a list of zero or more required and optional pa-
rameters. Each optional parameter has an associated default value. If the [default]
part of an optional parameter is missing, it is taken to be nil. A rule with its formal
parameter list is presented in the form:

(〈rulename〉 〈required〉∗ &optional 〈optional[default]〉∗ &rest

〈argument〉)

The &optional and &rest are metalanguage keywords used in this reference guide
to indicate how the arguments are to be provided; they are never legal arguments
themselves.1 The &optional keyword indicates that the arguments which follow it
are optional. Such arguments may be provided either by position or by keyword.
To provide the argument by position, simply include values for all the preceding
arguments followed by the value of the argument in question. This is usually the
most convenient way to use the commands. Occasionally, you will want the default
taken for most of the optional arguments, and only want to specify a different value
for one near the end of the list. In this case, you may provide a pair of arguments, the
first being the name of the argument preceded by a colon, and the second the value
for the argument. This will be made clear in the examples below. The &rest keyword
indicates that zero or more values may be provided for the indicated argument and
these are accumulated into a list. The &rest argument can also by supplied as a list
by keyword.

1Those with a background in Lisp will note the resemblance. However, note that &optional as
used in PVS is a combination of &optional and &key.
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Note that many proof rules have arguments indicating the number or numbers
of the sequent formulas where the rule is to be applied. The syntactic convention is
that when a single such number is expected, we indicate the argument as being an
fnum (for “sequent formula number”), and where a list of such numbers is expected,
we indicate the argument as fnums. Typically, a single number is acceptable where
a list is expected, and denotes the singleton list containing that number. The list of
antecedent sequent formulas can be indicated by ‘-’, the list of consequent sequent
formulas can be indicated by ‘+’, and the list of all sequent formulas can be indicated
by ‘*’. The use of this notation will be illustrated in the examples below. Lists
here mean a sequence of formula numbers separated by whitespace (space, tab or
carriage return) and surrounded by parentheses. The -, +, * indicators are preferable
to specific numbers since they are more robust in the face of changes to the formula
being proved.

The value provided for a name, expr, or type argument should be a legal corre-
sponding PVS expression enclosed in a pair of string quotes ("). As with fnums, lists
of these may be expected when the argument is names, exprs, or types.

When interacting with the prover you are essentially interacting with Lisp, and it
is possible to give arguments that are ill-formed enough to cause problems. One such
problem occurs when parentheses or string quotes are unbalanced. The immediate
sign of this is that the system does not respond. To verify this, look on the right
hand side of the status line of the *pvs* buffer; it will display :ready when waiting
for a (complete) command, and :run when processing. Until it says :run, you may
freely edit the command, even if it takes multiple lines. Other keystrokes can cause
problems that break into Lisp (for example, typing a period at the Rule? prompt).
If this happens, type (restore), which causes the focus to return to the last point
of interaction with the Rule? prompt. Rarely, the system will not respond correctly
to the (restore) function, in which case you will have to abort to the top level (by
typing :reset). In this case, the proof attempt is lost and you will have to start the
proof over—though it still has the previously saved proof attempt.

Here are some examples of rules with their formal parameter lists:

• (lemma name &optional subst )

• (replace fnum &optional fnums[ *] dir[ LR] hide? actuals? )

• (delete &rest fnums )

The following are possible invocations of the above proof rules:

• (lemma "assoc")

• (lemma "assoc" ("x" "1" "y" 2 "z" 3))
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• (lemma "assoc" :subst ("x" "1" "y" 2 "z" 3))

• (replace -1)

• (replace -1 :dir RL)

• (replace -1 (2 -2 3) RL)

• (delete)

• (delete 1)

• (delete -2 1 -3)

• (delete :fnums (-2 1 -3))

4.1.1 Rules versus Strategies

A PVS proof command given at the Rule? prompt can either invoke a rule or a
strategy. A rule in PVS is an atomic operation that typically generates zero or more
subgoals from the given goal. A strategy need not be atomic. An application of a
strategy expands into a number of atomic steps. The atomic proof steps resulting
from this expansion of the strategy are saved in the final proof and these are executed
directly when the proof is rerun. The apply rule applies a given strategy as an
atomic step thus converting a strategy into a rule. Rules are either primitive or
defined, and the defined rules are defined as strategies but applied as atomic proof
steps. For example, the rule for replacement using an antecedent equality, replace,
is a primitive rule whereas rewrite is a defined rule and is defined by a strategy
that uses the replace rule. Several proof commands that are rules have non-atomic
analogues given by strategies: prop is the atomic propositional simplification rule and
prop$ is the corresponding strategy.

In pragmatic terms, strategies should be used when the expanded proof is of
interest and otherwise, rules should be used. So for instance, prop should almost
always be favored over prop$ since the details of propositional simplification are
seldom interesting. It is also useful to invoke the strategy corresponding to a rule in
order to observe the inner workings of the strategy.

PVS features a strategy language for defining new rules and strategies. There
is a corresponding interpreter for the strategy expressions defined using this lan-
guage. The strategy language contains constructs for selecting among alternative
proof strategies (if), for backtracking (try), and for invoking Lisp code (let). Strate-
gies can also be defined using recursion.
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4.1.2 Proof Checker Pragmatics

It is not necessary to master all the proof commands in order to use the PVS proof
checker effectively. It is advisable to learn the most powerful commands first and try
these and only rely on the simpler commands when the powerful ones fail. Broadly
speaking, there are two typical kinds of proofs: those that require induction and
those that do not. For proofs by induction, one of the induction commands is usually
the first step, and induct-and-simplify is the most powerful and useful of these.
The commands induct-and-rewrite and induct-and-rewrite! are variants of
induct-and-simplify.

The grind command is usually a good way to complete a proof that does not re-
quire induction, and only requires definition expansion, and arithmetic, equality, and
quantifier reasoning. The behavior of grind can be controlled through its various
optional arguments, particularly if-match and defs. Simpler forms of grind such
as bash, reduce, and smash can be used when grind becomes difficult to control.
The grind command can sometimes instantiate existential strength quantifiers pre-
maturely, and when this happens, it is often more appropriate to first apply (grind

:if-match nil), which performs all the simplifications of grind except quantifier
instantiation, followed by (grind) to pick up the instantiations exposed by the first
grind.

In a more interactive proof attempt, the initial step in a proof is usually the
introduction of Skolem constants, and the preferred and most powerful form here is
skosimp*. Note that a universal quantifier is needed for induction and in such cases,
skosimp* might go too far and skolem! or skosimp might be more appropriate.

The decision procedure command assert is used very frequently particularly since
it does simplification, automatic rewriting, and records type information and the se-
quent formulas in the decision procedure database for use in future simplifications.
The more restrictive forms of assert, namely, simplify, do-rewrite, and record

also come in handy. The command simplify-with-rewrites can be used to tem-
porarily install and apply rewrite rules using assert.

The inst? command is the most powerful way to automatically instantiate quan-
tifiers of existential strength. It has several options to control the selection of suitable
instances.

The bddsimp command is the most efficient way to do propositional simplifica-
tion, but prop will do when efficiency is not important. Propositional simplification
has to be used with care since it can often generate lots of subgoals that share the
same proof. The flatten and split commands must be used to do the propositional
simplification more delicately. The case command is very useful as a way of intro-
ducing case splits into a proof. The lift-if command is typically needed to bring
the case analyses in an expanded definition to the surface of the sequent where it can
be propositionally simplified.
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Of the control commands, postpone is used to cycle through the pending subgoals
in the proof, and undo is used to recover from fruitless paths in a proof.

In addition to the above commands, it helps to be familiar with the prelude
theories which contain a lot of useful background mathematics. Advanced users
wishing to define their own proof strategies should examine the definitions of the
basic strategies supplied with PVS. A file containing these definitions is distributed
with the system.

We now describe each of these groups of rules. The table at the beginning of each
group briefly summarizes the effect of each command and indicates whether the rule is
primitive or defined. This distinction is not crucial to the use of the theorem prover.
The defined commands can be redefined by the user, but the primitive commands
capture the underlying PVS logic and therefore cannot be changed. Each rule is
an atomic step in the proof. There are ‘glass-box’ versions for some of the defined
rules where the rule is executed as a strategy. The name for such a proof strategy
is typically the rule name with a ‘$’ suffix. For example, the glass-box version of
induct-and-simplify is induct-and-simplify$. The documentation indicates the
presence of both the black-box and glass-box versions of this rule by listing the name
as induct-and-simplify/$.

4.2 The Help Rule

help primitive provides brief documentation

4.2.1 help: Get help for proof commands

syntax: (help &optional name[ *] )

effect: Displays a brief description of a specific primitive proof command, defined
rule, or strategy, or of all of the rules, defined rules, and strategies. Apart from
displaying help information, the help rule behaves as a (skip), i.e., it has no
effect on the proof.

usage: (help) : Displays help on all of the rules, defined rules, and strategies

(help rules) : Displays help on all the primitive rules.

(help defined-rules) : Displays help on all of the defined rules.

(help strategies) : Displays help on all of the strategies.

(help skolem) : Displays help on the skolem rule.

(help prop$) : Displays help on the prop$ strategy.
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notes: This command should only be used interactively. It is usually better to use the
Emacs commands M-x help-pvs-prover, M-x help-pvs-prover-command,
M-x help-pvs-prover-strategy, or M-x help-pvs-prover-emacs, since they
display the information in a buffer for repeated reference. The Emacs commands
M-x x-prover-commands when used in conjunction with X Windows displays
a mousable window listing the prover commands.

4.3 The Annotation Rules

comment primitive attach comments to proof sequents
label primitive attach labels to sequent formulas
unlabel primitive removes labels from sequent formulas
with-labels defined labels resulting formulas

4.3.1 comment: Attach Comments to a Proof Sequent

syntax: (comment string )

effect: Attaches a comment string to the current proof sequent that is printed with
preceding semi-colons above the sequent formulas. This comment string is also
saved with the proof. The comment command can be nested within strategies
and the comments are retained on the subgoals generated by the strategy.

usage: (comment "3rd induction case") : Prints the comment string ;;;3rd

induction case between the sequent label and the sequent formulas.

4.3.2 label: Attaches a Label to Sequent Formulas

syntax: (label string-or-symbol fnums &optional push? )

effect: It is often useful to group and label a collection of related formulas in a proof
sequent. The label command is used for this purpose. Each sequent formula
can bear at most one label. The label is printed alongside the fnum whenever a
proof sequent is displayed. A label can be used wherever an fnum is expected. A
label can supplied as either a string, e.g., "label" or a symbol, e.g., |label|,
though it is stored internally as a symbol. Labels are automatically inherited by
any subformulas of a sequent formulas that appear through the application of
an inference rule, e.g., flatten applied to a consequent formula A∨B labelled
main results in two sequent formulas A and B both labelled main.

When push? is t, the new label is added to any existing labels on the formula.
Otherwise, the given label replaces any existing ones.
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usage: (label "uniqueness" -3) : Labels the formula numbered -3 by the label
uniqueness.

(label "type-constraints" (-1 -3 -4)) : Labels the formulas num-
bered -1, -3, and -4 by the label type-constraints.

(label "antecedents" - :push? t) : Adds the label type-constraints
in addition to any other labels on the formulas numbered -1, -3, and -4.

(bddsimp "type-constraints" ) : Applies BDD-based propositional sim-
plification to the formulas labelled type-constraints.

notes: Note that the bddsimp command does not retain labels since there is no
simple way to retain the connection between the formula returned by BDD-
simplification and its original parent formula.

4.3.3 unlabel: Removes Labels from Sequent Formulas

syntax: (unlabel &optional fnums )

effect: Removes all labels from the formulas in fnums. When fnums is not specified,
all labels from all formulas are removed.

4.3.4 with-labels: Labels New Sequent Formulas

syntax: (with-labels rule labels &optional push? )

effect: Given a proof step rule and a list of list of labels ((l11 . . .) . . . (ln1 . . .)), if
the rule generates n subgoals, then the j’th new sequent formula in the i’th
subgoal is assigned the label lij. If there are more subgoals than label lists, then
the last label list is applied to the remaining subgoals. In each pairing of new
formulas with labels in a list, if there are more formulas than labels, the last
label is applied to the remaining new formulas. A singleton list of labels can be
replaced by a single label.

When push? is t, the new label is added to any existing labels on the formula.
Otherwise, the given label replaces any existing ones.

usage: (with-labels (flatten) (("l1" "l2" "l3"))): Applies flatten rule to
the current proof subgoal and labels the new sequent formulas thus pro-
duced as l1, l2, and l3, respectively.
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(with-labels (prop) (("l11" "l12" "l13") ("l21" "l22"))):
Applies the prop rule and labels the new formulas in the first sub-
goal by labels l11, l12, and l13, and the new formulas in any remaining
subgoals are labelled by labels l21 and l22.

(with-labels (prop) "prop-formulas"): Labels all the new sequent for-
mulas resulting from the application of prop by the label prop-formulas.

4.4 The Control Rules

fail primitive has the effect of signalling a failure
postpone primitive causes the current goal to be left pending
quit primitive quits a proof attempt
rewrite-msg-off defined inhibits rewriting commentary
rewrite-msg-on defined turns on rewriting commentary
set-print-depth defined sets the print-depth for formulas
set-print-length defined sets the print-length for formulas
set-print-lines defined sets the print-lines for formulas
skip primitive has no effect but is useful in defining strategies
skip-msg defined like skip but generates message
trace defined turns on tracing of proof commands
track-rewrite defined explains why a rewrite was not applied
undo primitive undoes proof steps along a branch of the proof
untrace defined turns off tracing of proof commands
untrack-rewrite defined turns off rewrite explanation

4.4.1 fail: Propagate Failure to the Parent

syntax: (fail)

effect: A failure signal is propagated to the parent proof goal. If the parent goal is
not able to act on this signal, it further propagates the failure to its parent.
This rule, like skip, is mainly employed in constructing strategies where it is
used to control backtracking. Applying fail to the root sequent causes the
proof to be unsuccessfully terminated.

usage: (fail)

errors: No error messages are generated.

notes: See the description of the try strategy in page 109 for examples of the use of
fail.
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4.4.2 postpone: Go to Next Remaining Goal

syntax: (postpone &optional print? )

effect: Marks the current goal as pending to be proved and shifts the focus to the
next remaining goal. By successively invoking postpone sufficiently often, it is
possible to cycle back to the original focus. When print? is t commentary is
suppressed.

usage: (postpone)

errors: No error messages are generated.

notes: The Emacs command M-x siblings shows the sibling subgoals of the current
subgoal in an emacs buffer.

4.4.3 quit: Terminate the Proof Attempt

syntax: (quit)

effect: Terminates the current proof attempt, and queries whether the partial proof
in progress should be saved. This way, it is possible to break and resume a
long proof attempt by saving the partial proof and rerunning it when the proof
attempts is resumed.

notes: This strategy should only be used interactively.

4.4.4 rewrite-msg-off: Inhibit Rewriting Commentary

syntax: (rewrite-msg-off)

effect: In the default mode, automatic rewriting by commands such as assert and
do-rewrite generate a fairly verbose commentary. This can be entirely shut off
by the rewrite-msg-off command. Behaves like a skip otherwise.

notes: Finer-grain control over the terseness of the rewriting commentary
can be obtained by the Emacs commands M-x set-rewrite-depth and
M-x set-rewrite-length.

4.4.5 rewrite-msg-on: Turn on Rewriting Commentary

syntax: (rewrite-msg-on)

effect: The rewriting commentary turned off by rewrite-msg-off can be restored by
this command. Behaves like a skip otherwise.
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4.4.6 set-print-depth: Set the Print Depth

syntax: (set-print-depth num)

effect: Sets the print depth for displaying formulas. Num must be a number. 0
means print the entire formula, any other number causes terms below the given
depth to be elided. Behaves like a skip otherwise.

4.4.7 set-print-length: Set the Print Length

syntax: (set-print-length num)

effect: Sets the print length for displaying formulas. Num must be a number. 0
means print the entire formula, any other number causes terms longet than the
given number to be elided. Behaves like a skip otherwise.

4.4.8 set-print-lines: Set the Number of Print Lines

syntax: (set-print-lines num)

effect: Sets the number of print lines for displaying formulas. Num must be a num-
ber. 0 means print the entire formula, any other number causes only the first
num lines of each formula of the sequent to be displayed. Behaves like a skip
otherwise.

4.4.9 skip: A Do Nothing Rule

syntax: (skip)

effect: Has no effect on the proof. The primary utility of skip is in writing strategies
where a step is required to have no effect unless some condition holds. Typing
(skip) in response to a goal sequent returns the same proof state with a "No

change." message.

usage: (skip)

errors: No error messages are generated.
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4.4.10 skip-msg: A Do Nothing, Print Something Rule

syntax: (skip-msg string &optional force-printing? )

effect: Has no effect on the proof but prints the given string. The main use of
skip-msg is in generating error messages from within strategies, typically as:
(if good?(input) ...(skip-msg "Bad input.")).

usage: (skip-msg "No such theory in current context.") : Does nothing but
prints the error message "No such theory in current context.".

(skip-msg "No such theory in current context." :force-printing? T)

: Does nothing but prints the error message "No such theory in

current context." even when the skip-msg appear within an apply

where the printing of such messages is usually suppressed.

(let ((string

(format nil "No such theory: ~a in current context."

theory)))

(skip-msg string))

: Builds the string string for use within skip-msg.

errors: No error messages are generated.

4.4.11 trace: Trace Given Commands

syntax: (trace &rest names )

effect: Turns on the tracing of the proof commands named in names so that any
time any one of the named rules or strategies is used in a proof, the entry into
and exit out of such commands is traced. This makes it possible to check if the
command is being properly invoked and has the desired effect. Behaves like a
skip otherwise.

usage: (trace assert inst? induct)

errors: No error messages.

notes: untrace turns off tracing initiated by trace.

4.4.12 track-rewrite: Explains Failure to Apply Rewrite
Rule

syntax: (track-rewrite &rest names )
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effect: Explains why the attempt to apply a rewrite rule named in names was not
applied. The typical reasons are:

1. The expression being rewritten did not match the left-hand side of the
rewrite rule.

2. The match succeeded but generated type-correctness proof obligations that
could not be simplified to TRUE.

3. The match succeeded but the corresponding conditions of the rewrite rule
could not be simplified to TRUE.

4. The match succeeded and the corresponding conditions did simplify to
TRUE, but the top-level conditional or CASES branch in the corresponding
right-hand side of the rewrite rule was not simplifiable. This top-level
conditional on the right-hand side should be simplifiable in the case of
recursive definitions and ordinary rewrite rules which are not installed
with the always? flag set to T.

Other than setting up the names of the rewrite rules to be tracked during
simplification, track-rewrite behaves like a skip. It has no effect on the current
proof sequent and is not saved as part of the partial or completed proof.

usage: (track-rewrite "assoc" "append" "reverse append" ): Tracks the
given rewrite rules during simplification and reports any failures correspond-
ing to when the rewrites are unsuccessful.

errors: No error messages.

notes: untrack-rewrite turns off the tracking of rewrite rules initiated by track-
rewrite.

4.4.13 undo: Undo Proof to an Ancestor

syntax: (undo &optional to[ 1] )

effect: The undo command undoes the proof back to an ancestor node of the current
node as indicated by the to argument. The user is then shown the sequent at
that ancestor node, and asked for verification. The to argument can either be:

1. a positive number indicating the number of levels in the proof tree to be
undone

2. a label, in which case the proof is undone to the lowest occurrence of a
sequent with that label above the current sequent (since there can be many
sequents in the proof with the same label; labels are only extended when
there are multiple subgoals)
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3. a proof rule or strategy in which case the proof is undone up to the lowest
occurrence of a sequent where the given rule was applied by the prover or
the given strategy was supplied by the user, or

4. a rule name or strategy name, so that the proof is undone to the lowest
occurrence of a sequent where a rule with the given name was applied by
the prover or a strategy of the given name was supplied by the user.

Undo applies its effects relative to the current node, not the last command. Thus
undoing immediately after a branch has been proved or postponed will not, in
general, go back to the state of the proof tree just before the last command.
However, undo can be used to undo the effect of an undo command if invoked
immediately afterwards.

usage: (undo) : Undoes a single step of the proof.

(undo 3) : Undoes three steps in the proof.

(undo undo) : Undoes an undo, if it was the last command executed. If
anything has been executed since the undo command, it is not possible to
undo the undo.

(undo (skolem 1)) : Undoes back to the lowest ancestor node where
(skolem 1) was applied.

(undo skolem) : Undoes back to the lowest ancestor node where a proof
rule or strategy of the form (skolem ...) was issued or applied.

(undo skolem!) : Undoes back to the lowest ancestor node where skolem!

was issued.

(undo "assoc.2") : Undoes back to the lowest ancestor node labelled
assoc.2, unless assoc.2 labels the current node in which case there is
no change.

notes: • The undo command is only meant to be used interactively. Noninterac-
tive strategies should use the fail command for the same effect.

• The Emacs command M-x ancestry shows the chain of proof goals leading
back to the root node of the proof.

• A (rerun) command immediately after an undo will cause the undone
proof to be rerun and restored.

4.4.14 untrace: Disables Tracing of Given Commands

syntax: (untrace &rest names )
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effect: Turns off the tracing of proof commands named in names, as initiated by
(trace). Behaves like a skip otherwise.

usage: (untrace assert)

errors: No error messages

4.4.15 untrack-rewrite: Disables Tracking of Rewrite
Rules

syntax: (untrack-rewrite &rest names )

effect: Disables the tracking of rewrite rules invoked by track-rewrite. When
untrack-rewrite is invoked with no arguments, then tracking is discontinued
for all currently tracked rewrite rules. Other than removing the given names
from list of rewrite rules to be tracked during simplification, untrack-rewrite
behaves like a skip. It has no effect on the current proof sequent and is not
saved as part of the partial or completed proof.

usage: (untrack-rewrite "assoc" "append" "reverse append" ): Disables
tracking on the given rewrite rules.

(untrack-rewrite): Disables tracking on all currently tracked rewrites
rules.

errors: No error messages.

4.5 The Structural Rules

copy/$ defined inserts a copy of a sequent formula
delete primitive deletes selected formulas from a goal sequent
hide primitive temporarily hides selected formulas from the displayed goal
reveal primitive reveals hidden formulas

Sequent calculus based proof systems employ structural rules to rearrange the
formulas in a sequent. The typical structural rules are described in Chapter 3. In
PVS, the Exchange rule is entirely omitted since the PVS proof commands already
ignore the order of formula occurrences in a sequent except for the use of formula
numbers. The Contraction rule is not built into PVS and only appears in a limited
form; the rule for instantiating quantifiers of existential strength permits the copy-
ing of these quantified formulas so that they can be reused, if needed. Some use
of Contraction is already built into the rules so that the non-principal formulas are
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shared between the premises of a rule. The defined rule copy also implements Con-
traction. The Weakening rule is present in PVS as the delete rule below. The hide

rule is a more cautious form of delete, where certain sequent formulas can be sup-
pressed and recovered later in the proof using the reveal rule. The emacs command
M-x show-hidden-formulas displays hidden formulas along with their numbers.

4.5.1 copy/$: Copy Selected Formula

syntax: (copy fnum )

effect: Inserts a copy of the sequent formula numbered fnum into the sequent. If
the given formula is an antecedent formula, then the copy becomes the first
antecedent formula, and if it is a consequent formula, then the copy becomes
the first consequent formula.

usage: (copy -3) : Makes a copy of the formula numbered -3 and inserts it as the
first antecedent formula.

errors: Could not find formula number foo: attempt to copy a formula which
does not exist.

4.5.2 delete: Delete Selected Formulas

syntax: (delete &rest fnums )

effect: Returns the subgoal that is the result of deleting all of the sequent formulas
in the current goal that are indicated by fnums. If there are no formulas in the
sequent corresponding to those indicated in fnums, then the effect is that of a
(skip).

usage: (delete *) : Deletes every formula in the sequent yielding a subgoal that
is an empty sequent. This invocation of the rule is not advisable because
the empty sequent is unprovable.

(delete +) : Yields the subgoal where all the consequent formulas in the
current goal sequent have been deleted.

(delete -) : Same as above with antecedent formulas.

(delete 2) : Yields the subgoal where formula number 2 in the current
subgoal is deleted.

(delete (-1 4 -3 2)) : Yields the subgoal where formulas numbered -1,
4, -3, and 2 in the current subgoal are deleted.
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(delete -1 4 -3 2) : Same as above.

errors: No error messages are generated.

notes: When in doubt, use hide instead of delete.

4.5.3 hide: Hide Selected Formulas

syntax: (hide &rest fnums )

effect: This is a more cautious version of delete. The hide rule saves the deleted
sequent formulas that are indicated by fnums so that they can be restored to a
descendant of the current sequent by the reveal rule (see below). Note that the
non-copying version of the instantiate rule and the inst rule automatically
hide the quantified formula so that quantifiers can be later reinstantiated along
the same branch of the proof if needed.

usage: (hide 2) : Yields the subgoal sequent that results from hiding the formula
number 2 in the current goal sequent.

(hide (-1 4 -3 2)) : Yields the subgoal sequent that results from hiding
the formulas numbered -1, 4, -3, and 2 in the current goal sequent.

(hide -1 4 -3 2) : Same as above.

errors: No error messages are generated.

notes: Hidden formulas play no role in a proof until they are revealed. Thus in addi-
tion to eliminating “clutter” in the display, they can also affect the performance
of the ground prover which contains decision procedures for equality and linear
arithmetic.

4.5.4 hide-all-but/$: Hide Selected Formulas

syntax: (hide-all-but &optional keep-fnums fnums[*] )

effect: This is a variant of the hide rule that hides all the formulas indicated by
fnums except those indicated by keep-fnums. As with hide, hidden sequent
formulas are saved and can be restored to a descendant of the current sequent
by the reveal rule.

usage: (hide-all-but (-1 -4) -) : Yields the subgoal sequent that results from
hiding all the antecendent formulas except the formulas numbered -1 and
-4 in the current sequent.
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(hide-all-but * (-2 1)) : Hides formulas numbered -2 and 1 in the cur-
rent sequent.

(hide-all-but :keep-fnums (-2 3)) : Hides all formulas except those
numbered -2 and 3 in the current sequent.

errors: No error messages are generated.

4.5.5 reveal: Reveal Some Hidden Formulas

syntax: (reveal &rest fnums )

effect: To see the hidden formulas in sequent form, use the emacs command
M-x show-hidden. Invoking reveal yields a subgoal that reintroduces the hid-
den formulas numbered fnums (in the sequent displayed by M-x show-hidden)
into the current sequent. The formulas thus revealed are not removed from the
list of hidden formulas.

usage: (reveal -2) : Reveals the formula numbered -2 in the sequent displayed by
M-x show-hidden.

(reveal (-1 4 -3 2)) : Reveals the formulas numbered -1, 4, -3, 2 in the
sequent displayed by M-x show-hidden.

(reveal -1 4 -3 2) : Same as above.

errors: No error messages are generated.

4.6 The Propositional Rules

bddsimp primitive propositional simplification rule
case primitive introduces case splits (the Cut rule)
case*/$ defined introduces case splits (the Cut rule)
flatten defined disjunctive simplification
flatten-disjunct primitive controlled disjunctive simplification
iff primitive converts boolean equalities to if and only if form
lift-if primitive the IF-lifting rule
prop/$ defined propositional simplification rule
propax primitive the propositional axiom rule
split primitive the conjunctive splitting rule
merge-fnums defined combines sequent formulas



38 The PVS Proof Commands

4.6.1 bddsimp: Propositional Simplification

syntax: (bddsimp &optional fnums[ *] dynamic-ordering?

irredundant?[ t] )

effect: Generates subgoals by applying propositional simplification using an external
package written in C and based on binary decision diagrams (BDDs). Each
distinct atomic Boolean formula in the sequent is converted into a literal and
the top-level propositional structure is translated into input that is accepted
by the BDD package. The result is translated back into the a list of subgoal
sequents.

The dynamic-ordering? flag when set to T, allows the BDD package to reorder
literals to reduce the BDD size.

The irredundant? flag, when set to T, normalizes the BDD so that the generated
subgoals are independant, i.e., no subgoal is subsumed by any of the others.
This is quite expensive, and large BDDs can take a long time to process, but
without it proofs may need to be repeated on multiple subgoals.

usage: (bddsimp): Repeatedly applies the propositional rules to all the formulas in
the sequent to generate zero or more subgoals.

(bddsimp +): Applies propositional rules to the consequent formulas.

(bddsimp + T): Uses the dynamic reordering heuristic to control BDD size
while applying propositional simplification to the consequent formulas.

errors: No error messages.

4.6.2 case: Case Analysis on Formulas

syntax: (case &rest exprs )

effect: If the current sequent is of the form Γ ` ∆, then the rule (case A1 ...An)
generates the subgoals

An, . . . , A1,Γ ` ∆

An−1, . . . , A1,Γ ` An,∆

An−2, . . . , A1,Γ ` An−1,∆
...

A1,Γ ` A2,∆

Γ ` A1,∆

Note that the case command generates n + 1 subgoals given n formulas. This
allows us to assume a formula or a collection of formulas and subsequently prove
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these formulas to be true. The formulas Ai are given as strings, e.g.,, "x > 0

AND y > 0". The given formulas A1, . . . , An are parsed and typechecked and are
expected to be of type bool. The typechecking of these formulas could generate
additional subgoals corresponding to the type correctness conditions e.g., (case
"(1/x) > 0") would generate an additional subgoal with the proof obligation
requiring that x /= 0. It is quite common for this command to generate parser
and typechecker errors which simply return control back to the proof checker
without affecting the state of the proof.

This command is extremely useful for transforming an undesirable expression t
into a more desirable form s when this cannot be achieved by the other proof
commands. The command (case "t = s") followed by replace can achieve
the desired transformation. This combination is encapsulated in the defined
rule case-replace (page 57).

usage: (case) : same as a (skip).

(case "x > 0") : splits into two cases, assuming x > 0 as an antecedent
on one branch of the proof and placing x > 0 as a proof obligation along
the other branch of the proof. There might be additional branches if the
typechecking of the formula in place of x > 0 generates type correctness
proof obligations.

(case "x > 0" "y > 0") : splits a goal Γ ` ∆ into three subgoals:

• y > 0, x > 0,Γ ` ∆

• x > 0,Γ ` y > 0,∆

• Γ ` x > 0,∆

errors: The case rule can generate the following error messages:

No formulas given. This means the argument list was empty.

Irrelevant free variables . . . occur in formulas. No sequent in a PVS
proof can have free variables in it. They can only contain bound vari-
ables, ordinary constants, and Skolem constants. The formulas given as
arguments to the case rule must not contain any free variables.

boolean expected here. This indicates that one of the given formulas did
not typecheck to the expected type boolean.

Parser error: . . . One of the given formulas did not parse correctly.

Typecheck error: . . . The typechecking of the given formulas failed in one
of a variety of ways.

notes: The case rule corresponds to applications of the Cut rule. This command
is surprisingly useful for explicitly controlling case splits in a proof, and for
introducing assumptions that will eventually be discharged.
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4.6.3 case*/$: Full Case Analysis on Formulas

syntax: (case* &rest exprs )

effect: Like the case command, but performs a fully branching case analysis. If
the current sequent is of the form Γ ` ∆, then the rule (case* A1 ...An)
generates the subgoals

An, . . . , A1,Γ ` ∆

An−1, . . . , A1,Γ ` An,∆

An, An−2, . . . , A1,Γ ` An−1,∆

An−2, . . . , A1,Γ ` An, An−1,∆
...

An,Γ ` An−1, . . . , A1,∆

Γ ` An, . . . , A1,∆

Note that the case* command generates 2n subgoals given n formulas. This
allows us to assume a formula or a collection of formulas and subsequently prove
these formulas to be true.

usage: (case*) : same as a (skip).

(case* "x > 0" "y > 0") : splits a goal Γ ` ∆ into four subgoals:

• y > 0, x > 0,Γ ` ∆

• x > 0,Γ ` y > 0,∆

• y > 0,Γ ` x > 0,∆

• Γ ` y > 0, x > 0,∆

errors: The case* rule can generate the same error message as the case command.

4.6.4 flatten: Disjunctive Simplification

syntax: (flatten &rest fnums[ *] )

effect: A sequent formula is a disjunct if it is either an antecedent formula of the
form ¬A or A ∧ B, or a consequent formula of the form ¬A, A ⊃ B, or A ∨
B. Disjunctive simplification transforms each indicated formula into a list of
formulas that contains no disjuncts by repeatedly transforming

1. An antecedent formula ¬A into the consequent formula A

2. An antecedent formula A ∧B into the two antecedent formulas A and B

3. a consequent formula ¬A into the antecedent formula A
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4. a consequent formula A ⊃ B into the antecedent formula A and the con-
sequent formula B

5. a consequent formula A ∨B into the two consequent formulas A and B

6. an antecedent formula A ⇐⇒ B into the two antecedent formulas A ⊃ B
and B ⊃ A.

The flatten rule yields a subgoal where the indicated formulas in the current
goal are disjunctively simplified. The rule behaves as a (skip) if none of the
indicated formulas can be disjunctively simplified. The current goal is proved
if disjunctive simplification yields an antecedent formula false or a consequent
formula true.

usage: (flatten) : disjunctively simplifies every formula in the current goal sequent
yielding a subgoal that contains no disjuncts that are sequent formulas.

(flatten 2) : disjunctively simplifies formula number 2 in the current goal
sequent.

(flatten +) : disjunctively simplifies all the consequent formulas in the
current goal sequent.

(flatten (-1 4 -2)) : disjunctively simplifies the formulas numbered -1,
4, and -2 in the current goal sequent.

(flatten -1 4 -2) : Same as above.

errors: No error messages are generated.

notes: This command corresponds to repeated applications of the inference rules ∧ `,
` ∨, `⊃, ¬ `, and ` ¬ in Chapter 3. Note that these are all the propositional
rules which do not cause branching. Since this command does not cause any
branching, it is always safe to use and generally makes the sequent easier to
read.

4.6.5 flatten-disjunct: Controlled Disjunctive
Simplification

syntax: (flatten-disjunct &optional fnums depth )

effect: As per (flatten), but with an optional depth argument which can be used
to control the depth to which the top-level disjuncts in a sequent formula are
flattened. If the depth is not given, then the disjunctive simplification is carried
out without any bound on the depth.
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usage: (flatten-disjunct + :depth 2) : flattens the consequent disjunctive for-
mulas, but only up to a depth of 2.

errors: No error messages are generated.

4.6.6 iff: Converting Boolean Equality to Equivalence

syntax: (iff &rest fnums[*] )

effect: Yields a subgoal where any boolean equalities of the form A = B, among the
formulas in the current sequent that are indicated by fnums are converted to
A ⇐⇒ B.2 Treating all boolean equalities as equivalences is not a good idea
since that leads to a combinatorial explosion when the propositional steps are
applied, and in many such cases, equality reasoning is sufficient to complete the
proof.

usage: (iff) : same as (iff *). Converts any boolean equalities among the se-
quent formulas into equivalences. Behaves like (skip) if there are no such
boolean equalities.

(iff -3) : converts the formula numbered -3 into an equivalence.

(iff (4 2 -1)) : converts the formulas number 4, 2, and -1 into equiva-
lences.

(iff 4 2 -1) : Same as above.

errors: No error messages are generated.

4.6.7 lift-if: Lifting Embedded IF Connectives

syntax: (lift-if &optional fnums updates?[ T] )

effect: In proving properties of programs, the proof often splits up into cases ac-
cording to the branching structure of the program. This branching struc-
ture is typically expressed using the IF-connective or the CASES construct.
Since these IF and CASES branches could occur embedded within the for-
mula, this branching structure must be lifted to the top level of the formula
where the propositional simplification steps can be applied (see the flatten

and split commands above). The lift-if rule lifts the leftmost-innermost
contiguous IF or CASES branching structure out to the top level. An exam-
ple of such a transformation is the rewriting of f(IF(A,B, IF(C,D,E))) to

2Recall that ⇐⇒ is written as iff or <=> in the raw PVS language.
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IF(A, f(B), IF(C, f(D), f(E))). On the other hand, f(IF(IF(A,B,C), D,E))
is transformed by lift-if to IF(A, f(IF(B,D,E)), f(IF(C,D,E))), re-
flecting the selection of the conditionals of the leftmost-innermost IF-
expression. Note that f(IF(A, IF(B,C,D), IF(E,F,G))) is transformed to
IF(A, IF(B, f(C), f(D)), IF(E, f(F ), f(G))) reflecting the preservation of the
contiguous IF-branching structure. It is more effective to lift a contiguous block
of IF branches since it more accurately reflects the case structure of the result-
ing argument and results in a more efficient IF-expression (since the branches
B and E in previous example are kept independent). Note that only condi-
tionals without bound variables can be lifted, and this is used as a criterion by
the lift-if rule in selecting the branching structure. The leftmost-innermost
branching structure typically turns out to be the most appropriate one. If this
choice of branching structure turns out to be inappropriate, the case command
(see below) can be used to carry out the desired case analysis.

Unless the update? flag is NIL, the lift-if command has been extended to
extract the case structure from an array or function update. An expression of
the form (f WITH [(x)(u) := 3, (y)(v) := 5])(z)(w) is converted to

(IF z = y THEN

(IF w = v THEN 5

ELSIF z = x THEN (IF w = u THEN 3 ELSE f(z) ENDIF)

ELSE f(z)

ENDIF)

ELSIF z = x THEN 3

ELSE f(z)

ENDIF)

The resulting IF-expression is then lifted by the lift-if command.

usage: (lift-if) : same as (lift-if *). Yields the subgoal got by lifting the
leftmost-innermost branching structure in each of the formulas in the cur-
rent sequent. Applications where the operator is an update are converted
into IF-expressions which are also lifted.

(lift-if +) : yields the subgoal got by lifting the leftmost-innermost
branching structure in each of the consequent formulas in the current se-
quent.

(lift-if -3) : lifts the branching structure from the formula numbered -3

in the current sequent.

(lift-if (-1 3 -2)) : lifts the branching structure from the formulas num-
bered -1, 3, and -2 in the current sequent.
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(lift-if (-1 3 -2)) :updates? NIL : Same as above without the con-
version of applications of updates to IF-expression form.

errors: No error messages are generated.

notes: This command roughly corresponds to the IF ↑` and ` IF ↑ rules of Chap-
ter 3. The simplify, record, and assert commands do a limited amount of
“if-lifting.”

4.6.8 prop/$: Propositional Simplification

syntax: (prop)

effect: Carries out propositional simplification on the current goal returning just
those subgoals that are not propositional axioms and do not have any top-
level propositional connectives. Using prop indiscriminately could lead to a
combinatorial explosion of cases caused by splitting irrelevant conjunctions.
This in turn could lead to a number of subgoals requiring identical proofs so
prop should be used with some care. The recursive definition for (prop) is
simply

(try (flatten) (prop) (try (split)(prop) (skip)))

notes: prop can be used for small-scale propositional simplification. For larger for-
mulas, the primitive rule bddsimp which uses a BDD-based propositional sim-
plifier is usually more efficient.

The prop rule should almost always be preferred to its strategy version prop$.

4.6.9 propax: Propositional Axioms

syntax: (propax)

effect: An application of propax either proves the sequent or behaves like a (skip).
Invoking propax proves sequents of the form

1. . . . , false, . . . ` ∆,

2. Γ ` . . . ,true, . . .,

3. Γ ` . . . , t = t, . . ., or

4. . . . , A, . . . ` . . . , B, . . ., where the sequent formulas A and B are syntacti-
cally equivalent (i.e., identical upto the renaming of bound variables).
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The first two forms are not actually propositional axioms as described in Chap-
ter 3, but may easily be inferred. The third form above is actually an equality
rule, but it is useful to group it with the other propositional steps. These forms
correspond to sequents that are structurally true, but it might be difficult to
notice these forms in a complicated looking sequent.

usage: (propax)

errors: No error messages are generated.

notes: It is important to note that the propax step is automatically applied to every
sequent that is ever generated in a proof, so that there is never any need to
actively invoke it. It is simply included here for the sake of completeness.

4.6.10 split: Conjunctive Splitting

syntax: (split &optional fnum[ *] depth )

effect: Selects and splits a conjunctive formula in the current goal sequent based
on the information given in fnum. The split command splits every top-level
conjunction in the selected formula so that the resulting formulas are no longer
conjunctions. A conjunctive formula A in a goal sequent of the form Γ, A ` ∆
or Γ ` A,∆ is split by collecting lists of antecedent and consequent formulas by
recursively collecting subformulas of A as follows:

1. if A is an antecedent formula of the form B ∨ C, then collect antecedent
formulas B and C

2. if A is an antecedent formula of the form B ⊃ C, then collect antecedent
formula C and consequent formula B

3. if A is a consequent formula of the form B ∧ C, then collect consequent
formulas B and C

4. if A is a consequent formula of the form B ⇐⇒ C, then collect consequent
formulas B ⊃ C and C ⊃ B

5. if A is an antecedent formula of the form IF(B,C,D), then collect an-
tecedent formulas B ∧ C and ¬B ∧D

6. if A is a consequent formula of the form IF(B,C,D), then collect conse-
quent formulas B ⊃ C and ¬B ⊃ D.

If this process yields the collection of antecedent formulas A1, . . . , Am and the
consequent formulas B1, . . . , Bn, then the split command yields the subgoals
Γ, Ai ` ∆ for 0 < i ≤ m, and Γ ` Bj,∆ for 0 < j ≤ n. When there is no
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conjunction in the current sequent as indicated by fnum, then the split rule
behaves as a (skip).

When the depth argument is given, the top-level conjuncts are only split to that
given depth.

usage: (split) : (Same as (split *).) Yields the subgoals resulting from splitting
the first conjunction found in the current sequent. It is not easy to tell
which conjunct would be split since a sequent is internally represented
as a list of formulas, but is displayed in sequent form where the negated
formulas appear in the antecedent part, and the unnegated formulas appear
in the consequent part. The (split +) and (split -) rules (see below)
might be more appropriate when such a confusion exists.

(split +) : splits the first consequent conjunctive formula in the current
goal sequent.

(split -) : splits the first antecedent conjunctive formula in the current
goal sequent.

(split -3) : splits the formula numbered -3 in the current sequent.

(split + :depth 2) : splits the top-level consequent conjuncts to a maxi-
mum of two levels.

errors: No error messages are generated.

notes: • This command causes branching, so should be used with caution; oth-
erwise you will find yourself doing essentially the same proof on many
different branches.

• The split command corresponds to the ` ∧, ∨ `, ⊃`, IF `, and ` IF

inference rules given in Chapter 3. These are all the inference rules which
cause branching.

• To get the effect of repeatedly applying flatten and split, use the prop

or bddsimp commands.

4.6.11 merge-fnums/$: Combine Sequent Formulas

syntax: (merge-fnums fnums )

effect: If the sequent is of the form A1, . . . , Am ` C1, . . . , Cn, and fnums picks out
the sequent formulas Ai, Aj, Ck, and Cl, then in the resulting sequent, these
formulas are replaced by the single formula Ai ∧ Aj ⊃ Ck ∨ Cl. Presently, this
command is mainly useful in defining the generalize command which needs
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sequent formulas merged into one formula so that a universal quantifier can be
wrapped around it. Applying merge-fnums to a single formula has no effect.

usage: (merge-fnums (-1 -3 4)): Merges and replaces the sequent formulas num-
bered -1, -3, and 4 by a single formula, namely a consequent formula
asserting the implication between the conjunction of -1 and -3 and 4.

notes: The merge-fnums/$ command is used in defining the generalize strategy
in order to collect together the formulas where the term to be generalized by a
universally quantified variable appears.

4.7 The Quantifier Rules

detuple-boundvars/$ defined distributes tuple and record
quantification

generalize/$ defined generalizes term by universal
quantification

generalize-skolem-constants/$ defined generalizes Skolem constants
inst/$ defined instantiates existentially quan-

tified variables
instantiate primitive instantiates existentially quan-

tified variables
instantiate-one defined instantiates existentially quan-

tified variables
inst-cp/$ defined copies and instantiates existen-

tial formulas
inst?/$ defined heuristically instantiates exis-

tential formulas
quant?/$ defined heuristically instantiates exis-

tential formulas
skolem primitive Skolemizes universal formulas
skolem!/$ defined automatically introduces

Skolem constants
skolem-typepred primitive Skolemizes with type con-

straints
skosimp/$ defined introduces Skolem constants

and flattens
skosimp*/$ defined repeatedly Skolemizes and flat-

tens
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4.7.1 detuple-boundvars/$: Distributes Tuple and
Record Quantification

syntax: (detuple-boundvars &optional fnums [ *] singles? )

effect: A top-level sequent formula of the form (FORALL (x: [S1, S2, S3]):

g(x)) or (FORALL (x: [# s : S, t : T #]) : g(x)) is replaced by
(FORALL (x1: S1), (x2: S2), (x3: S3): g(x1, x2, x3)) and (FORALL

(x1: S), (x2: T)): g((# s := x1, t := x2 #))). This decomposition of
tuple and record quantification is needed, for example, to carry out an induction
over one of the components. Tuple quantification can be introduced when in-
stantiating parameterized theories such as the function theory in the prelude.
This command is used within the measure-induct strategy.

4.7.2 generalize/$: Generalizes Term by Universal
Quantification

syntax: (generalize term var &optional type fnums [ *]

subterms-only? [ T])

effect: If the sequent is of the form a1(t), a2(t) ` c1(t), c2(t), then applying
the generalize term t with variable x yields a sequent of the form ` (FORALL

x: (a1(x) AND a2(x)) IMPLIES (c1(x) OR c2(x))). More specifically, the
generalize command collects together all the sequent formulas from the given
fnums containing the term term, applies merge-fnums to obtain a single formula
which is then generalized by replacing term by a universally quantified variable
var.

The type option is to indicate that the universally quantified variable should be
bound with the given type. This is useful if the term has a more specific type
than is required of the generalization.

The generalization applies only to the subterms that are not within types or
actuals. If a more sweeping generalization is needed, then the subterms-only?
flag should be set to NIL.

4.7.3 generalize-skolem-constants/$: Generalizes
Skolem Constants

syntax: (generalize-skolem-constants &optional fnums[ *])

effect: Applies universal generalization to the Skolem constants that occur in the
given fnums . Such a step is useful in rearranging quantifiers by introducing
skolem constants and generalizing them over selected formulas.
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4.7.4 inst/$: Instantiation of Existential Strength
Quantifiers Without Copying

syntax: (inst fnum &rest terms )

effect: This is simply a convenient form of the instantiate rule where the quantified
formula is not copied and the terms are given in &rest form.

usage: (inst - "a + 3" " " "b"): Instantiates the first universally quantified an-
tecedent formula with exactly three bound variables with a + 3 for the first
bound variable and b for the third bound variable while leaving the second
bound variable uninstantiated.

4.7.5 inst-cp/$: Instantiation of Existential Strength
Quantifiers With Copying

syntax: (inst-cp fnum &rest terms )

effect: This is simply a convenient form of the instantiate rule where the quantified
formula is copied and the terms are given in &rest form.

4.7.6 inst?/$: Instantiation of Existential Strength
Quantifiers

syntax: (inst? &optional fnums[ *] subst where[ *] copy? if-match

polarity? )

effect: This rule extends the capabilities of the inst rule. Here the given substitution
subst is used to select a quantified formula of existential strength where the
quantifier binds all of the variables in subst. The rule then collects those atomic
subformulas or subterms in this formula that contain free occurrences of all the
outermost existentially quantified variables and tries to find a match (extending
subst) for these in the sequent (or as constrained by the where argument).
These pattern subterms of the quantified formula are collected as successive
lists of templates containing all the quantified variables, all but one of the
quantified variables, and so on. The templates are essentially collected starting
from the leftmost-outermost one except for implications where the templates
for the conclusion part of the implication precede those from the hypotheses.

In the default case when if-match is nil, the first successful match (for all
or some of the quantified variables) for the first template with a successful
match is used to generate one or more, partial or total instances of the chosen
quantified formula. If a partial substitution is given but no match is found and
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if-match is nil, then the rule goes ahead and instantiates using the given partial
substitution subst. If if-match is T, then the instantiation only takes place if
the matching process succeeds. If if-match is all, then the command returns
all possible instantiations for all of the templates in the first list of templates
that yields a successful match. Note that these lists of templates are ordered
by the number of quantified variables that occur free in them. If the if-match
flag is best, then the command chooses an instantiation from the all case that
generates the fewest TCCs when typechecked. If the if-match flag is first*,
the command chooses all the instantiations of the first successful template.

The polarity? argument can be either T or NIL. When this is set to T, the
inst? command is sensitive to the polarity with which the patterns occur
and it matches these patterns only against expressions of opposing polarity.
The polarity-sensitive matching pays attention to both boolean polarity (i.e.,
whether the expression occurs under an even or odd number of negations) as
well as arithmetic polarity (i.e., whether the expression occurs on the lesser or
greater side of an inequality.

Sometimes a single inst? can only find a partial instantiation where successive
invocations of inst? can succeed in fully instantiating all of the quantified
variables.

Note that if a bound variable name contains $, it is sufficient to only give that
part of the name preceding $ in subst. The copy? argument works exactly as
in quant and is used to retain a copy of the quantified formula. Note that an
uncopied, quantified formula is automatically hidden.

usage: (inst? -1 ("x" 1) + T): Tries to instantiate the quantified variables in
the formula number -1 by pattern-matching against the subexpressions in the
consequent formulas using the given partial substitution where x is instantiated
to 1. The first acceptable substitution found by pattern matching is returned.
A copy of the original formula is retained.

(inst? - :if-match best): Tries to instantiate the first universally quanti-
fied antecedent formula by pattern-matching the subexpressions of this formula
against all the formulas in the sequent. The best substitution, namely one that
generates the fewest TCCs when typechecked, is returned.

errors: Given Substitution . . . is not of the form . . . : A substitution must be
of the form (var term var term ...).

Couldn’t find a suitable quantified formula: No instantiable formula found
in the range specified by fnums.

Couldn’t find a suitable instantiation for any quantified formula.
Please provide partial instantiation: Pattern-matching was unable to
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instantiate the quantified variables so that a further hint in the form of a par-
tial substitution might be needed.

Given substitution . . . is not of the form: (¡var¿ ¡term¿...): An odd
length substitution was given.

The supplied terms should not contain free variables: Terms in given
substitution should not contain free variables.

The types of the substituted variables contain free occurrences of the
following quantified variables: . . . : If the type of one variable given in a
substitution contains another quantified variable, then that variable must also
be instantiated in the substitution.

4.7.7 instantiate: Instantiating Existential Quantifiers

syntax: (instantiate fnum exprs &optional copy? )

effect: As the sequent calculus rules indicate, the universally quantified formulas in
the antecedent and the existentially quantified formulas in the consequent are
reduced by instantiating the quantified variables with the terms that are being
existentially generalized in the proof. In an application of the instantiate

rule, fnum is used to select the suitable quantified formula that is either an
antecedent formula of the form (∀x1, . . . , xn:A) or a consequent formula of the
form (∃x1, . . . , xn:A). The argument exprs provides the list of n terms t1, . . . , tn
so that the chosen quantified formula is replaced by A[t1/x1, . . . , tn/xn] in the
generated subgoal. Note that each ti is typechecked to be of the type of xi, and
this typechecking could generate additional goals corresponding to the type
correctness conditions. As with skolem, it is possible to leave some of the xi
uninstantiated by supplying " " for the corresponding ti in the exprs argument.

When the copy? parameter is t, then a copy of the quantified formula is saved
in the subgoal sequent so that the quantifier can be reused. When the copy?
parameter is nil, the quantified formula is automatically hidden so that the
quantifier can be reused by revealing the hidden formulas using the reveal

rule.

usage: (instantiate * ("x + 3" "y - z")) : Finds the first formula in the se-
quent that is either an antecedent formula of the form (∀x1, x2:A), or a
consequent formula of the form (∃x1, x2:A) and replaces this formula with
A[x + 3/x1, y - z/x2].

(instantiate - ("x + 3" "y - z")) : Searches for the first suitable an-
tecedent formula in the current sequent, and has the same effect as the
above invocation of instantiate.
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(instantiate -3 ("x + 3" "y - z") T) : Has the same effect as above on
the formula numbered -3, but also makes a copy of the formula numbered
-3 provided it is a formula of the form (∀x1, x2:A).

(instantiate -3 ("x + 3" "y - z") :copy? T) : Same as above.

errors: No suitable quantified formula found: There was no formula of exis-
tential strength in the range given by fnum with the same number of
bound variables as the length of the supplied list of exprs.

Expecting . . . terms, but . . . terms provided: Wrong number of terms
given in the exprs argument.

The supplied terms should not contain free variables: There can be no
free variables in a PVS sequent and none are allowed to sneak in through
the instantiate rule.

The types of the substituted variables contain free occurrences . . . :
If x and y are both bound by the top quantifier where the type of y
contains free occurrences of x, then if the instantiate rule supplies a
substitution for y, it must also include a substitution for x.

In addition to the above, the instantiate rule can generate parser and type-
check errors.

notes: The defined rule inst is a non-copying form of instantiate, and the rule
inst-cp is a copying form of instantiate. In the related inst? rule, if the
exprs argument is missing then the rule attempts to find a suitable instantiation
by matching selected subterms of A with subterms in the rest of the sequent.
Note that inst? does not always succeed with the right match. It typically
succeeds when there are very few possible matches. The instantiate rule
captures the ∀ ` and ` ∃ sequent rules.

4.7.8 instantiate-one: Instantiating Existential
Quantifiers

syntax: (instantiate-one fnum terms &optional copy? )

effect: Same as instantiate, but behaves as a skip if the instantiation would yield
a formula already in the sequent. instantiate-one may be used in repeat in
situations where instantiate would never terminate.

4.7.9 quant?/$: Instantiation of Existential Strength
Quantifiers

syntax: (quant? &optional fnum[ *] subst where[ *] copy? if-match )
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effect: This rule is similar to inst? and is retained here for backward compatibility
with PVS 1.x. It should no longer be used.

4.7.10 skolem: Replacing Universal Quantification with
Constants

syntax: (skolem fnum constants &optional skolem-typepreds? )

effect: If the formula in the current sequent indicated by fnum is either an an-
tecedent formula of the form (∃x1, . . . , xn:A) or a consequent formula of the
form (∀x1, . . . , xn:A), and constants is a list of new identifiers of the form (c1

...cn), then the skolem rule generates a subgoal where the indicated formula
has been replaced by A[c1/x1, . . . , cn/xn].3 When fnum is *, then the first ap-
propriate sequent formula (i.e., either an antecedent existential formula or a
consequent universal formula binding n variables) is chosen for quantifier elim-
ination. The parameter fnum can also be either + or -. If any of the ci are
given as " ", then those bound variables are left alone and no corresponding
skolem constants are introduced. If skolem-typepreds? is T, then typepreds will
be introduced for the new constants.

usage: (skolem * ("a3" "b3" "c3")) : The first suitable formula in the sequent
with the form (∀/∃x1, x2, x3:A) is replaced by A[a3/x1, b3/x2, c3/x3]. As
mentioned earlier, it is not always easy to determine the first such suitable
formula in the sequent since the displayed sequent only captures the correct
order between and antecedent formulas and between consequent formula.
The ordering of all formulas is not visible from the displayed sequent.

(skolem - ("a3" "b3" "c3")) : Same as above, but for the first suitable
antecedent formula.

(skolem -3 ("a3" "b3" "c3")) : Same as above, but only for formula
number -3 in the current sequent.

(skolem - ("a3" " " "c3")) : Replaces the first antecedent formula of the
form (∃x1, x2, x3:A) with (∃x2:A)[a1/x1, a3/x3].

errors: No suitable quantified expression found: Either there is no antecedent
existentially quantified formula or consequent universally quantified for-
mula, or the list of skolem constants is of the wrong length.

3This is slightly inaccurate since in PVS, the type for the bound variable xi in (∀x1, . . . , xn:A)
can contain free occurrences of xj where j < i which is not reflected by the substitution instance
A[c1/x1, . . . , cn/xn].
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Formula . . . is not skolemizable: The indicated formula in fnum is not of
the right form.

Expecting . . . skolem constant(s), but . . . supplied: The number of sup-
plied skolem constants does not correspond to the number of bound vari-
ables in the formula specified by fnum.

The supplied skolem constants must all be new names: Either a
skolem constant given as part of the constants argument was not a name
or was already present in the context.

Duplicate use of skolem constants: The list of skolem constants contained
a duplicate.

The types of the skolemized variables contain free occurrences . . . :
This error is triggered when the top quantifier binds variables x and y
where the type of y contains a free occurrence of x. It is not legal in this
situation to supply a skolem constant for y without providing one for x.

notes: The skolem! rule automatically generates skolem constants and is usually an
easier alternative to the skolem rule. The skolem rule is useful when adopting
certain conventions about naming skolem constants within proof strategies. The
skolem rule captures the ∃ ` and ` ∀ sequent rules.

4.7.11 skolem!: Automatic Introduction of Skolem Con-
stants

syntax: (skolem! &optional fnum[ *] keep-underscore?)

effect: Automatical generates Skolem names for the names argument for the skolem

rule. These names have the form x!n when the bound variable being named is
x. This rule is a dangerous one to include in defined rules or within an apply

rule since the names being generated could change when a proof is rerun. When
the fnum argument is *, +, or -, the first Skolemizable formula in this range
is selected. There is a small loss of robustness with the commands skolem!,
skosimp, and skosimp* since any changes in the constants generated due to a
change in the formula or a reordering of proof steps can affect the behavior of
subsequent commands that explicitly mention these constants.

The keep-underscore? flag when T ensures that the bound variable x 1 is re-
placed by a skolem constant of the form x 1!n rather than the default x!n for
some number n.
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4.7.12 skolem-typepred/$: Skolemize with Type
Constraints

syntax: (skolem-typepred &optional fnum[ *] )

effect: This is a variant of skolem! where the type constraints on the generated
skolem constants are introduced as antecedent formulas.

4.7.13 skosimp/$: Skolemize then Flatten

syntax: (skosimp &optional fnum[ *] preds? )

effect: This is a short form for (then (skolem fnum ) (flatten)). When preds?

is T, skolem-typepred is used in place of skolem so that the type constraints
on the generated skolem constants are introduced as antecedent formulas.

4.7.14 skosimp*/$: Repeatedly Skolemize then Flatten

syntax: (skosimp* &optional preds? )

effect: This is a short form for (repeat (then (skolem) (flatten))). As with
skosimp, when the preds? flag is T, the command skolem-typepred is used
in place of skolem.

4.8 The Equality Rules

beta primitive reduces λ-, record, tuple, update, datatype redexes
case-replace/$ defined case-split and replace on an equality
name primitive introduces a name for a complex expression
name-replace/$ defined replaces an expression with a name
name-replace*/$ defined replaces expressions with names
replace primitive replaces equality LHS for RHS (or vice-versa)
replace* primitive replaces with equalities
same-name primitive equates two constants with equal actuals
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4.8.1 beta: Beta Reduction

syntax: (beta &optional fnums[ *] rewrite-flag )

effect: The beta rule rewrites certain expressions called redexes to their reduced
forms. The various forms of redexes and their reduced forms are:

• (λx1 . . . xn: e)(t1, . . . , tn) reduces to e[t1/x1, . . . , tn/xn]. Note that LET and
WHERE expressions are syntactic sugar for λ-redexes and will also be beta-
reduced by beta.

• proji(t1, . . . , tn) reduces to ti.

• labeli((#label1:=t1, . . . , labeln:=tn#)) reduces to ti.

• accessori(constructor(t1, . . . , tn)) reduces to ti, where constructor is an ab-
stract datatype constructor, and accessor i is an accessor of that construc-
tor.

• CASES c(t1, . . . , tn) OF ..., c(x1, . . . , xn) : e, ... ENDCASES reduces to
e[t1/x1, . . . , tn/xn], where c is a constructor for some datatype.

• label (r WITH [..., label := e,...]) reduces to e, provided label

:= e is the last update of label in the assignment above.

• (f WITH [..., (i) := e, ...])(j) reduces to e if it can be shown that
i = j, and the assignments following (i) := e do not affect f(j). If it can
be shown using the decision procedures that none of the updates affect the
value of f at j, then the expression simply reduces to f(j).

The rewrite-flag argument is typically omitted. When its value is LR, it indicates
that only the right-hand side of a formula that is an equality should be simplified
using beta-reduction. Similarly, if the value of rewrite-flag is RL, then only the
left-hand side of any equality is simplified.

usage: (beta) : Same as (beta *). Yields the subgoal obtained by reducing all of
the redexes in the current sequent.

(beta +) : Reduces all the redexes in the consequent formulas in the current
sequent.

(beta (-1 2 3)) : Reduces all of the redexes in the formulas numbered -1,
2, and 3 in the current sequent.

errors: There are no error messages generated. If there are no redexes to be reduced
in the given range fnums, then the message No suitable redexes found is
generated.

notes: The commands assert and simplify also carry out beta-reduction among
many other simplifications.
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4.8.2 case-replace/$: Introducing and Applying
Equality

syntax: (case-replace expr )

effect: This is just the strategy (then@ (case expr )(replace -1)). It case splits
on an equality (note that a non-equality A is interpreted as an equality A =
true) and replaces the LHS by the RHS in the rest of the sequent.

usage: (case-replace "c = 0"): Replaces c by 0 in the current subgoal and gen-
erate a second subgoal with the proof obligation c = 0.

errors: This command can generate a parse or type error if the given expr is not
well-formed.

4.8.3 name: Introducing Names for Terms

syntax: (name name expr )

effect: Yields a subgoal where a formula of the form expr = name is added as a new
antecedent formula. This is typically useful as a step towards generalizing a
formula by replacing expressions with constants (using the replace rule). The
given name must be new. In addition to the new antecedent, a definition is
generated for the name, which may subsequently be expanded or rewritten. It
is also treated as an AUTO REWRITE-, so that it is not expanded accidentally
with the next grind, for example.

usage: (name "d5" "(a + b + c)") : Introduces the antecedent formula (a + b

+ c) = d5.

errors: This command can generate a parse or type error if the given expr is not
well-formed.

. . . is not a symbol: The name argument must be a symbol.

. . . is already declared: The name argument must be a new name.

4.8.4 name-replace/$: Replacing a Term by a Name

syntax: (name-replace name expr &optional hide?[ T] )

effect: This command is just the strategy (then@ (name name expr ) (replace

-1)). It replaces the expression expr by name everywhere in the current se-
quent. The equality between name and expr is hidden by default, unless hide?
is NIL.



58 The PVS Proof Commands

4.8.5 name-replace*/$: Replacing Terms by Names

syntax: (name-replace* name-and-exprs &optional hide?[ T] )

effect: This command is an iterated form of name-replace.

The name-and-exprs argument must be of the form (〈name1〉 〈expr 1〉 ...).
The command replaces each expr i in the current sequent with the corresponding
name i.

4.8.6 replace: Rewriting Using Equalities

syntax: (replace fnum &optional fnums[ *] dir[ LR] hide? actuals? )

effect: The replace rule is typically used to rewrite some selection of the formulas
in the current sequent using an antecedent equality formula of the form l = r.
The equality formula to be used is indicated by the fnum argument. The targets
of the rewrites are listed in the fnums argument. When the direction argument
is RL (denoting “right-to-left”), the target occurrences of r in the sequent are
rewritten to l. Otherwise, when the direction parameter is different from RL,
the target occurrences of l are rewritten to r. If fnum is the number for an
antecedent formula A that is not an equality, then the formula is regarded as
an equality of the form A = true. If fnum is the number of a consequent
formula A, then the formula is regarded by replace as an equality of the form
A = false. Note that the formula indicated by fnum is unaffected by replace.

When hide? is T, the formula indicated by fnum that is used for replacement is
hidden using the hide command. When actuals? is T, the replacement is carried
out within actual parameters of names. Otherwise, the replacement only occurs
at the expression level.

usage: (replace -1) : If the formula numbered -1 in the current sequent has the
form l = r, then this application of the replace rule generates a subgoal
where every occurrence of a term syntactically equivalent to l is replaced
by r in every formula of the sequent other than in formula number -1. If
the formula numbered -1, call it A, is not an equality, then it is treated as
being an equality of the form A = true.

(replace -1 (-1 2 3) RL) : If the formula numbered -1 in the current
sequent has the form l = r, then this application of replace generates a
subgoal where all the occurrences of r in the formulas numbered 2 and 3

are replaced by l. Note that formula number -1 remains untouched.

(replace 2) : Yields the subgoal got by replacing all occurrences of the
formula numbered 2 in the rest of the current sequent, by false. Note
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that in the sequent representation, it is okay to use the negation of a
consequent formula as an assumption.

errors: No sequent formula corresponding to . . . : This means that the fnum
argument was out of range and did not refer to a formula in the current
sequent.

. . . must be ∗,+,−, an integer, or list of integers: The given fnums argu-
ment did not meet the criterion listed in the error message.

notes: One open issue regarding the replace rule is whether it is useful to have more
refined control over the target occurrences of the rewrite than is provided by the
fnums argument. The defined rule case-replace is used to assume an equality
and apply it in the form of a replacement. The replace rule corresponds to the
sequent rule Repl.

4.8.7 replace*: Rewriting Using Equalities

syntax: (replace* &rest fnums )

effect: Iteratively applies the replace command to each of the formulas indicated
by the numbers in fnums. Unlike replace, only left-to-right replacement is
possible and the formulas used in the replacement cannot be hidden.

4.8.8 same-name: Equating Names Under Actuals

syntax: (same-name name1 name2 &optional type )

effect: Two names such as cons[{i : nat | i > 0}] and
cons[{i : nat | i /= 0}] can be denotationally equal yet syntac-
tically distinct. The command same-name can be used to introduce
an antecedent formula asserting the equality of two such names, e.g.,,
cons[{i : nat | i > 0}] = cons[{i : nat | i /= 0}], while generat-
ing the proof obligations required to show that the actuals coincide. In the
above case, the obligation would be to show that FORALL (i: nat): i > 0

IFF i /= 0.

The type argument can be used to disambiguate the name references in case it
has been overloaded.

errors: Argument . . . is not a name: Names can have a theory prefix and/or
actuals, but cannot be compound expressions.

Argument . . . does not typecheck uniquely: Need to supply either theory
prefixes and/or actuals for the name, or the type argument to disambiguate the
name reference.
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Argument . . . must have actuals: It does not make sense to use same-name

unless the names have actuals that can be demonstrated to be equal.

Arguments . . . and . . . must have identical identifiers: Only the actuals
can be syntactically different between name1 and name2 .

4.9 Using Definitions and Lemmas

expand primitive expands (and simplifies) function definition
expand*/$ defined expands function definitions
forward-chain/$ defined forward chains on an implication lemma
lemma primitive introduces axiom, lemma, or definition in-

stance
rewrite/$ defined match and rewrite using lemma
rewrite-lemma/$ defined rewrite using instance of lemma
rewrite-with-fnum/$ defined rewrite using antecedent
use/$ defined invokes lemma with instantiation
use*/$ defined invokes lemmas with instantiation

4.9.1 expand: Expanding Definitions

syntax: (expand name &optional fnum[ *] occurrence if-simplifies assert? )

effect: Expands (and simplifies) the definition of name at a given occurrence. If
occurrence is not given, then all instances of the definition are expanded. The
occurrence is given as a number n referring to the nth occurrence of the function
symbol counting from the left, or as a list of such numbers. If the if-simplifies
flag is t, then any expansion within a sequent formula occurs only if the ex-
panded form can be simplified (using the decision procedures). The if-simplifies
flag is needed to control infinite expansions in case expand is used repeatedly
inside a strategy. In the default case when assert? is NIL, expand applies the
simplify step with the default settings to any sequent formula in which a def-
inition is expanded. When assert? is T, expand applies the assert version of
simplify to any sequent formulas affected by definition expansion (This latter
option has to be exercised for compatibility with PVS 1.x). The assert? flag can
also be NONE in which case no simplification is applied to the sequent formula
following expansion.

usage: (expand "sum") : Expands the definition of sum throughout the current
sequent, whether they simplify or not. The resulting expressions are all
simplified using decision procedures and rewriting.
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(expand "sum" 1) : Expands sum throughout the formula labeled 1.

(expand "sum" 1 2) : Expands the second occurrence of sum in the formula
labeled 1.

(expand "sum" :if-simplifies t) : Expands those occurrences of sum

whose definitions can be simplified by means of the decision procedures.
This is only relevant in the situation where the definition is a CASES or
IF expression. The definition expansion only occurs if such an expression
simplifies to one of its branches.

(expand "sum" :assert? T) : Expands sum, but uses assert instead of
simplify in the simplification process.

errors: Occurrence . . . must be nil, a positive number or a list of positive
numbers: Self-explanatory.

notes: Typically, the defined rule rewrite can be used instead of expand but expand
has some advantages:

• expand is faster, since definitions are simple (unconditional) equations.

• expand does not require name to be fully resolved; it can use the occurrence
to get the type information needed.

• expand allows a specific occurrence or occurrences of a function symbol to
be expanded.

• expand can rewrite subterms containing variables that are bound in some
superterm, e.g.,, If f(x) is defined as g(h(x)), then expand would be able
to rewrite (∀x.f(x) = 0) as (∀x.g(h(x)) = 0), but rewrite would not.

4.9.2 expand*/$: Expanding Several Definitions

syntax: (expand* &rest names )

effect: An iterated version of expand that applies the expand command to each of
a list of function names.

4.9.3 forward-chain/$: Forward Chaining

syntax: (forward-chain name-or-fnum )

effect: This rule is used to forward chain on the given lemma or antecedent formula
number. If the given lemma or antecedent formula has the form A1∧ . . .∧An ⊃
C, then this rule tries to match the formulas Ai against the antecedent formulas



62 The PVS Proof Commands

of the current sequent. If the match succeeds, the corresponding instance of C
is added to the as an antecedent formula to current sequent. If this instance
of C is already in the current sequent, then the forward-chain rule looks for
other instances of the Ai in the current sequent. An fnum argument can be
either -, *, or an antecedent formula number.

4.9.4 lemma: Employing Instances of Lemmas

syntax: (lemma name &optional subst )

effect: This rule introduces an instance of the lemma named name corresponding to
the substitutions supplied in subst as a new formula in the sequent. Axioms,
assumptions, and function definitions are also seen as lemmas for the purpose
of this rule. There can be several forms for the definition of a function. For
example, there are four possible forms for the definition of a function f such
that f(x, y)(u)(v) is given to be e, for some term e:

1. f(x, y)(u)(v) = e

2. f(x, y)(u) = (λv: e)

3. f(x, y) = (λu: (λv: e))

4. f = (λx, y: (λu: (λv: e)))

In such a situation, the lemma rule picks the first form if subst contains substi-
tutions for x, y, u, and v, and in general, it picks the last definition (in the order
of presentation above) in which all the variables in the substitution subst occur
free in the definition.

In using the lemma rule, name must name a lemma that is visible in the context
of the statement being proved, and substs must be a list of substitutions of the
form (x1 t1 . . . xn tn). Let A be the universally closed form of the lemma named
name, the lemma rule checks that each xi in subst is a substitutable variable
in A, i.e., A must have the form (∀y1, . . . , ym:B) and xi is either identical to
some yj or is substitutable in B. PVS checks that each ti is of the type of the
corresponding xi and does not contain any free variables. Note that it is possible
that there are many possible instances of lemmas named name either because
these lemmas come from different theories that are both visible in the current
context or from different instances of the same parametric theory. The lemma

rule attempts to resolve such an ambiguity by using the information given by the
substitution subst. If this information is not enough to unambiguously choose
the named lemma, then the lemma name must be supplied in a more complete
form. The form identifier[actuals] for name can be used in the case when the
generic theory where name occurs is unique, but the required instantiation for
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the parameters of the theory is not obvious from the context (i.e., the sequent).
The form theoryname.identifier[actuals] is to be used to further disambiguate
the reference to the lemma.

The lemma rule can generate additional subgoals due to the type correctness
conditions. As a consequence of the substitution, this rule can also generate
parsing and typechecking errors.

usage: Consider the situation where the theory boolean props contains a lemma
named assoc stating the associativity of conjunction, and the theory listprops

with a type parameter T has a lemma also named assoc stating the associativity
of append. Both associativity lemmas are stated in terms of the variables x, y,
and z.

(lemma "assoc") : This generates an error message asserting that the given
name could not be resolved, and behaves like (skip), otherwise.

(lemma "boolean props.assoc") : Adds the formula

(FORALL x, y, z: ((x AND y) AND z) = (x AND (y AND z)))

to the antecedent of the current sequent.

(lemma "assoc" ("x" "TRUE" "z" "FALSE")) : Adds the formula

(FORALL y: ((TRUE AND y) AND FALSE) = (TRUE AND (y AND

FALSE)))

to the antecedent of the current sequent. Notice that the substitution has
been used to resolve the lemma name.

(lemma "assoc" ("x" "true" "z" "false" "y" "A")) : Adds the for-
mula

((TRUE AND A) AND FALSE) = (TRUE AND (A AND FALSE))

to the antecedent of the current sequent.

(lemma "assoc[list[nat]]") : Adds the statement of the associativity of
append for lists of natural numbers to the antecedent of the current se-
quent.

errors: The following are not possible variables . . . : One of the expressions
in a variable position in the given substitution was not a name. Check
the substitution to see if it has the form (x1 t1 ...xn tn), where the xi
are all variable names.

The form of a substitution is . . . : This means that the substitution argu-
ment was a list of odd length and did not have the form (x1 t1 ...xn
tn).
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Irrelevant free variables . . . in substitution: As with other rules that in-
troduce new expressions into the sequent, no free variables can be allowed.

Couldn’t find a definition or a lemma named . . . : There is no lemma or
definition with the given name in the current context. Check the name.

Unable to resolve . . . relative to substitution: The given name led to an
ambiguity that could not be resolved from the given substitutions. Check
the name or the substitutions, make the name more explicit, or provide
additional substitutions.

notes: The defined rules rewrite and rewrite-lemma employ the lemma and
replace rules to apply a lemma as a rewrite rule. The rules rewrite,
rewrite-lemma, and expand are ways to expand definitions without introducing
any new antecedents.

The lemma rule is a form of the Cut rule where one of the branches has been
separately proved.

4.9.5 rewrite/$: Matching and Rewriting with Lemmas

syntax: (rewrite name &optional fnums[ *] subst target-fnums[ *]

dir[ LR] order[ IN] )

effect: The rewrite rule extends rewrite-lemma. It tries to automatically deter-
mine the required substitutions by matching the conclusion of the lemma against
expressions in the formulas in fnums. This rule is always to be preferred to
rewrite-lemma since it does the hard work of figuring out the substitutions.
The target-fnums corresponds to the fnums argument of rewrite-lemma. If the
order argument is IN (which is the default), then the matching is to be done
inside-out, and if it is OUT, the matching is done outside in.

usage: (rewrite "assoc"): Finds and rewrites a single instance of the lemma
assoc throughout the current goal.

(rewrite "assoc" +): Looks for a matching instantiation for the lemma
assoc in the consequent formulas but rewrites with this lemma instance
throughout the current goal.

(rewrite "assoc" + ("x" "A" "z" "B") -): Looks for a matching instan-
tiation in the consequent formulas for the lemma assoc that extends the
given substitution but only rewrites with this instance over the antecedent
formulas.

(rewrite "assoc" :dir RL :order OUT): Searches for a matching instance
of the right-hand side of the lemma assoc in a leftmost-outermost or-
der and rewrites the instance of the right-hand side by the corresponding
instance of the left-hand side.
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errors: No resolution for . . . : No such lemma was found in the current context.

Substitution . . . must be an even length list: Self-explanatory.

No sequent formulas for . . . : The fnums argument is incorrectly given.

No matching instance for . . . found: The current goal does not contain any
instances of the rewritable part of the given lemma.

notes: It is usually more effective to install a rewrite rule using auto-rewrite (or its
variants) than to use the rewrite command. The rewrite command is typically
useful when the rewrite generates a condition or a TCC proof obligation that
cannot be discharged automatically.

4.9.6 rewrite-lemma/$: Rewriting Using a Lemma

syntax: (rewrite-lemma lemma subst &optional fnums[ *] dir[ LR] )

effect: This is an extension of the lemma rule that carries out rewriting given the
required substitutions. Here name is either the name for a lemma or a definition
that can be used as a rewrite rule or subst is a substitution list of the form (x1

a1 ... xn an). Each ti must be a term with no free variables, and each xi is
the identifier for a substitutable variable in name, i.e., one that is either a free
variable or is universally quantified at the block of universal quantifiers at the
outermost level of the formula. The substitution list must provide substitutions
for all the substitutable variables, otherwise the rule will not carry out a rewrite.
In the case of definitions of curried operators, this rule picks the least curried
form whose left-hand side includes all the variables for which substitutions have
been provided. The formula numbers in fnums are the target formulas for where
the rewriting occurs. The dir is either LR (by default) indicate a left-to-right use
of the lemma as a rewrite rule, or RL for a right-to-left use. The rewrite-lemma
rule also has some capability of resolving the name from the given substitutions,
i.e., it tries to figure out the theory instance for the lemma to be used.

usage: This command is similar to rewrite except that the subst argument is re-
quired and the entire substitution has to be provided.

notes: This command is rarely used since the rewrite command (which is defined
in terms of rewrite-lemma) is almost always preferable.

4.9.7 rewrite-with-fnum/$: Matching and Rewriting
with Antecedent Formulas

syntax: (rewrite-with-fnum fnum &optional subst fnums[ *] dir[ LR] )
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effect: Applies the rewrite command to an antecedent formula indicated by fnum
which is used as a rewrite rule. The input substitution subst is used to guide
the matching process to find a match that extends subst . The optional fnums
argument is used to direct the command to look for matches within the sequent
formulas indicated by fnums . When dir is LR, the antecedent formula is used a
rewrite rule in the left-to-right direction, and when it is RL, the rewriting occurs
in the right-to-left direction.

4.9.8 use/$: Invoke lemma with heuristic instantiation and
beta-reduction

syntax: (use lemma &optional subst if-match[ best] )

effect: An extension of the lemma command where the formula introduced is subject
to repeated instantiation and beta-reduction using the inst? and beta com-
mands. This is usually an effective alternative to the lemma command. The
subst argument is as in the lemma command. The if-match command is as in
the inst? command. The possible values for if-match are:

• all: Find all instances of the first matching template in the formula being
instantiated.

• best: Find the best instance (i.e., one that generates the fewest TCCs)
for the first matching template.

• T: Ignore the partial substitution given unless some matching template was
found.

• NIL: Apply the partial substitution even if none of the templates yielded
a match.

4.9.9 use*/$: Invoke lemmas with heuristic instantiation
and beta-reduction

syntax: (use* &rest names )

effect: An iterated form of the use command which applies use with default argu-
ments to a sequence of lemmas.
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4.10 Using Extensionality

apply-extensionality/$ defined uses extensionality to prove equality
apply-eta/$ defined uses eta form extensionality
decompose-equality/$ defined Reduce equality to component equali-

ties
eta/$ defined introduces eta version of extensionality
extensionality primitive introduces extensionality axiom
replace-eta/$ defined replace using eta
replace-extensionality/$ defined replace using extensionality

4.10.1 apply-extensionality/$: Apply Extensionality
to an Equality

syntax: (apply-extensionality &optional fnum[ +] keep? hide? )

effect: This rule is an extension of the extensionality rule. Given a succedent in
the form of an equation l = r, where the type of l and r has a correspond-
ing extensionality axiom scheme, apply-extensionality will generate a new
succedent that is the result of using replace-extensionality on l and r.

If the keep? flag is set to T, the antecedent equality introduced by the
apply-extensionality command is retained in the resulting goal sequent.

If the hide? flag is set to T, the equality formula to which the apply-
extensionality command has been applied, is hidden in the resulting sequent.
It is more typical to require this formula to be hidden than not, which means
that the default value of NIL for this flag is poorly chosen.

4.10.2 apply-eta/$: Apply Eta Form of Extensionality

syntax: (apply-eta term &optional type )

effect: This rule is an extension of the extensionality rule. Given a succedent in
the form of an equation l = r, where the type of l and r has a correspond-
ing extensionality axiom scheme, apply-extensionality will generate a new
succedent that is the result of using replace-extensionality on l and r.

4.10.3 decompose-equality/$: Decomposes Equality to
Component Equalities

syntax: (decompose-equality &optional fnum [ *] hide?[ T])
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effect: Decomposes an antecedent or consequent equality of the form t1 = t2 where
the terms are of function, record, tuple, or a datatype constructor type. If
the terms are of function type, the decomposition returns the universal quan-
tification (FORALL x: t1(x) = t2(x)). If the terms are of record type, the
decomposition returns the conjunction of equalities of the individual fields of
the terms. The decomposition is similar for tuple types. The decomposition on
datatype constructors returns the equalities on the corresponding accessor fields.
If the equality is on the consequent side, or is a disequality on the antecedent
side, then the decompose-equality rule is the same as apply-extensionality.

4.10.4 eta/$: An Axiom Scheme for Functions, Records,
Tuples, and Abstract Datatypes

syntax: (eta type )

effect: This is a variant of the extensionality rule where the eta version of the
axiom scheme is introduced as an antecedent formula.

usage: (eta "[nat, nat -> nat]"): Introduces the antecedent formula

(FORALL (u 2: [[nat, nat] -> nat]):

LAMBDA (x 3: [nat, nat]): u 2(x 3) = u 2)

(eta "[# a: nat, b: int #]"): Introduces the antecedent formula

(FORALL (r 8: [# a: nat, b: int #]):

(# a := a(r 8), b := b(r 8) #) = r 8)

(eta "(cons?[nat])") : Introduces the antecedent formula

(FORALL (cons?_var: (cons?[nat])):

cons(car(cons?_var), cdr(cons?_var)) = cons?_var)

errors: No suitable eta formula for given type: Self-explanatory.

4.10.5 extensionality: An Axiom Scheme for Functions,
Records, Tuples, and Abstract Datatypes

syntax: (extensionality type )

effect: The extensionality rule is similar to the lemma rule in that it introduces
an extensionality axiom for the given type as an antecedent formula. An exten-
sionality axiom can be generated corresponding to function, record, and tuple
types, and constructor subtypes of PVS abstract datatypes.
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usage: (extensionality "[nat, nat -> nat]") : Yields a subgoal got by
adding an antecedent formula of the form

(FORALL (f, g: [nat, nat -> nat]) :

(FORALL (i, j: nat) : f(i,j) = g(i,j))

IMPLIES f = g)

to the current sequent.

(extensionality "[nat, int]") : Adds an antecedent formula of the form

(FORALL (u : [nat, int]), (v : [nat, int]):

proj 1(u) = proj 1(v) AND proj 2(u) = proj 2(v)

IMPLIES u = v)

(extensionality "[# a: nat, b: int #]") : Adds an antecedent for-
mula of the form

(FORALL (r : [# a: nat, b: int #]),

(s : [# a: nat, b: int #]) :

a(r) = a(s) AND b(r) = b(s)

IMPLIES r = s)

(extensionality "(cons?[nat])")4 : Adds an antecedent formula of the
form

(FORALL (x: (cons?[nat])), (y: (cons?[nat])) :

car(x) = car(y) AND cdr(x) = cdr(y)

IMPLIES x = y)

The extensionality rule applied to other constructor subtypes for PVS
datatypes behaves similarly.

errors: In addition to parsing and typechecking errors, the following error messages
are generated:

The following irrelevant free variables occur in the given type ex-
pression: As with the other rules, no free variables can be introduced
into a proof sequent through a rule application.

Could not find a suitable extensionality axiom for . . . : This means
that there is no extensionality axiom for the given type expression.

Could not find ADT extensionality axiom for . . . : The given type was
a subtype of a PVS datatype but not a constructor subtype as is required
for generating an extensionality axiom.

4cons? is defined in the PVS prelude; use the command M-x view-prelude-theory on the theory
list adt for its definition.
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notes: The defined rule apply-extensionality makes it possible to directly apply
the extensionality scheme to show two terms to be equal. The defined rule
replace-extensionality uses extensionality to replace one term by another.

4.10.6 replace-eta/$: Replace Using Eta

syntax: (replace-eta term &optional type keep?)

effect: This rule extends the eta rule. The eta axiom scheme is instantiated with
the given term, which is then used in a replace command. A specific type for
term may be specified where typechecking the term may give rise to ambiguity.

When keep? is T, the instantiated eta axiom scheme that is introduced as an
antecedent is retained in the goal sequent, and otherwise, it is discarded.

4.10.7 replace-extensionality/$: Replace Using
Extensionality

syntax: (replace-extensionality expr1 expr2 &optional expected

keep? )

effect: This rule is an extension of the extensionality rule. It uses the relevant
extensionality axiom scheme to demonstrate the equality of expr1 and expr2 and
replaces expr1 in the sequent with expr2. In some cases, the optional expected
type might have to be supplied to resolve any ambiguities in the typechecking
of the given expressions.

When keep? is T, the extensionality scheme that is introduced as an antecedent
is retained in the goal sequent, and otherwise, it is discarded.
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4.11 Applying Induction

induct/$ defined invokes induction
induct-and-rewrite/$ defined invokes induction and simplifies
induct-and-rewrite! defined induct and simplify with definitions
induct-and-simplify/$ defined induction followed by simplification
measure-induct/$ defined invokes measure induction
measure-induct+/$ defined a better measure-induct
measure-induct-and-simplify/$ defined measure induction with simplifica-

tion
name-induct-and-rewrite/$ defined invoke induction scheme by name
rule-induct/$ defined induction on inductive relation
rule-induct-step/$ defined induction on inductive relation
simple-induct/$ defined introduces instance of induction

scheme
simple-measure-induct/$ defined introduces instance of induction

scheme

4.11.1 induct/$: Automatically Employ Induction Scheme

syntax: (induct var &optional fnum[ 1] name )

effect: The formula indicated by fnum must be a universally quantified, consequent
formula. The variable name var must be quantified at the outermost level of this
formula. As with the substitutions in inst?, it is sufficient to give that part of
the variable name preceding the last mark, if there is one in the bound variable
name and it is followed by a number. The bound variable must be of type, i.e.,
must include as a supertype, nat or a PVS abstract datatype for the induction
scheme to be selected automatically. The induction scheme corresponding to
the type is then instantiated with an induction predicate constructed from the
formula fnum and the resulting base and induction subgoals are generated. The
induction scheme can also be explicitly provided by naming it using the optional
name argument. Typically, this name will have to be fully instantiated with the
actual theory parameters. Note that user-supplied induction schemes must have
a form similar to the induction schemes in the prelude or those generated by
the abstract datatype mechanism: (FORALL (p: pred[T]): induction subgoal
IMPLIES goal), where p is to be instantiated by the induction predicate.

usage: (induct "i") : Given that i is of type nat, and the formula numbered 1 has
the form (FORALL ..., i, ...: p (..., i, ...)), we get the instanti-
ation of the natural number induction scheme with the induction predicate
(LAMBDA i: (FORALL ...: p (..., i, ...))). The resulting formula
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is then beta-reduced and simplified into the base and induction subcases.
If the type of i is a subtype of nat such as, say, (even?), then the sub-
type predicate is added to the induction predicate to get (LAMBDA (i:

nat): even?(i) IMPLIES (FORALL ...: p (..., i, ...))). If i has
type that is a datatype such as binary trees or lists, then the induction
scheme for that datatype is used by default.

(induct "x" :fnum 2 :name "below induction[N]") : Employs the in-
duction scheme named below induction and instantiates it with a predi-
cate taken from the sequent formula number 2.

errors: Could not find suitable induction scheme : The simple-induct rule
invoked by this step failed to find an induction scheme for the given variable
var, fnum, and name. Check that var occurs as an outermost universally
quantified variable whose type contains no free occurrences of other bound
variables, and that has a supertype that matches what is required by the
(default or named) induction scheme.

No formula corresponding to . . . : A bad fnum was given.

4.11.2 induct-and-rewrite/$: Induct then
Rewrite/Simplify

syntax: (induct-and-rewrite var &optional fnum[ 1] &rest rewrites )

effect: This command has been superseded in PVS 2 by the more general
induct-and-simplify but is retained for backward compatibility with PVS 1.
It employs induct on variable and fnum to select, instantiate, and introduce an
induction scheme, and then uses the rewrite rules given in rewrites to simplify
the resulting base and induction cases employing skosimp*, assert, lift-if,
inst?, and bddsimp.

usage: (induct-and-rewrite "x" 1 "append" "reverse") : Introduces an in-
stance of the induction scheme according to variable x obtained by instan-
tiating it with the predicate formed from formula number 1, simplifies the
resulting base and induction cases using skolemization, rewriting, decision
procedures, if-lifting, and heuristic instantiation.

(induct-and-rewrite "x" :rewrites ("append" "reverse")) : Same
as above.
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4.11.3 induct-and-rewrite!/$: Induct then
Rewrite/Simplify

syntax: (induct-and-rewrite! var &optional fnum[ 1] &rest rewrites )

effect: This is a variant of induct-and-rewrite which automatically uses all the
definitions in the given sequent in its rewriting/simplification. These definitions
are used in their ! form so that explicit definitions are always rewritten regard-
less of whether the right-hand sides are simplifiable. Additional rewrite rules
can be given can be give using the rewrites argument. The usage is similar to
induct-and-rewrite.

4.11.4 induct-and-simplify/$: Induct then
Rewrite/Simplify

syntax: (induct-and-simplify var &optional fnum[ 1] name defs[ T]

if-match[ best] theories rewrites exclude )

effect: This is an extremely useful proof command for directing proofs involving
induction followed by simplification. It uses install-rewrites to install the
rewrites in defs, theories and rewrites while excluding those in exclude, invokes
the the induct command on var, fnum and name to get the base and induction
cases, which are then simplified by repeated application of skosimp*, assert,
lift-if, bddsimp, and inst? (as controlled by the if-match argument).

usage: (induct-and-simplify "i" :defs ! :theories "real props"

:rewrites "assoc" :exclude ("div times" "add div")): If i

has type nat, then the natural number induction scheme is instantiated
with a predicate constructed from sequent formula 1, and the resulting
cases are simplified using definitions in the given sequent (uncondition-
ally expanding explicit definitions), the rewrites in the prelude theory
real props but excluding div times and add div, and the rewrite rule
assoc.

(induct-and-simplify "A" :defs nil :if-match nil) : Inducts ac-
cording the induction scheme given by the type of A and then simplifies
without rewriting any of the definitions or rewrite rules, and does not per-
form any heuristic instantaion. The :if-match nil option is useful when
the heuristic instantiation fails to find the right quantifier substitutions.

4.11.5 measure-induct/$: Invoke Measure Induction

syntax: (measure-induct measure vars &optional fnum[ 1] order

skolem-typepreds? )
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effect: The command measure-induct+ is the preferred way to invoke measure in-
duction. The measure-induct command takes a measure expression and a list
of the induction variables vars in which the measure is defined. These vari-
ables must occur universally quantified in the formula numbered fnum. This
list of variables is needed in order to unambiguously identify those univer-
sally quantified variables on which the measure is defined. As with induct,
the measure-induct command forms the induction predicate by lambda-
abstracting the formula over the variables given in vars. The measure function
is also obtained by lambda-abstracting the given measure over the variables in
vars . The measure induction scheme from the prelude is then instantiated
with domain type of the measure, the measure, and the ordering on the range
of the measure. The well-founded ordering is taken by default to be < on nat-
ural numbers or ordinals unless a different ordering is given through the order
argument. The lemma rule is used to introduce the measure induction scheme in-
stantiated with the selected induction predicate. The work so far is actually car-
ried out by the simple-measure-induct proof step. The measure-induct step
then beta-reduces, simplifies, and instantiates the measure induction lemma to
discharge the goal sequent and in the process generates an induction subgoal
consisting of an antecedent induction hypothesis and a consequent induction
conclusion. If skolem-typepreds? is T, then typepreds are introduced for any
introduced skolem constants.

The problem with measure-induct is that the arrangement of quantifiers in the
induction hypothesis is unhelpful. If the formula numbered fnum has the form
(FORALL x, w: p(x, w)) where the induction variable is x and the measure is
m, the induction predicate is (LAMBDA x: (FORALL w: p(x, w))), and the re-
sulting induction hypothesis has the form (FORALL x: m(x) < m(c) IMPLIES

(FORALL w: p(x, w))). This form nests the universal quantification on w

which might be useful in guiding the instantiation of x. Therefore a more useful
form of the induction hypothesis is with quantification rearranged as (FORALL

x, w: m(x) < m(c) IMPLIES p(x, w)). This rearrangement is carried out by
measure-induct+. See measure-induct+ for usage.

4.11.6 measure-induct+/$: Invoke Measure Induction

syntax: (measure-induct+ measure vars &optional fnum[ 1] order )

effect: This is the preferred way to invoke measure induction. The measure-induct+
command takes a measure expression and a list of the induction variables vars
in which the measure is defined. These variables must occur universally quan-
tified in the formula numbered fnum. The measure-induct+ command invokes
measure-induct to introduce the measure induction scheme instantiated with
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the selected induction predicate, and then to beta-reduce, simplify, and instan-
tiate the measure induction lemma to discharge the goal sequent and in the
process generates an induction subgoal consisting of an antecedent induction
hypothesis and a consequent induction conclusion. The well-founded ordering
is taken by default to be < on natural numbers or ordinals unless a different
ordering is given through the order argument. If skolem-typepreds? is T, then
typepreds are introduced for any introduced skolem constants.

The problem with measure-induct is that the arrangement of quantifiers in
the induction hypothesis is unhelpful. If the formula numbered fnum has
the form (FORALL x, w: p(x, w)) where the induction variable is x and the
measure is m, the induction predicate is (LAMBDA x: (FORALL w: p(x, w))),
and the resulting induction hypothesis has the form (FORALL x: m(x) < m(c)

IMPLIES (FORALL w: p(x, w))). This form nests the universal quantification
on w which might be useful in guiding the instantiation of x. A more useful
form of the induction hypothesis is with quantification rearranged as (FORALL

x, w: m(x) < m(c) IMPLIES p(x, w)). This rearrangement is carried out by
measure-induct+. The command measure-induct-and-simplify is similar
to induct-and-simplify but uses measure-induct+ instead of induct.

usage: (measure-induct+ "length(x) + length(y)" ("x" "y") 2) : Applies
the instance of measure induction with measure length(x) + length(y)

on the universally quantified variables x and y in the formula numbered 2

to return a goal with an induction conclusion and an induction hypothesis.

(measure-induct+ "m(x)" "x" :order "smaller?") : Applies measure
induction on the measure m(x) in the universally quantified variable x

and the well-founded ordering relation smaller? on the range of m. Note
that this will generate a TCC subgoal where the well-foundedness of the
ordering relation has to be established.

4.11.7 measure-induct-and-simplify/$: Measure
Induction followed by Simplification and Rewriting

syntax: (measure-induct-and-simplify measure vars &optional fnum[ 1]

order expand defs[ T] if-match[ best] theories rewrites

exclude )

effect: Invokes the appropriate instance of measure induction using
measure-induct+, skolemizes the resulting induction conclusion, and ex-
pands the definitions listed in the expand argument to then generate the
corresponding cases. The resulting subgoals are then simplified and the induc-
tion hypothesis is instantiated by heuristic matching and each subgoal is subject
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to further propositional splitting and simplification based on rewriting and
decision procedures. This command is very similar to induct-and-simplify

but employs measure induction and uses the expand argument to guide the
case analysis. If multiple instances of the induction hypothesis are needed, the
if-match argument can be given as first* to obtain all instances of the first
matching template in the quantified formula, or all to obtain all matches for
all templates.

usage: (measure-induct-and-simplify "length(x) + length(y)" ("x" "y")

:expand "merge" :theories "merge sort"): This command could for
instance be used to try to prove that the merge of two ordered lists is
ordered. It invokes measure induction on the sum of the lengths of the two
lists, then expands the definition of merge, and then repeatedly simplifies,
instantiates, and rewrites (using the theory merge sort.

(measure-induct-and-simplify "length(x) + length(y)" ("x" "y")

:expand "quicksort" :if-match first* :theories "quicksort"):
Since there are multiple recursive calls in the recursive case of quicksort,
the first* option to if-match is used.

4.11.8 name-induct-and-rewrite/$: Induction on a
named scheme followed by simplification and
rewriting

syntax: (name-induct-and-rewrite var &optional fnum[ 1] name &rest

rewrites )

effect: Subsumed by induct-and-simplify. This command was a variant of a
induct-and-rewrite that could be told to use a particular induction scheme
using the name argument.

4.11.9 rule-induct/$: Induction on an inductive relation

syntax: (rule-induct rel &optional fnum[ +] name )

effect: Applies the induction scheme given by an inductive relation rel to a sequent
of the form:

. . . ` (∀x1, . . . , xn: rel(x1, . . . , xn) ⊃ . . .)

or, alternately, the form:

. . . , rel(c1, . . . , cn), . . . ` . . .
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The induction schemes corresponding to an inductive relation rel are
rel weak induction and rel induction.

This command applies repeated skolemization and flattening to the spec-
ified fnum (or the first positive, skolemizable consequent) before invoking
rule-induct-step on the resulting subgoal. The strategy uses the weak in-
duction scheme by default but can be told to use strong induction by supplying
rel induction as the name argument.

4.11.10 rule-induct-step/$: Induction on an inductive
relation

syntax: (rule-induct-step rel &optional fnum[ -] name )

effect: Subsumed by rule-induct. Applies the induction scheme given by an in-
ductive relation rel to a sequent of the form:

. . . , rel(c1, . . . , cn), . . . ` . . .

Searches for an antecedent formula of the form rel(c1, . . . , cn) but this formula
can also be given explicitly as fnum. The induction predicate is formulated using
all the sequent formulas containing the constants c1 to cn. The strategy uses
the weak induction scheme by default but can be told to use strong induction
by supplying rel induction as the name argument.

4.11.11 simple-induct/$: Introduce induction scheme
instance

syntax: (simple-induct var fmla &optional name)

effect: Subsumed by rule-induct. Applies the induction scheme given by an in-
ductive relation rel to a sequent of the form:

. . . , rel(c1, . . . , cn), . . . ` . . .

Searches for an antecedent formula of the form rel(c1, . . . , cn) but this formula
can also be given explicitly as fnum. The induction predicate is formulated using
all the sequent formulas containing the constants c1 to cn. The strategy uses
the weak induction scheme by default but can be told to use strong induction
by supplying rel induction as the induction argument.
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4.11.12 simple-measure-induct/$: Introduce induction
scheme instance

syntax: (simple-measure-induct measure vars &optional fnum[ 1] order )

effect: Selects and insert as an antecedent, an instance of measure induction with
measure measure containing only free variables from vars using formula fnum
to formulate an induction predicate. Uses order as the well-founded relation.
If the order is not specified, it defaults to the < relation on nats or ordinals.

usage: (simple-measure-induct "i+j" ("i" "j")): Inserts measure induction
on the measure i + j in the variables i and j.

4.12 Simplification with Decision Procedures and

Rewriting

assert/$ defined uses decision procedures to assert se-
quent formulas

bash/$ defined assert, bddsimp, inst?,
skolem-typepred, flatten, lift-if

both-sides/$ defined Applies operation to both sides of in-
equality chain

do-rewrite/$ defined applies auto-rewrites
grind/$ defined installs rewrites and repeatedly simpli-

fies
ground/$ defined propositional and ground simplification
record/$ defined records assumptions for the decision

procedures
reduce/$ defined Repeated simplification
simplify primitive does Boolean simplification using deci-

sion procedures
simplify-with-rewrites/$ defined installs rewrites, simplifies, removes

rewrites
smash/$ defined ground with lift-if

Version 2.3 features a new implementation of the ground decision procedures.
The new implementation overcomes several deficiencies of the old ground decision
procedures originally implemented by Rob Shostak. The original decision proce-
dures are also included in Version 2.3 for the purposes of backward compatibil-
ity which might be necessary in some rare cases. For the most part, the new
decision procedures should subsume the old ones. The PVS Emacs command
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M-x new-decision-procedures switches from the old to the new decision proce-
dures and M-x old-decision-procedures can be used to switch back to the old
ones.

4.12.1 assert: Simplifying Using the Decision Procedures

syntax: (assert &optional fnums[ *] rewrite-flag flush? linear?

cases-rewrite? type-constraints?[ T] ignore-prover-output? )

effect: The assert rule is a combination of record, simplify, beta, and
do-rewrite. The use of decision procedures for equalities and linear inequalities
is perhaps the most significant and pervasive part of PVS. These procedures
are invoked to prove trivial theorems, to simplify complex expressions (partic-
ularly definitions), and even to perform matching. These decision procedures,
originally due to Shostak, employ congruence closure for equality reasoning,
and they also perform linear arithmetic reasoning over the natural numbers
and reals. They deal solely with ground formulas, namely those that contain no
quantifiers. While they primarily deal with linear arithmetic, i.e., expressions
of the form 2*x + 3*y <= 4*z, there are some modest extensions for dealing
with expressions involving nonlinear subterms using simplifications such as (x

+ y)*(x - y) = (x*x - y*y) and simplifications involving division such as
x*(y/x) = y.

The assert rule employs the decision procedures to either simplify formulas or to
assert the formula to the data-structures employed by the decision procedures.
The assert rule can have one of three effects for a given formula named in fnums :

1. It can have no visible effect on the formula but could have asserted the for-
mula to the congruence closure data-structures employed by the decision
procedures. Antecedent formulas are recorded as being true, and conse-
quent formulas are recorded as being false. only those formulas that do
not contain branching (if or cases) or propositional structure (unless they
are within a quantifier or a lambda binding) are asserted into the database
since such structures are likely to need further simplification before they
can be processed by the decision procedures. Unless the type-constraints?
is set to NIL, any subtype constraints on subexpressions of the formulas
processed by assert are also automatically recorded by the decision pro-
cedures for the commands assert, record, simplify, and do-rewrite.
The new assertions in the data-structures remain valid for any descendant
proof node of the current sequent and are automatically employed when
assert is invoked at the lower nodes.

2. If the decision procedures succeed in demonstrating a contradiction from
the formula as asserted, then the entire sequent is regarded as being proved.
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If there are no assertable or simplifiable formulas among those listed in
fnums, then the rule behaves as a (skip). In every remaining case, a
subgoal is generated.

3. It can simplify the formula by carrying out boolean simplification, simplify
if-expressions by attempting to reducing the condition part to true or
to false, and rewrite expressions using the rewrite rules provided by the
auto-rewrite and auto-rewrite-theory rules below (see do-rewrite).
In order for any automatic rewrites to take effect, it must be the case that
the conditions of the instance of the rewrite rule should all simplify to
true, as should any type correctness conditions generated by typecheck-
ing an instantiating term with respect to the type of the variable that it
instantiates. As a simple check to prevent such rewrites from looping, if
a rewrite rule rewrites l to r and r is either a cases or an if expression,
then the top-most conditional of these expressions is treated as if it were
another condition in a conditional rewrite rule. In other words, if r is of the
form if a then b else c endif, then a must simplify to true or false,
and similarly, if r has the form cases e of p1 : c1, ...endcases then
e should match one of the patterns pi. The simplifications carried out by
assert also include various obvious datatype simplifications and all of the
beta-reductions. the resulting simplified formula, if suitable, is asserted to
the data-structures.

When the rewrite-flag is lr, only the right-hand side of any equality formula
is simplified since simplifying the left-hand side of a formula to be used by
replace in the process of rewriting (see strategies rewrite and rewrite-lemma

below) could cause the replace to fail. correspondingly, when the rewrite-flag
is rl, only the left-hand side of an equality formula is rewritten. If the flush?
argument is t, then the existing database used by the decision procedures is
flushed. This database can get fairly large in the course of a proof thereby
decreasing the efficiency of the assert rule. The flush? flag should be used
with caution. The decision procedures apply a modest amount of non-linear
arithmetic simplification to multiplication and division expressions. This can
sometimes get in the way. the linear? argument can be set to t in order to
prevent such simplifications.

The cases-rewrite? must be set to T in order for simplification to occur within
a branch of a CASES-expression.

The type-constraints? flag must be set to NIL to avoid asserting subtype
constraints of subexpressions occurring in the sequent. If there are several large
expressions with subtype constraints, this phase of simplification can be quite
slow.

The ground prover when confronted with a non-convex assertion returns a dis-
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junction of assertions that are equivalent to the input assertion. The sim-
plification commands examine these outputs to see if every path through
them yields a contradiction. This step can in some cases be expensive. The
ignore-prover-output? flag can be set to NIL in order to avoid the examina-
tion of the ground prover outputs.

usage: (assert) : Same as (assert *). proves, simplifies, or asserts all of the
formulas in the sequent employing the decision procedures.

(assert -1 lr) : Simplifies the right-hand side of the first antecedent for-
mula, since the rewrite-flag is set to lr (meaning “left-to-right”).

(assert (-1 3 4)) : Proves, simplifies, or asserts the formulas numbered
-1, 3, and 4 in the sequent.

(assert + :flush? t) : Flushes the existing database of assertions and
asserts the consequent formulas in the current sequent.

errors: No error messages are generated.

notes: One significant point about assert is that it can be sensitive to the order in
which the formulas are asserted. It is sometimes necessary to apply assert more
than once in order to obtain the desired effect. For example, if the formula a is
asserted before the formula b, but b is used to simplify a, then assert would have
to be reapplied in order to effect this simplification. Another reason that assert
might need to be repeated is that the subtype constraints on subexpressions of
a formula are silently collected recorded after assert has processed the formula.
Simplifications that rely on these constraints can be missed in the first pass of
assert.

Another point about the assert rule is that is that from the point of view of
the control mechanism used for strategies, assert almost always succeeds so
that a strategy like (repeat (assert)) is certain to get into an infinite loop.
The typical way to get around this is to have assert follow some other step
step1 that is guaranteed to not repeat indefinitely, as in:

(repeat (try step1 (assert) (skip)))

The try strategy ensures that the assert step is invoked on the subgoals gen-
erated by step1.

4.12.2 bash/$: Assert, bddsimp, inst?, skolem-typepred,
flatten, and lift-if

syntax: (bash &optional if-match [ T] updates?[ T] polarity? )
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effect: This command executes assert, bddsimp, inst?, skolem-typepred,
flatten, and lift-if, in that order. This command is the core of the reduce

command which in turn is the workhorse of grind.

As in the inst? command, the if-match option can be NIL, T, ALL, or BEST

for no, some, all, or the best instantiation, respectively. Note that inst? pre-
cedes skolem-typepred, so that matches that are in the original sequent are
preferred to those that are exposed by Skolemization. This has the drawback
that quite often, it is better to instantiate following Skolemization. To avoid
eager instantiation, bash should be invoked with if-match set to NIL.

If the updates? option is NIL, update applications are not if-lifted.

When the polarity? flag is T, the inst? command matches templates against
complementary subexpressions.

4.12.3 both-sides/$: Applies Operation to Both Sides of
Inequality Chain

syntax: (both-sides op term &optional fnum[ 1])

effect: Here fnum is used to find a chained conjunction of inequalities of the form e1

<= e2 AND e2 <= e3 AND e3 <= e4. If the term argument is t, the command
replaces the above chain with e1 op t <= e2 op t AND e2 op t <= e3 op t

AND e3 op t <= e4 op t. If the equivalence between this chain and the pre-
vious one doesn’t simplify to TRUE using assert and do-rewrite with respect
to the prelude theory real props, then a proof obligation is generated.

4.12.4 do-rewrite/$: Applying auto-rewrites

syntax: (do-rewrite &optional fnums[ *] rewrite-flag flush? linear?

cases-rewrite? type-constraints?[ T] )

effect: This command is another fragment of assert. It is used to automatically
carry out the rewrites specified by auto-rewrite and auto-rewrite-theory.
This command uses simplification as defined by assert to discharge the hy-
potheses of conditional rewrite rules and any type correctness proof obligations
that arise from the use of a rewrite rule, and also to simplify the rewritten
result. The other arguments are as in assert.

usage: (do-rewrite) : Applies the rewrite rules to all the formulas in the sequent.

(do-rewrite (-1 -3 2)) : Applies rewrite rules to the formulas -1, -3, and
2.
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notes: No new information is recorded into the data structures used by the decision
procedures, except for the subtype constraints on subexpressions processed by
do-rewrite.

4.12.5 grind/$: Install Rewrites and Repeatedly Simplify

syntax: (grind &optional defs [ !] theories rewrites exclude

if-match [ T] updates?[ T] polarity? )

effect: This is a catch-all strategy that is frequently used to automatically complete a
proof branch or to apply all the obvious simplifications till they no longer apply.
The strategy first applies install-rewrites to install the given theories and
rewrite rules along with all the relevant definitions in the given subgoal. It then
applies bddsimp followed by assert (similar to ground) to carry out the first
level of simplification. This is followed by replace* to carry out all the equality
replacements. This is followed by reduce which repeatedly applies bash (which
invokes assert, bddsimp, inst?, skolem-typepred, flatten, and lift-if)
followed by replace*.

The options to grind can be used to carefully guide its behavior.

The defs, theories, rewrites, and exclude arguments are as in
install-rewrites.

The if-match and polarity? are used to control heuristic instantiation using
inst?. Note that by setting if-match to NIL, one can avoid the eager instan-
tiation behavior of grind. A second grind can then be used to pick up the
instantiations exposed by the first instantiation-free grind.

The updates? option is as in bash and reduce.

4.12.6 ground/$: Propositional and Ground Simplification

syntax: (ground)

effect: This command invokes propositional simplification followed by assert. It
is useful in obtaining simplified forms of the cases arising from propositional
simplification. These simplifications include those given by assert, namely,
the various boolean, datatype, and arithmetic simplifications, beta-reduction,
simplification using ground decision procedures, and rewriting with respect to
the installed rewrite rules.
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4.12.7 record/$: Recording assumptions for the decision
procedures

syntax: (record &optional fnums[ *] rewrite-flag flush? linear?

cases-rewrite? type-constraints?[ T] ignore-prover-output? )

effect: The decision procedures maintain efficient data structures where the assump-
tions that are true in the current context are recorded. The record command is
used to add more assumptions to these data structures. The only assumptions
that can be recorded are those that do not contain any embedded if, cases, or
boolean structure. The assumptions are antecedent formulas and negations of
consequent formulas. It is possible for a record command to prove the sequent
if the assumptions are found to be contradictory. The other arguments are as
in assert.

usage: (record) : records all the assumption formulas in the sequent into the data
structures used by the PVS decision procedures.

(record (-1 -3 2)) : records the assumptions from formulas -1, -3, and
2.

notes: a formula is simplified before it is recorded (see simplify and assert below)
so that it is possible for record to record an assumption to contain if, cases
or boolean structure that is eliminated by simplification. the command assert

subsumes record but its behavior is more difficult to explain.

4.12.8 reduce/$: Repeated Simplification

syntax: (reduce &optional if-match [ T] updates?[ T] polarity? )

effect: This command is the main workhorse of the grind command. It applies bash
followed by replace* in a loop until neither command has any effect.

The if-match and polarity? options are as in bash and control the instantiation.

The updates? option is also as in the bash command and must be set to NIL

in order avoid the automatic if-lifting of update applications.

4.12.9 smash/$: Propositional, Ground Simplification with
IF-lifting

syntax: (smash &optional updates? [ T])
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effect: This command is a more powerful version of ground. It is essentially an iter-
ated application of bddsimp (whereas the propositional simplification in ground

is similar to that of prop), assert, and lift-if.

The updates? flag can be set to NIL in order to avoid if-lifting update applica-
tions (see page 43).

4.12.10 simplify: Simplifying using decision procedures

syntax: (simplify &optional fnums[ *] record? rewrite? rewrite-flag

flush? linear? cases-rewrite? type-constraints?[ T]

ignore-prover-output? )

effect: The commands assert, do-rewrite, record, and simplify used to all be
primitive commands in PVS 1.x. In PVS 2, simplify is the only primitive
command and it is used in the definition of assert, do-rewrite, and record.
Thus simplify now includes the arguments to assert along with two flags:
record?, and rewrite?. For the assert command, record? and rewrite? must
be t. To get the do-rewrite command, record? must be nil and rewrite?
must be t. To get the record command, record? must be t, and rewrite? must
be nil. When record? and rewrite? are both nil, one gets the effect of the
simplify command of PVS 1.x.

The other flags have already been documented with the assert command.

Simplification works by maintaining database of currently recorded information
which is then used to simplify and record further information. The ground
decision procedures can be used to decide if a given formula (that is, a boolean
expression) is true or false (or not known to be either) with respect to the current
database and relative to theories such as those of equality over uninterpreted
function symbols and linear arithmetic. In a sequent of the form a1 . . . am `
b1 . . . bn, the ai are simplified and recorded as being true, and the bi are simplified
and recorded as being false. The simplifications are described below. The
recording process can yield a refutation in which case the sequent has been
proved.

The theories handled by the ground decision procedures include:

1. The theory of equality with uninterpreted functions symbols. This would
enable it to prove a sequent of the form x = f(x) ` f(f(f(x))) = x.

2. Quantifier-free linear arithmetic equalities and inequalities, e.g.,, x < 2*y,

y < 3*z ` 3*x < 18*z. Note that x, y, and z are implicitly universally
quantified.
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3. Quantifier-free integer linear arithmetic, e.g.,, i > 1, 2*i < 5 ` i = 2.
This procedure is incomplete since the decision problem for this theory is
not known to be polynomial.

4. Arrays and functions with updates. Examples include:

(a) ` f with [(s) := f(s)] = f,

(b) ` (f with [(s) := x])(s) = x, and

(c) r/=s ` (f with [(s) := x])(s) = f(s)

The simplifications carried out by simplify are represented by means of −→,
and include:

1. beta reduction: Examples of such redexes and the corresponding reduc-
tions are:

• lambda redex: (lambda x : x * x)(2) −→ 2 * 2

• record redex : b((# a:= 1, b:= 2, c:= 3 #)) −→ 2

• tuple redex : proj 2((1, 2, 3)) −→ 2

• function update redex: For function f,

(f WITH [(i) := 3])(i) =⇒ 3

(f WITH [(0) := 3])(1) =⇒ f(1)

• record update redex: For record r,

a(r WITH [(a) := 3]) =⇒ 3

a(r WITH [(b) := 2]) =⇒ a(r)

• datatype redex: car(cons(1, null)) =⇒ 1

• recognizer redex: cons?(null) =⇒ FALSE and cons?(cons(1,

null)) =⇒ TRUE

• subtype redex: even?(i) =⇒ TRUE, if even? is one of the subtype
predicates in the type of i.

2. Arithmetic simplifications: If a, b, c are arbitrary arithmetic expres-
sions, the following are examples of simplifications that are carried out by
the simplify command :

a + 0 =⇒ a

a + 2*a =⇒ 3*a

1 + a + 3 =⇒ a + 4

a*(b + c) =⇒ a*b + a*c

0 * a =⇒ 0

1 * a =⇒ a

a + b = b + c =⇒ a = c
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In addition, sums and products are ordered into a canonical form. This
ordering will affect certain PVS 1.x proofs since the forms of certain ex-
pressions in the sequent will now be different following simplification.

3. Conditional simplification: If A is a formula and a and b are expres-
sions, the following are examples of simplifications applied by simplify:

(IF TRUE THEN a ELSE b ENDIF) =⇒ a

(IF FALSE THEN a ELSE b ENDIF) =⇒ b

(IF A THEN b ELSE b ENDIF) =⇒ b

(IF A THEN a ELSE b ENDIF) =⇒ (IF A’ THEN a’ ELSE b’)

where: A =⇒ A′

a =⇒ a′ assuming A′

b =⇒ b′ assuming NOT A′

(CASES null OF null: a, cons(x,y): b ENDCASES) =⇒ a

4. Datatype simplifications:

cons?(a) =⇒ TRUE, if null?(a) =⇒ FALSE

cons?(a) =⇒ FALSE, if null?(a) =⇒ TRUE

The datatype simplifications might look circular but the simplifier uses the
decision procedures to check for each recognizer applied to an expression
having a datatype as a type, whether the result is true or false or unknown.

5. Boolean simplification: If the decision procedures determine a boolean ex-
pression to be TRUE or FALSE in the logical context in which the expression
occurs, then it is simplified accordingly. If A is a boolean expression, the
following are examples of other simplifications carried out by simplify:

A AND TRUE =⇒ A

A AND FALSE =⇒ FALSE

A OR TRUE =⇒ TRUE

A OR FALSE =⇒ A

TRUE IMPLIES A =⇒ A

FALSE IMPLIES A =⇒ TRUE

NOT (NOT A) =⇒ A

NOT TRUE =⇒ FALSE

NOT FALSE =⇒ TRUE

a = a =⇒ TRUE

(FORALL x: TRUE) =⇒ TRUE

(EXISTS x: FALSE) =⇒ FALSE
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6. Quantifier simplifications: some quantified expressions are now simplified,
including the following examples.

(EXISTS x: x = 5) =⇒ TRUE

(EXISTS x, y, z: x = y + z AND f(x, y, z))

=⇒ (EXISTS y, z: f(y + z, y, z))

(EXISTS (x: T): TRUE) =⇒ TRUE

(FORALL (x: T): FALSE) =⇒ FALSE
The last two simplifications only happen when the type T is know to be
nonempty.

7. Rewriting: The simplifications include conditional rewriting with respect
to the rewrite rules installed by means of auto-rewrite, auto-rewrite!,
auto-rewrite-theory, auto-rewrite-theories, etc. The current
set of rewrite rules can be viewed using the PVS Emacs command
M-x show-auto-rewrites. Rewriting only occurs when the rewrite flag
for the simplify command is T. If A and B are boolean expressions, and
a and b are expressions, then rewrite rules can be of one of the following
forms:

(a) a = b

(b) A IMPLIES a = b

(c) A IMPLIES B

In cases 1 and 2, the left-hand side (lhs) is a and the right-hand side (rhs)
is b. In cases 2 and 3, the condition of the rewrite rule is A, whereas for
case 1, the condition is TRUE. In case 3, the lhs is B and the rhs is TRUE.

If a′ is an instance of the lhs of a rewrite rule so that b′ is the corresponding
instance of the rhs and A′ is an instance of the condition, then rewriting
simplifies a′ to b′′ provided A′ simplifies to TRUE and b′ simplifies to b′′.
If b′ is of the form (IF B THEN c ELSE d ENDIF), then B must simplify
to either TRUE or FALSE for the rewrite rule to be applicable, unless the
rewrite rule has been installed with the always? flag set to T. The same
constraint also applies if b′ is a CASES expression. In applying a rewrite
rule, the lhs of the rewrite rule, say a, is matched against the expression to
be simplified. If the match succeeds, the typechecking of the instantiation
could generate TCCs. The simplification process is applied to the TCCs
which must simplify to TRUE before the rewrite rule is applied.

usage: (simplify) : Tries to simplify all the formulas in the sequent using the
PVS decision procedures, beta-reduction, boolean simplification, datatype
simplification, arithmetic simplification, and rewriting.

(simplify (-1 -3 2)) : Simplifies the formulas -1, -3, and 2.

(simplify (-1 -3 2) :flush? T) : Flushes the decision procedure
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database and then simplifies the formulas -1, -3, and 2. This database
can sometimes contain information that interferes with the expected sim-
plification and it helps to flush the database.

(simplify (-1 -3 2) :linear? T) : The PVS decision procedures have
a modest ability to handle nonlinear multiplication and division. This
invocation of simplify causes simplification to occur with this capability
turned off.

(simplify -1 :rewrite-flag RL) : The rewrite flag can take on values
LR (“left-to-right”) or RL (“right-to-left”) to indicate that left-hand side
(for LR) or right-hand side (for RL) of the indicated formula should be
left undisturbed by simplification. This is needed in case the next step
involves a syntactic replacement.

notes: Unlike PVS 1.x, the simplify commands and their variants can be placed
within repeat strategies without the danger of creating an infinitely looping
strategy.

The command track-rewrite can be used to obtain diagnostic information
about the progress of rewriting, and the command untrack-rewrite can be
used to turn off the printing of this information.

4.13 Installing and Removing Rewrite Rules

auto-rewrite primitive declares a list of formulas as rewrite rules
auto-rewrite! defined declares a list of formulas as eager rewrite

rules
auto-rewrite!! defined declares a list of formulas as macro rewrite

rules
auto-rewrite-defs defined declares relevant definitions as rewrite

rules
auto-rewrite-explicit defined declares relevant definitions as eager

rewrite rules
auto-rewrite-theories defined declares theories to be used as rewrite rules
auto-rewrite-theory defined declares a theory to be used as rewrite rules
auto-rewrite-theory-with-importings

defined declares a theory and its importings to be
used as rewrite rules

install-rewrites defined declares rewrite rules and rewrite theories
stop-rewrite primitive disables auto-rewrite rules
stop-rewrite-theory defined turns off auto-rewrites from a theory
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4.13.1 auto-rewrite: Installing Automatic Rewrite Rules

syntax: (auto-rewrite &rest names )

effect: The definitions, lemmas, and antecedent formulas named (or numbered) in
names are made available for the descendant nodes of the current proof node as
automatic rewrite rules to be used for simplification by the assert rule. Only
formulas of a certain special form can be considered as automatic rewrite rules.
An automatic rewrite rule is either:

• An equality rewrite rule of the form l = r or l ⇐⇒ r or an atomic Boolean
proposition, where l is any expression that is not an individual variable,
and the set of free variables in r is a subset of the free variables of l

• An unquantified conditional rewrite rule of the form A ⊃ B where B is
either an equality or an unquantified conditional rewrite rule and the set
of free variables in A is a subset of the free variables in B, or

• A quantified rewrite rule of the form (∀x1, . . . , xn:A), where A has the
form of a rewrite rule.

In addition, a generic rewrite rule that is installed without actual theory pa-
rameters must be such that all the formal parameters occur in the left-hand
side expression l.

All rewrite rules have a left-hand side l, a right-hand side r, and a condition
H so that any matching instance l′ of the left-hand side is replaced by the
corresponding instance r′ of the right-hand side provided the corresponding
instance H ′ of the condition can be simplified to TRUE. (H is usually the left-
hand side of an implication, e.g. H ⊃ l = r, or the condition of an IF or
CASES expression.)

There are three kinds of automatic rewrite rules: lazy, eager, and macros. At
a given sequent, each installed rewrite rule can belong to at most one of these
classes.

There are two forms of the names argument. In the preferred form, each name
is a rewrite-name-or-fnum:

rewrite-name-or-fnum : : = fnum | rewrite-name

fnum : : = [ - ] Number [ ! [ ! ] ]

rewrite-name : : = Name [ ! [ ! ] ] [ : {TypeExpr | FormulaName } ]

Here a lazy rule has no exclamation marks, an eager rule has one, and a macro
has two. For a rewrite name, a type expr or formula name allows a specific
rewrite to be specified in the presence of overloading.
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In the second form of names argument some of the names may be parenthesized,
and the depth of parenthesization indicates whether it is lazy, eager, or a macro.
If the name appears as unparenthesized as "assoc", then it is lazy. If it is singly
parenthesized, as in ("assoc"), then it is eager. If it is doubly parenthesized, as
in (("assoc")), then it is a macro. The single and doubly parenthesized forms
can include multiple unparenthesized names. If a given name is overloaded in
a theory, there is no way in this form to indicate a specific declaration.

For example, for the command

(auto-rewrite "A" "B!" "1!" "C" "-3!!" "D!!")

A and C are lazy rewrites, B and formula number 1 are eager rewrites, and
formula number -3 and D are macro rewrites. In the deprecated form, this may
be given as

(auto-rewrite "A" ("B" "1") "C" (("-3" "D")))

The two forms may not be mixed, and the parenthesized form may be disallowed
in the future.

Lazy rules are the default where if the right hand side is a conditional or CASES
expression, the rewrite rule is not triggered unless the top-level condition sim-
plifies to TRUE or FALSE or the top-level CASES expression is resolved. All re-
cursive definitions can only be lazy rewrite rules since there is a possibility that
the rewriting might loop following the recursion. In an eager rewrite rule, the
rewrite rule is applied regardless of the consequence of simplifications on the
right-hand side instance. When rewriting with function definitions, both lazy
and eager rewrite rules work with left-hand sides that, when curried, are in
their fully applied form. That is, if a function definition allows the left-hand
side forms f , f(x, y), f(x, y)(z), then f(x, y)(z) is the only valid left-hand side
to a lazy or eager rewrite rule form of this definition. Macros on the other hand
always rewrite any occurrence of f so that f is rewritten to (λ(x, y): (λz: . . .))
and f(a, b) is rewritten to (λz: . . .)[a/x, b/y].

It is preferable that the names of lemmas from imported theories be completely
specified, i.e., with all the actual theory parameters explicitly given. Otherwise,
the rewrite rule is known as generic and the actual parameters are instantiated
when the left-hand side is matched. Not all rewrite rules contain instances of
all the actuals, and such rewrite rules are not installed in their generic form.

For rewrite rules installed from antecedent formulas, an internal name is gen-
erated that can be used for turning off the rewrite rule using stop-rewrite or
one of its variants.
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It is important to note that auto-rewrite has no visible effect on the sequent,
but it affects the subsequent behavior of assert in any lower branch of the
proof. The scope of an auto-rewrite declaration is restricted to the branch of
the proof below it.

usage: (auto-rewrite "append[nat]" "append[int]" "length[nat]")

errors: Due to the presence of actual parameters, auto-rewrite can generate pars-
ing and typechecking errors, in addition to those listed below.

No resolutions for . . . : The system was unable to find declarations corre-
sponding to the given names.

Can’t rewrite using . . . : LHS key . . . is bad. Rewrite rules are arranged
by a key which in the case of an application is the left-most operator
name or expression type such as a record constructor, tuple constructor,
update expression, tuple projection, record field access, cases expression,
and lambda, forall, and exists expressions. Note that having too many
rewrite rules attached to a single key can slow down rewrite lookup.

RHS free variables must be contained in the LHS free variables:
Since the matching for rewriting is done using the left-hand side of the
rewrite rule, there should be no free variables left in the formula that are
not instantiated during such a match.

Hypothesis free variables must be contained in the LHS free variables:
See explanation above.

Theory . . . is generic; No actuals given; Free parameters in the LHS
of rewrite must contain all theory formals.: Rewrite rules from
generic theories are allowed as long as it is possible to extract the actual
parameters by matching against the left-hand side.

notes: See the rule stop-rewrite for turning off an automatic rewrite rule,
auto-rewrite-theory for turning an entire theory into rewrite rules, and
stop-rewrite-theory to turn off theory rewriting. The Emacs command
M-x show-auto-rewrites displays the currently active rewrite rules in a sepa-
rate buffer. The track-rewrite command can be used to explain why rewrite
rules did not perform the expected rewriting. A rewrite rule that is already
installed is not affected by M-x modify-declaration and might therefore need
to be reinstalled.

4.13.2 auto-rewrite!/$:Installing Eager Automatic
Rewrite Rules

syntax: (auto-rewrite! &rest names )
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effect: This is just a macro for the eager case of auto-rewrite. The convenience it
offers over auto-rewrite is that the arguments can be given in &rest form.

4.13.3 auto-rewrite!!: Installing Automatic Macros

syntax: (auto-rewrite!! &rest names )

effect: This is just an abbreviation for the macro case of auto-rewrite where the
arguments can be given in &rest form.

4.13.4 auto-rewrite-defs/$: Installing Relevant
Definitions as Rewrites

syntax: (auto-rewrite-defs &optional explicit? always?

exclude-theories )

effect: Installs all the definitions used directly or indirectly in the current sequent
as auto-rewrite rules. If the explicit? flag is T, the recursive definitions are
not installed and only the explicit definitions are. If always? is !!, the explicit
definitions are installed as macros. If this flag is T, then the explicit definitions
are installed as eager rewrite rules. Otherwise, all definitions are installed as
lazy rewrite rules. (See auto-rewrites.)

The exclude-theories takes a list of theories and the definitions in these theories
will not be expanded.

The install-rewrites command should always be preferred over any of the
specialized rewrite installation commands.

4.13.5 auto-rewrite-explicit/$: Installing Relevant
Definitions as Rewrites

syntax: (auto-rewrite-explicit &optional always? )

effect: Installs all and only the explicit definitions used directly or indirectly in the
current sequent as auto-rewrite rules. If always? is !!, the explicit definitions
are installed as macros. If this flag is T, then the explicit definitions are installed
as eager rewrite rules. Otherwise, all definitions are installed as lazy rewrite
rules. (See auto-rewrite.)

The install-rewrites command should always be preferred over any of the
specialized rewrite installation commands.
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4.13.6 auto-rewrite-theories/$: Automatic Rewriting
Relative to Theories

syntax: (auto-rewrite-theories &rest theories )

effect: Applies the auto-rewrite-theory command to each of the theories in the list
theories . Each entry in the list of theories can be a theory name with or without
actuals or a list of arguments in the form accepted by auto-rewrite-theory.

This command is subsumed by install-rewrites.

4.13.7 auto-rewrite-theory/$: Automatic Rewriting
Relative to a Theory

syntax: (auto-rewrite-theory name &optional exclude defs always?

tccs? )

effect: Installs an entire theory or only (explicit) definitions if defs is T (explicit)
as auto-rewrites. In the case of a parametric theory, unless the defs flag is T or
explicit, the actual parameters must be given. If always? is T the rewrites are
installed so that any rewrite other than a recursive definition always takes effect
(see auto-rewrite!). If always? is set to !!, then the non-recursive definitions
are always rewritten even when only a few of the curried arguments have been
provided.) Declarations named in exclude are not introduced and any current
rewrite rules in the exclude list are disabled. By default, TCCs in the theory
are excluded but they can be included when the tcc? flag is T.

usage: (auto-rewrite-theory "sets[nat]" "sets[rational]"

"list adt[nat]") : Declares all those definitions and formula from
the listed modules that can be viewed as rewrite rules to be automatic
rewrite rules.

(auto-rewrite-theory "agreement") : If we are proving a lemma names
main in the theory agreement, then all the rewrite rules preceding main

are declared as automatic rewrite rules to be used by assert.

errors: Apart from parsing and typechecking errors, the following error messages are
possible:

Could not find theory . . . : The named theory does not appear in the cur-
rent context. Add the theory to the USING list if needed.

. . . is not a fully instantiated theory: Provide the relevant actual parame-
ters.
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4.13.8 auto-rewrite-theory-with-importings/$:
Automatic Rewriting Relative to a Theory and Its
Importings

syntax: (auto-rewrite-theory-with-importings name &optional

exclude-theories importchain? exclude defs always? tccs? )

effect: Installs rewrites in theory name along with any theories imported by name.
The full import chain of theories can be installed by supplying the importchain?
flag as T. Theories named in exclude-theories are ignored. The other arguments
are similar to those of auto-rewrite-theory and apply uniformly to each of
the theories to be installed.

errors: Same as for auto-rewrite-theories

4.13.9 install-rewrites/$: Install Rewrite Rules from
Names and Theories

syntax: (install-rewrites &optional defs theories rewrites

exclude-theories exclude )

effect: This is the most powerful way to install rewrite rules and essentially subsumes
all the other ways of installing rewrite rules.

The defs argument can be

• NIL: To avoid installing the definitions relevant to the current sequent.

• T, !, or !!: To install all definitions as lazy, eager, or macro rewrites,
respectively.

• explicit, explicit!, or explicit!!: Only the explicit definitions are
installed as lazy, eager, or macro rewrites, respectively.

The theories argument is a list of theories whose declarations are meant to
be used as rewrite rules. Each entry in the list is either a theory name, with
or without actual parameters, or an argument list in the format expected by
auto-rewrite-theory.

The rewrites argument is a list of names of rewrite rules to be installed.

The exclude-theories argument is a list of theories that have to be excluded
when installing rewrite rules from theories.

The exclude argument is a list of names of rewrite rules that are removed from
the list of installed rewrite rules.



96 The PVS Proof Commands

4.13.10 stop-rewrite: Turning Off Rewrite Rules

syntax: (stop-rewrite &rest names )

effect: Turns off those automatic rewrite rules named in names that were turned on
by either auto-rewrite or auto-rewrite-theory.

usage: (stop-rewrite "append[nat]" "append[int]" "length[nat]") : Turns
off automatic rewriting of these specific rewrite rules regardless of whether they
were added using auto-rewrite or auto-rewrite-theory.

errors: . . . is not an auto-rewrite: This is a helpful message rather than an error.

4.13.11 stop-rewrite-theory/$: Turning Off Rewrite
Rules from a Theory

syntax: (stop-rewrite-theory &rest names )

effect: Turns off any rewrite rules from the theories named in names that were turned
on by either auto-rewrite or auto-rewrite-theory. Any theory listed in
names must either be fully instantiated, or name a defined constant, or be the
theory for the current proof. Note that for a rewrite rule to be turned off, the
name should be given in the same form to stop-rewrite as in the corresponding
auto-rewrite. command

usage: (stop-rewrite-theory "sets[nat]" "sets[rational]"

"list adt[nat]") : Turns off any rewrite rules in the listed theories.
As with auto-rewrite-theory, the theory names should be fully instantiated.

errors: Same as auto-rewrite-theory.

4.14 Making Type Constraints Explicit

typepred primitive introduces type constraints on expressions
typepred! primitive minor variant of typepred

4.14.1 typepred: Making Implicit Type Constraints
Explicit

syntax: (typepred &rest exprs )
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effect: If exprs is a list of expressions e1, . . . en, then for each ei, and for each type-
constraint predicate p in the type of ei, an antecedent formula of the form p(ei)
is introduced. A predicate p is a type-constraint predicate in a type {x: τ |q(x)}
if either p ≡ q or p is a type-constraint predicate in τ .

usage: (typepred "i+j") : If i and j are natural numbers, then the antecedent
formula i + j >= 0 is added to the current sequent along with the asser-
tions integer pred(i + j), rational pred(i + j), and real pred(i +

j).

(typepred "cons(i, null)") : Adds the antecedent formula
cons?[nat](cons(i, null)) to the current sequent.

errors: Apart from parsing and typechecking errors, typepred can generate two
errors:

Given expression does not typecheck uniquely: This means that there
was some type ambiguity in the given expression that can be resolved
by providing theory names, actuals, and/or explicit coercions.

Irrelevant free variables in . . . : As with many other rules, no free variables
can be introduced into a sequent in a PVS proof.

notes: Type predicates are automatically made available to the decision procedures
in most cases; this command is only occasionally needed.

4.14.2 typepred!: Making Implicit Type Constraints
Explicit

syntax: (typepred! exprs &optional all? )

effect: The only difference between typepred and typepred! is that the exprs ar-
gument is not given in &rest form and the all? flag can be set to T to get
all the type predicates for subtypes of number. The typepred command only
returns the type predicates up to the natural number constraint.

4.15 Abstraction and Model Checking

abstract-and-mc defined Boolean/data abstraction followed by model-checking
abstract defined Boolean abstraction of PVS expressions
abs-simp primitive Boolean abstraction
model-check defined CTL model checking
musimp primitive mu-calculus model checker
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4.15.1 abstract-and-mc/$: Boolean abstraction followed
by model-checking

syntax: (abstract-and-mc cstate astate amap &optional theories

rewrites exclude strategy [ (assert)] feasible verbose? )

effect: This command constructs an abstraction of the mu-calculus formulas in the
given goal using install-rewrites to install various rewrites, assert to apply
these rewrites and other simplifications, and abs-simp to actually construct the
abstraction.

The mu-calculus formulas in the goal that contain quantification over the con-
crete state type cstate are abstracted with respect to both predicate and data
abstraction maps given in amap. The result is a corresponding mu-calculus
formula over the abstract state type astate. Both cstate and astate are ex-
pected to be type expressions, and amap is a list of pairs of field-name (from
the record type astate) and a function from the concrete state type cstate to
the type (which currently must be a boolean or a scalar type) corresponding to
the field-name in the type astate. The optional arguments theories, rewrites,
and exclude are as in install-rewrites. The strategy argument takes a proof
command that is used to discharge the proof obligations that arise in the con-
struction of the abstraction. The default strategy is (assert). Various forms
of grind are also suitable though significantly more expensive in terms of time.
The feasible argument takes a predicate in the abstract state astate that
characterizes the feasible abstract states. This is needed when the abstracted
formulas contain quantifiers of existential strength. Each abstract state corre-
sponds to a set of concrete states, but the latter set might be empty leading
to an existential formula that is satisfiable at the abstract level but not at the
concrete level. Finally, the verbose? flag prints out an extensive listing of the
proof obligations generated during abstraction and the success or failure of the
proof effort.

4.15.2 abstract/$: Abstraction of PVS expressions

syntax: (abstract cstate astate amap &optional theories rewrites

exclude strategy [ (assert)] feasible verbose? )

effect: This command invokes the command abstract to construct an abstraction
of the mu-calculus formulas in the given goal.

The mu-calculus formulas in the goal that contain quantification over the con-
crete state type cstate are abstracted with respect to both predicate and data
abstraction maps given in amap. The result is a corresponding mu-calculus
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formula over the abstract state type astate. Both cstate and astate are ex-
pected to be type expressions, and amap is a list of pairs of field-name (from
the record type astate) and a function from the concrete state type cstate to
the type (which currently must be a boolean or a scalar type) corresponding to
the field-name in the type astate. The optional arguments theories, rewrites,
and exclude are as in install-rewrites. The strategy argument takes a proof
command that is used to discharge the proof obligations that arise in the con-
struction of the abstraction. The default strategy is (assert). Various forms
of grind are also suitable though significantly more expensive in terms of time.
The feasible argument takes a predicate in the abstract state astate that
characterizes the feasible abstract states. This is needed when the abstracted
formulas contain quantifiers of existential strength. Each abstract state corre-
sponds to a set of concrete states, but the latter set might be empty leading
to an existential formula that is satisfiable at the abstract level but not at the
concrete level. Finally, the verbose? flag prints out an extensive listing of the
proof obligations generated during abstraction and the success or failure of the
proof effort.

4.15.3 abs-simp/$: Boolean abstraction

syntax: (abs-simp cstate astate amap &optional strategy [ (assert)]

feasible verbose? )

effect: This is the primitive proof command used to construct an abstraction of the
mu-calculus formulas in the given goal.

The mu-calculus formulas in the goal that contain quantification over the con-
crete state type cstate are abstracted with respect to both predicate and data
abstraction maps given in amap. The result is a corresponding mu-calculus for-
mula over the abstract state type astate. Both cstate and astate are expected to
be type expressions, and amap is a list of pairs of field-name (from the record
type astate) and a function from the concrete state type cstate to the type
(which currently must be a boolean or a scalar type) corresponding to the field-
name in the type astate. The strategy argument takes a proof command that
is used to discharge the proof obligations that arise in the construction of the
abstraction. The default strategy is (assert). Various forms of grind are also
suitable though significantly more expensive in terms of time. The feasible

argument takes a predicate in the abstract state astate that characterizes the
feasible abstract states. This is needed when the abstracted formulas contain
quantifiers of existential strength. Each abstract state corresponds to a set
of concrete states, but the latter set might be empty leading to an existential
formula that is satisfiable at the abstract level but not at the concrete level.
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Finally, the verbose? flag prints out an extensive listing of the proof obligations
generated during abstraction and the success or failure of the proof effort.

4.15.4 model-check/$: CTL Model Checking

syntax: (model-check &optional dynamic-ordering?[ T]

cases-rewrite? [ T] defs theories rewrites exclude irredundant? )

effect: This command is still quite experimental. It has the effect of rewriting with re-
spect to the theories that define the CTL operators in terms of the mu-calculus,
and then applying musimp, the mu-calculus model checker to the result.

The dynamic-ordering? flag can be set to NIL to turn off the dynamic reordering
of variables in order to reduce BDD size.

The cases-rewrite? flag can be set to NIL to avoid rewriting and simplification
within unresolved selections within a CASES expression for the sake of efficiency.

The commands defs, theories, rewrites, and exclude, are used exactly as in
install-rewrites to set up rewrite rules for use in simplification prior to
model checking.

The model checker invoked by musimp uses the same BDD package as the
bddsimp command. The results of Boolean simplification and model checking
are returned in sum-of-products form as a disjunction of conjunction of literals.
Some of the disjuncts might be redundant but generating a minimal set of
disjunctions is expensive. The flag irredundant? when set to T allows a less
expensive redundant sum-of-products to be returned as the result.

The model checker either verifies the goal, returns a collection of subgoals that
serve as counterexamples to the given mu-calculus assertion, or gives an indica-
tion that the result cannot be translated. The counterexamples correspond to
the set of states for which the mu-calculus assertion fails.

usage: (model-check :theories ("transitions" "properties") :irredundant? T)

: Translates the given sequent containing CTL or mu-calculus assertions
into a Boolean mu-calculus, invokes a BDD-based symbolic model checker
on this, and either proves the result or returns a collection of subgoals.

(model-check :dynamic-ordering? NIL) : Invokes CTL/mu-calculus
model checking procedure on the subgoal but with dynamic reordering
of BDDs disabled. The dynamic reordering tries to reduce the size of the
BDDs but can be expensive in terms of time.
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4.15.5 musimp: Mu-Calculus Model Checking

syntax: (musimp &optional fnums [ *] dynamic-ordering?[ NIL])

effect: This command is primarily used in the model-check strategy to invoke the
BDD-based, symbolic mu-calculus model checker. A glaring weakness of this
model checker is that it does not generate a counterexample trace. The outcome
of the command is usually a collection of subgoals corresponding to the states
that violate the mu-calculus formula given by the sequent formulas selected
using fnums .

4.16 Converting Strategies to Rules

apply primitive applies a proof strategy in a single atomic step

4.16.1 apply: Making Proof Strategies Atomic

syntax: (apply strategy &optional comment save? time? )

effect: The apply rule takes an application of a proof strategy and applies it as a
single atomic step that generates those subgoals left unproved by the proof
strategy. The apply rule is frequently used when one wishes to employ a proof
strategy but is not interested in the details of the intermediate steps. A number
of defined rules employ apply to suppress trivial details. The optional comment
field can be used to provide a format string to be used as commentary while
printing out the proof. If the save? flag is set to T, the apply step is saved
even if the applied strategy results in no change to the proof. This is useful if,
for example, the command within the apply uses the lisp command to change
a Lisp variable for use elsewhere in the proof. The time? flag when T is used
to return timing information regarding the applied step.

usage: (apply (then* (skolem 2 ("a4" "b5")) (beta) (flatten)

"Skolemizing and beta-reducing") : The then* strategy per-
forms each of the steps given by its arguments in sequence. Wrapping this
strategy in an apply ensures that the intermediate steps in the sequence
are hidden. The given commentary string is printed out as part of the
proof.

(apply (try (skolem!) (flatten) (ground))) : This applies a strategy
that applies (skolem!) to the current goal, and if that “succeeds,” applies
(flatten) to the resulting subgoals, and otherwise it applies (ground) to
the current goal. The above rule carries out this strategy in an atomic step
and returns the resulting subgoals.



102 The PVS Proof Commands

(apply (grind) :save? T :time? T) Applies the grind strategy but
saves the step even when grind has no effect, and returns timing informa-
tion.

errors: No error messages are generated by apply.



Chapter 5

Proof Strategies

We have so far described the primitive proof rules employed by PVS to construct
proofs. Since it would be moderately tedious to construct proofs using only the
primitive proof rules, there is a simple language for defining more powerful proof
rules and proof strategies for combining proof rules. A proof strategy is intended
to capture patterns of inference steps. A defined proof rule is a strategy that is
applied in a single atomic step so that only the final effect of the strategy is visible
and the intermediate steps are hidden from the user. There are four basic forms for
constructing strategies or proof rules: recursion, let, backtracking, and the conditional
form. Lisp expressions can be employed in constructing strategies as shown below.
There is a special purpose interpreter for strategy expressions. An advanced user
would need to study the interpreter. The crucial aspect of PVS commands is that
the arguments are not evaluated. We use a substitution model of evaluation. Lisp
code can only appear in the conditional of an if strategy and in the bindings of a
let strategy.

5.1 Global Variables used in Strategies

The following global variables are kept current with each proof state and can be used
within strategies.

103
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*ps* Current proof state
*goal* Goal sequent of current proof state
*label* Label of current proof state
*par-ps* Current parent proof state
*par-label* Label of current parent
*par-goal* Goal sequent of current parent
*+* Consequent sequent formulas
*-* Antecedent sequent formulas
*new-fmla-nums* Numbers of new formulas in current sequent
*current-context* Current typecheck context
*module-context* Context of current module
*current-theory* Current theory

5.2 Data Structures

We now document the various operations on PVS data structures for terms, formulas,
and proof goals that are needed for writing nontrivial PVS proof strategies. PVS data
structures are defined as classes in the Common Lisp Object Sysem (CLOS). Each
class is defined by indicating its slots. Classes can be defined as subclasses of one or
more superclasses by introducing the additional slots. For example, the proof state
that is the root node of a proof is defined as a subclass of an ordinary proof state that
contains an extra slot for referring to the formula declaration corresponding to the
proof. Data objects corresponding to a class are called instances. If a Lisp term t has
instance v as its value, then (show t) displays the slot values of v. With PVS data
structures, if value v is an instance of class c, then c? is the recognizer corresponding
to the class so that (c? v) is T. Furthermore, if c is a subclass of class b, then (b? v)
is also T. If s is a slot name in class c, then (s v) returns the corresponding slot
value in v. A slot value is destructively updated by (setf (s v) u), which sets the
slot value of slot s in v to u. An instance can be nondestructively copied and updated
by (copy v ’s1 u1 ’s2 u2), which returns a copy of v with slot s1 set to u1 and
s2 set to u2. There is a lazy form of copy where (lcopy v ’s1 u1 ’s2 u2) creates
a new copy only when the updates actually change the slot values.

The class proofstate of proof states consists of a number of slots. These slots
include:
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label Displayed label of proof state
current-goal Sequent part of proof state
current-rule Rule being applied to current proof state
alist Decision procedure data structures
done-subgoals List of proof states of completed subgoals
pending-subgoals List of processed but incomplete subgoals
remaining-subgoals List of unprocesses subgoals
current-subgoal Proof state currently being processed
subgoalnum Number of current proof state as subgoal of parent
context Current typecheck context
parent-proofstate Parent proof state
justification Proof of subtree
current-auto-rewrites Current rewrite rules

Only a few of these are really relevant for writing strategies, and these are typically
the ones that are already captured in global variables.

The global variable *ps* is always bound to the currently active proof goal. Each
proof goal is an instance of class proofstate. The sequent corresponding to the proof
goal is kept in the global variable *goal* and appears in the current-goal slot of
the proofstate. The current sequent is an instance of the class sequent which has the
slots:

s-forms List of active sequent formulas
hiddens-forms List of hidden sequent formulas

A sequent formula is of class s-formula and the main slot here is formula so
that if sf is a sequent formula, (formula sf) is the expression corresponding to the
formula. This expression is a negation in the case of an antecedent formula.

Typical formulas are either negations, disjunctions, conjunctions, implications,
equalities, equivalences, conditional expressions, arithmetic inequalities, or univer-
sally or existentially quantified expressions. Quantified expressions are in the
class binding-expr with slots bindings which returns the bound variables, and
expression, which returns the body of the binding expression. The other forms are
all instances of the application class consisting of a slot for the operator and one for
the argument. The first or only argument of an application expr can be obtained by
(args1 expr). The second argument, if any, can be obtained by (args2 expr). The
predicates for recognizing the different connectives are summarized in the following
table.
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Connective Recognizer Form
Negation (negation? expr)

Disjunction (disjunction? expr)

Conjunction (conjunction? expr)

Implication (implication? expr)

Equality (equality? expr)

Equivalence/Equality (iff? expr)

Conditional (branch? expr)

Universal Formula (forall-expr? expr)

Existential Formula (exists-expr? expr)

5.3 Selecting Sequent Formulas

Several Lisp functions select sequent formulas given their labels or numbers, or collect
the numbers of selected sequent formulas. Given a sequent seq, typically obtained by
(s-forms *goal*) and a list of labels or formula numbers fnums, the Lisp expression
(select-seq seq fnums) returns the list of sequent formulas in seq corresponding
to the given fnums. The Lisp expression (delete-seq seq fnums) returns the list of
sequent formulas in seq that are not selected by the given fnum. If we are interested in
selecting the sequent formulas according to some predicate, then the Lisp expression
(gather-seq seq yes-fnums no-fnums pred) returns the list of sequent formulas
in seq that are selected by yes-fnums but not by no-fnums such that the formula
part of the sequent formula satisfies the unary predicate given by pred. Given a
sequent formula sf in (s-forms *goal*) or in the list returned by gather-seq, the
Lisp expression (formula sf) returns the actual PVS term corresponding to the
sequent formula. Note that the formula numbers input to gather-seq can also be

’* (for all the formulas), ’+ (for the consequent formulas), and ’- (for the antecedent
formulas), and also formula labels.

Since many commands take formula numbers or lists of formula numbers as argu-
ments, it is useful to select these numbers rather than the formulas themselves. The
Lisp expression (gather-fnums seq yes-fnums no-fnums pred) returns the list of
all the formula numbers of sequent formulas in seq corresponding to fnums that sat-
isfy the predicate pred. Note that any reference to the actual PVS term representing
the sequent formula sf in the predicate pred will have to be of the form (formula

sf).

Thus, the Lisp expression

(gather-seq (s-forms *goal*)

’-

nil

#’(lambda (sf) (and (negation? (formula sf))

(forall-expr? (args1 (formula sf))))))
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collects the list of universally quantified antecedent formulas, and the Lisp expression

(gather-fnums (s-forms *goal*)

’-

nil

#’(lambda (sf) (and (negation? (formula sf))

(forall-expr? (args1 (formula sf))))))

returns the corresponding list of formula numbers.

5.4 Strategy Expressions

We describe the more easily understood aspects of strategies below. Any strategy
expression can be typed in at the Rule? prompt in a proof. The syntax for strategy
expressions is as follows:

〈step〉 : = 〈primitive-rule〉
| 〈defined-rule〉
| 〈defined-strategy〉
| (quote 〈step〉)
| (try 〈step〉 〈step〉 〈step〉)
| (if 〈lisp-expression〉 〈step〉 〈step〉)
| (let ({(〈symbol〉 〈lisp-expression〉)}+) 〈step〉)

5.5 Defining Strategies

User-defined strategies should be saved in a file called pvs-strategies. PVS loads
strategies from files of this name from both the user’s home directory and the current
context directory. A strategy definition has the form:

(defstep name

(required-parameters

&optional optional-parameters

&rest parameter )

strategy-expression

documentation-string

format-string )
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This generates both a (blackbox) defined rule name and a (glassbox) strategy
name£. There are two other definition forms that are essentially similar to defstep.
These are defstrat and defhelper. The defhelper version is identical to defstep

but is used for defining strategies that are only meant to be used in the definition of
other strategies and are not likely to be invoked directly by the user. The defstrat

version defines only a glassbox strategy called name and the rule or blackbox version
is not defined. The defstrat form does not take the final format-string argument
given to defstep. The differences between a defined rule and a strategy are:

1. A defined rule like a primitive rule is atomic, whereas a strategy could expand
to the application of several atomic rules.

2. Only the expanded form of a strategy is saved to be rerun, whereas a rule is
saved and rerun in its unexpanded form.

3. A defined rule merely returns the unproved subgoals, whereas a strategy returns
the expanded proof tree. For example, prop$ and ground are strategies and
prop and ground are their corresponding rule versions. The former are glass
boxes in that their internal behavior is visible to the user, whereas the latter
are black boxes.

Otherwise, defined rules and strategies are very similar. Both can be recursive
and can involve the application of a number of primitive proof steps to achieve their
effect.

In the following, we describe some important strategies used for defining new proof
rules.

5.6 The Basic Strategies

quote Identity strategy
try Subgoaling and Backtracking
if Conditional strategy
let Evaluate/bind Lisp expressions/values

5.6.1 quote: The Identity Strategy

syntax: (quote step )

effect: The strategy expression (quote step ) simply evaluates to step itself. The
reason it is needed is that it is quite typical to construct a Lisp expression
corresponding to a strategy but this then needs to be unquoted to be used as a
strategy. For example the strategy (then* &rest steps) is given the recursive
definition
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(let ((x (when steps (car steps)))

(y (when steps (cons ’then* (cdr steps)))))

(if steps (if (cdr steps)(then x y) x) (skip)))

In evaluating the body of this definition, the quoted forms of the values of the
bindings for x, y and z are substituted for these variables into the body of the
let-expression. When any of these values are to be evaluated as strategies, they
are unquoted by the definition for the quote strategy given above.

5.6.2 try: Strategy for Subgoaling and Backtracking

syntax: (try step1 step2 step3 )

effect: This is the basic control strategy. It applies step1 to the current goal. If
step1 succeeds and generates subgoals, then step2 is applied to those subgoals.
If step1 does nothing, i.e., behaves as a (skip) step, then step3 is applied to the
current goal. The try step thus provides a backtracking mechanism for proof
search that can be controlled by appropriately signalling failure. The following
identities describe the behavior of the try strategy:

1. (try (skip) (assert) (split)) = (split)

2. (try (try (skip) (assert) (fail)) (split) (flatten)) =

(flatten)

3. (try (try (lemma "assoc") (fail) (assert)) (split) (flatten))

= (flatten)

4. (try (try (lemma "assoc") (assert) (fail)) (split) (flatten))

= (flatten)

The important thing to note is that if step A succeeds on the current goal, then
applying (try A B C) causes the alternative C to be closed. Then (fail)

backtracks to the last open (i.e., not closed) alternative.

usage: (try (flatten) (propax) (split)) : Applies the disjunctive simplifica-
tion step to the current goal. If the goal does disjunctively simplify, then
the (propax) step is applied to the resulting subgoal. Otherwise the con-
junctive splitting step is applied to the current goal.

(try (try (flatten) (fail) (skolem 1 ("a" "b"))) (postpone)

(prop)) : If the current goal disjunctively simplifies, then backtrack and
apply (prop), otherwise introduce skolem constants and if that fails, try
propositional simplification, otherwise postpone. Notice how (fail) is
used to trigger backtracking from a subgoal.
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5.6.3 if: Conditional Selection of Strategies

syntax: (if condition step1 step2 )

effect: Here condition is some Lisp code that is evaluated against the current goal.
If condition evaluates to nil, then step2 is applied, else step1 is applied.

usage: (if (equal (get-goalnum *ps*) 1) (ground) (prop)) : If the current
goal (*ps* is the current proofstate) is the first subgoal of its parent, the apply
(ground), else apply (prop).

5.6.4 let: Using Lisp in Strategies

syntax: (let ((var1 lexpr1) . . . (varn lexprn)) step )

effect: Here var1 through varn are symbols, and lexpr1 through lexprn are Lisp ex-
pressions. The let-form allows some values to be computed to be plugged into
strategies. The scope of each let-binding extends over the later bindings and
the body of the let strategy, so that it is similar to the let* construct of Lisp.

usage: A simplified definition of the basic querying strategy is shown below. Here,
a defined Lisp function qread is used to generate the "Rule?" query and read
the resulting user input.

(query*) = (let ((input (qread "Rule? ")))
(try input (query*) (query*)))

The then* strategy has the definition shown below where it is defined by iter-
ating the then strategy.

(then* &rest steps)
= (let ((x (when steps (car steps)))
(y (when steps (cons ’then (cdr steps))))
(z steps))

(if steps (if (cdr steps) (try x y y) x) (skip)))

5.7 Strategies

We have already briefly discussed the differences between strategies and defined rules.
In many of the cases, defined rules are analogous to the tactics of LCF, and strategies
are like the tacticals which are used to combine rules in various ways.
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5.7.1 branch: Assigning Strategies to Subgoals

syntax: (branch step steplist )

effect: Just like spread except that when steplist has only n elements and step gener-
ates more than n subgoals, the n’th element of steplist is also applied to the
subgoals following the n’th one. This is useful when only the first few subgoals
generated by step require special attention and the rest of the subgoals yield to
some uniform strategy.

5.7.2 else: A Simple Backtracking Strategy

syntax: (else step1 step2 )

effect: First applies step1 and if that does nothing, then step2 is applied to the
present goal. The definition of else is just (try step1 (skip) step2 ).

5.7.3 query*: The Basic Interaction Strategy

syntax: (query*)

effect: This is the strategy that repeatedly queries the user for the current rule or
strategy. PVS also invokes query* when all other options have been exhausted
and the prover is being used in an interactive mode.

5.7.4 checkpoint: Checkpoint Handling

syntax: (checkpoint)

effect: A synonym for query*: inserting (checkpoint) into an edited proof and
rerunning it causes the non-checkpointed subproofs to be installed (using
just-install-proof) so that the proof is only run up to the checkpoint.

notes: This command is not meant to be used directly; see the User Guide for using
it in editing proofs.

5.7.5 just-install-proof: Checkpoint Handling

syntax: (just-install-proof proof)

effect: Installs, the proof without actually checking it, and treats the current sub-
goal as proved, but marks the proof as unfinished. Used in conjunction with
checkpoint.
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notes: This command is not meant to be used directly; see the User Guide for how
it is used in editing proofs.

5.7.6 repeat: Iterate Along Main Proof Branch

syntax: (repeat step )

effect: First applies step to the current goal. If this does nothing, then no further
steps are indicated. If the application of step generates subgoals, then (repeat

step ) is recursively applied to the first of those subgoals (the main subgoal).
See repeat* below. The repeat strategy must be used cautiously. It can easily
cause loops since it is only terminated when step does nothing. Some commands
such as assert almost always take effect even when they seemingly do nothing,
and wrapping these within a repeat can cause a loop.

5.7.7 repeat*: Iterate Along all Branches

syntax: (repeat* step )

effect: While repeat only repeats the step for the main branch of the proof, repeat*
carries out the repetition along all the subgoals resulting from the first applica-
tion of step. The repetition is continued along each branch until an application
of step has no effect.

5.7.8 rerun: Rerun a Proof or Partial Proof

syntax: (rerun &optional proof )

effect: This step can be used to rerun a partial or completed proof from a previous
attempt or from another branch of the proof. This step is largely used au-
tomatically by the system when it queries as to whether the proof should be
rerun. The proof argument can also be explicitly given by the user using either
the M-x edit-proof or M-x show-proof commands to generate and edit such
inputs. This step can be used to:

1. Restore a partial proof to the state when the proof was interrupted.

2. Recheck a completed proof.

3. Redo a proof following some changes to the specification. It is possible that
the old proof only partially works for the changed specification. In this
case, it is usually possible to clean up and complete the resulting partial
proof.

4. Apply a partial or completed proof from one subgoal to some other subgoal
in the proof attempt.



5.7 Strategies 113

5.7.9 spread: Assigning Strategies to Subgoals

syntax: (spread step steplist )

effect: First applies step1 and then applies the i’th element of steplist to the i’th
subgoal. This is typically used when step splits the proof into multiple branches
where a different strategy is required for each of the branches. See branch below.

5.7.10 spread!: Assigning Strategies to Subgoals

syntax: (spread! step steplist )

effect: Like spread, applies step and then pairs the steps in steplist with the sub-
goals, but generates an error and queries the user if the number of subgoals do
not match the number of subproofs.

5.7.11 spread@: Assigning Strategies to Subgoals

syntax: (spread@ step steplist )

effect: Like spread, applies step and then pairs the steps in steplist with the sub-
goals, but generates a warning if the number of subgoals do not match the
number of subproofs.

5.7.12 then: A Sequencing Strategy

syntax: (then &rest steps )

effect: Let the list steps consists of the first element step1 and the remaining steps
rest-steps . This strategy first applies the step1 to the current goal. If any
subgoals are generated, then (then :steps rest-steps ) is applied to each
of these subgoals. If step1 has no effect, then (then :steps rest-steps ) is
applied to the original goal. The definition of then is just (try step1 step2

step2 ).

5.7.13 then*: Apply Steps in Sequence

syntax: (then* &rest steps )

effect: This command is subsumed by then and should now be considered obsolete.
This is an iterated version of then so that (then* step1 ...stepn ) is just
(then step1 (then ...stepn )).
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5.7.14 then@: Apply Steps in Sequence Along Main Branch

syntax: (then@ &rest steps )

effect: This is a version of then* where the given steps are applied in sequence only
along the main branch of the proof, i.e., if the the given rule is (then@ step1

...stepn), then stepi+1 is only applied to the first subgoal of stepi.

5.7.15 time: Time a Given Strategy

syntax: (time strategy )

effect: Executes the given rule or strategy as an atomic step (like the apply com-
mand) while printing out the run times at each of the leaf nodes. This command
has no other effect on the proof. It only prints out timing information when
there are leaf nodes generated and yields no information when the given strategy
succeeds in proving the subgoal.

usage: (time (then (lift-if)(prop)(skolem!)))

errors: No error messages other than those generated by the given strategy.

5.7.16 try-branch: Branch or Backtrack

syntax: (try-branch step1 steplist step2 )

effect: This is a combination of the try and branch strategies. It is like branch for
step1 and steplist except that when step1 has no effect, then step2 is attempted
on the original subgoal.
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